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Problem and Research Objectives:  

Open surface water bodies (e.g., rivers, streams, lakes, reservoirs, ponds) are important 
water sources for agriculture, energy, commerce, industry, and public water supply. The 
numerous open surface water bodies across Oklahoma provide ~64% of the total fresh 
water withdrawal in Oklahoma (USGS, 2010). Existing surface water body maps are at 
30-m spatial resolution (Feng et al., 2016; Homer et al., 2015; Pekel et al., 2016). Small 
streams and ponds, important for agricultural production and biodiversity conservation, 
are usually not shown on these maps. There is a need for annual maps of surface water 
body at 10-m spatial resolution. Thus, we used Sentinel-2 satellite images to generate a 
statewide 10-m water body frequency map of 2018. 

Chlorophyll-a (Chl-a) concentration in surface water body is one of the most commonly 
used indicators of water quality. The Oklahoma Water Resource Board (OWRB) has 
traditionally used the Carlson’s Trophic State Index (TSI), derived using Chlorophyll-a 
concentration (Carlson, 1977), to report lake trophic status. Based on 2014-2015 
sampling data (OWRB, 2015), 6 lakes were hypereutrophic (TSI ≥ 61) and 22 lakes 
were eutrophic (60 ≥ TSI ≥ 51), covering 7% and 88% of the total surface water areas 
sampled, respectively. While lab measurement of Chlorophyll-a concentration using 
water samples collected from the field can get the accurate results, this approach is 
time consuming and expensive. Thus, the Beneficial Use Monitoring Program (BUMP) 
collects water samples from the same sampling site in every year or every two to three 
years. As it covers only a small fraction of surface water bodies in Oklahoma at a given 
year, this strategy might miss the algal blooms and fail to capture the seasonality of 
Chlorophyll-a concentration. Landsat satellites scan the entire earth in every 16 days 
since 1980s while Sentinel-2 satellites scan the entire earth in every 10 days since June 
2015. If robust relationships can be found between chlorophyll-a field measurements 
and satellite remote sensing data, we can estimate chlorophyll-a concentration directly 
using Landsat and Sentinel-2 images. Satellite-image based water quality detection has 
the potential to provide Chlorophyll-a concentration information of the entire state in 
high temporal frequencies and spatial resolution, which could provide an alternative and 
supplement to the expensive in-situ water sample collection and lab measurement. 

Methodology: 

Surface Water Body Area: Terrestrial landscapes are often composed of water, soils 
and vegetation. The relationship between water and vegetation indices obtained from 
satellite imagery can be used to detect open surface water bodies (Xiao et al., 2006; 
Zou et al., 2017, Zou et al., 2018). We classify an observation in a image pixel as 
surface water body if its water signal is stronger than vegetation signal. First, we identify 
the water signal using the criteria mNDWI > EVI or mNDWI >NDVI. Second, we identify 
the non-vegetation signal (e.g., soils, water) using the criterion EVI < 0.1. Finally, those 
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observations in image pixels that met both criteria ((mNDWI > NDVI or mNDWI > EVI) 
and (EVI < 0.1)) were classified as open surface water body, while the remaining 
obserfvations were classified as non-surface water body (Zou et al., 2017, Zou et al., 
2018). We applied the above algorithms to all Sentinel-2 images of 2018 within the 
boundary of Oklahoma and generate a statewide annual water body frequency map at 
10-m spatial resolution.  

Surface Water Quality: We received 11,851 chlorophyll-a concentration field 
measurement records from the Oklahoma Water Resource Board. These measurements 
were taken from the major lakes, reservoirs, and rivers during 2002–2016 by the 
Beneficial Use Monitoring Program in Oklahoma Water Resource Board. Most of the 
water samples were collected from ~0.5m depth. There were 908 water sample collection 
sites, distributing across the entire Oklahoma.  

For each chlorophyll-a measurement record, its geographic coordinates of water 
sampling site were added to google earth engine. The image data of a pixel at the water 
sampling site was extracted from a Landsat image, which has the closest acquisition date 
to the water sampling date compared to other Landsat images. In similar approach, a 
pixel was also extracted from a Sentinel 2 image (Table 1). Out of the 11,851 chlorophyll-
a measurement records, we successfully extracted 11,369 Landsat pixels, of which 4938 
were from Landsat 5, 5507 were from Landsat 7, and 924 were from Landsat 8. About 
7% (816) of the extracted Landsat pixels were acquired by the satellites within 1 day of 
the field water sample collection, while ~80% (9082) of the extracted Landsat pixels were 
acquired by the satellites within 10 days of the field water sample collection (Table 2). In 
similar approach, we successfully extracted 176 Sentinel 2 pixels, of which 19% (34) were 
acquired by the satellites within 10 days of the field water sample collection. There were 
much less Sentinel 2 pixels because Sentinel 2A satellite was launched in Jun. 2015 and 
only a small portion of the chlorophyll-a measurements were acquired after that. In 
comparison, there are two Landsat satellites at work in most of the chlorophyll-a 
measurement period (2002–2016). 
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Table 1 Band name and wavelength of Landsat 5/7/8 and Sentinel 2 images 
Landsat 5/7 Landsat8 Sentinel 2A 

Band name Waveleng
th (μm) 

Band name Wavelength 
(μm) 

Band name Wavelength 
(μm) 

B1 (blue) 0.45-0.52  B1 (ultra-blue) 0.435-0.451  B1 (Aerosols) 0.4292-0.4562 

B2 (green) 0.52-0.60  B2 (blue) 0.452-0.512 B2 (blue) 0.4434-0.5414 

B3 (red) 0.63-0.69  B3 (green) 0.533-0.590  B3 (green) 0.5373-0.5823  

B4 (near 
infrared) 

0.77-0.90  B4 (red) 0.636-0.673 B4 (red) 0.6456-0.6836 

B5 (shortwave 
infrared 1) 

1.55-1.75 B5 (near 
infrared) 

0.851-0.879 B5 (red edge 
1) 

0.6946-0.7136 

B6 (brightness 
temperature) 

10.40-
12.50 

B6 (shortwave 
infrared 1) 

1.566-1.651 B6 (red edge 
2) 

0.7315-0.7495 

B7 (shortwave 
infrared 2) 

2.08-2.35  B7 (shortwave 
infrared 2) 

2.107-2.294 B7 (red edge 
3) 

0.7688-0.7968 

  B10 
(brightness 
temperature 1) 

10.60-11.19 B8 (near 
infrared) 

0.7603-0.9053 

  B11 
(brightness 
temperature 2) 

11.50-12.51 B8A (red edge 
4) 

0.8482-0.8812 

    B11 
(shortwave 
infrared 1) 

1.5422-1.6852 

    B12 
(shortwave 
infrared 2) 

2.0814-2.3234 
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Table 2 Satellite and day range of the extracted Landsat pixels 

Satellite Day range between satellite image and chlorophyll-a 
measurement 

Type Num. Range (day) Num. 
L5 4,938 0 816 
L7 5,507 [1-5] 5,837 
L8 924 [6-10] 2,429 
  [11,15] 1,107 
  [16,20] 614 
  [21, 25] 233 
  [25, 30] 143 
  [31,94] 190 
Sum 11,369 Sum 11,369 

 

Chlorophyll-a concentration associated with algal blooms changes across the seasons, 
affected by nutrients, temperature, sunlight, water chemistry, etc. Thus, satellite pixels 
acquired closer with the chlorophyll-a field measurement date could better represent the 
actual chlorophyll-a concentration. This study classified the chlorophyll-a measurements 
with a corresponding satellite pixel within 10 days as measurements qualified for further 
analysis. Out of the 908 water sampling sites, 768 have at least one qualified 
measurement. There were 420 water sampling sites that have at least 10 qualified 
measurements and only these sites were included into the stepwise multiple regression 
analysis in MATLAB R2014a. 

Considering there were only 34 chlorophyll-a field measurements with corresponding 
satellite pixels within 10 days. We included these 34 measurements, from different 
water sampling sites across Oklahoma, into the multiple regression models with all the 
reflectance bands of Sentinel 2 pixels as potential factors (Table 1).  

Principle Findings and Significance: 

We generated a statewide water body frequency map of 2018 at the spatial resolution of 
10m (Fig. 1). Our annual water body frequency map provides the location and extent of 
surface water bodies and illustrates the stability of surface water resources. High 
frequency values represent consistent water bodies, while low frequency values 
represent discontinuous inundation, such as seasonal water bodies. According to this 
annual frequency map, there were ~ 820 km2 seasonal water body area (25%=<water 
frequency<75%) and ~2670 km2 year-long water body area (water frequency>=75%). 
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Fig. 1. Statewide annual water body frequency map of 2018 at the spatial resolution of 
10m. 

 

The 10-m resolution map of 2018 from this study can provide clearer water body 
boundaries while capturing small streams that were omitted in the 30-m map (Fig. 2). 
For example, the attribute river of Lake Thunderbird was not captured by the 30-m 
water body frequency map but clearly shown in the 10-m map we generated. 
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Fig. 2. Annual water body frequency maps of Lake Thunderbird. 30-m map based on 
Landsat 7 and 8 images in 2016 (a) and its zoom-in (b). 10-m map based on sentinel 1 
and 2 images (c) and its zoom-in (d). 

 

The 10-m annual water body frequency map can clearly show the river channels of 
Arkansas River, Verdigris River, and Neosho River (Fig. 3). It can also indicate the 
stability of streamflow. For example, in the upper reaches of Arkansas River, water only 
covers parts of the river channel. Parts of the river channels are only seasonally 
flooded. 
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Fig. 3. Annual water body frequency maps of Fort Gibson Lake, Arkansas River (lower 
part of figure), Verdigris River (upper part of figure), and Neosho River (connected to 
Fort Gibson Lake).  

Among the 420 water sampling sites qualified for stepwise multiple regression analysis, 
only 165 successfully built the regression models. Nine (5%) regression models had R 
squares <0.25, 77 (47%) had R squares between 0.25 and 0.5, 53 (32%) had R squares 
between 0.5 and 0.75, and 26 (16%) had R squares >0.75 (Fig. 4, Table S1). The 
performance of regression models varies substantially across Oklahoma, with relatively 
good performance in Eufaula Lake, Keystone Lake, Copan Lake, Hugo Lake, Foss 
Reservoir, and Atoka Reservoir. The performance even varies across different water 
sampling sites within a lake. For example, model performance in northern Grand Lake 
and southern Oologah Lake was much better than the other portions of these two lakes. 
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For different water sampling sites, the significant influencing bands selected by the 
multiple stepwise regression models were also different (Table S1). Among the 165 
multiple regression models, blue band was selected by 24 models, green band 31 
models, red band 36 models, Near infrared band 34 models, Shortwave infrared-1 band 
38 models, brightness temperature band 51 models, and shortwave infrared-2 band 21 
models. These phenomena were likely caused by the difference in nutrients, temperature, 
suspended matters, and water chemistry (Matsushita et al., 2015) among different water 
bodies across Oklahoma. However, the specific influencing factors of chlorophyll-a 
concentration in each water body of Oklahoma remains unknown. Further studies will be 
required to solve this problem. It is worth to mention that brightness temperature band 
was included in about one third of all the regression models, more than any other bands, 
indicating that water temperature is one of the most important factors of algal bloom in 
Oklahoma and that this band has great potential in water chlorophyll-a estimation. 

 

Fig.4 R squares of multiple stepwise regression models. 768 water sampling sites across 
the entire Oklahoma. 

 

A regression model was built using chlorophyll-a measurement and sentinel 2 data 
(Equation 1). Only the reflectance of Red Edge-2 band (Table 1) was selected by stepwise 
regression model. The R square of the regression model is 0.313, standard error of the 
estimate is 5.85, and the F value is 14.61 (P=0.001).  
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Chl. A = 372.392 × 𝜌!"#	%#&"	' − 3.617               (Equation 1) 

Where Chol. A is Chlorophyll-a concentration (mg/m3), 𝜌!"#	%#&"	' is surface reflectance 
of Red Edge 2 band (0.7315-0.7495 μm). 

The model performance is not very good (R2 =0.313), which is likely affected by the 
various water optical properties among the different water sampling sites and different 
lakes across Oklahoma. On the other hand, the Red Edge-2 Band showed significant 
linear relationships with chlorophyll-a concentration across different water bodies, 
indicating its great potential in chlorophyll-a content estimation. 
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Supplementary materials 

Table S1 Multiple stepwise regression models of 165 sampling sites 
ID Num. R2 P Inter. Blue Green Red NearIn ShortIn1 TemC ShortIn2 

1 51 0.08 0.040 30.54 -298.93 
      

2 81 0.09 0.007 4.64 
     

0.94 
 

3 85 0.22 0.000 10.66 
 

-187.55 
   

1.12 
 

4 20 0.22 0.039 2.82 
    

60.61 
  

5 19 0.22 0.042 10.25 
    

436.35 
  

6 35 0.23 0.004 -1.04 
  

469.85 
    

7 46 0.23 0.003 5.78 
    

-216.88 1.58 
 

8 20 0.24 0.030 3.00 
    

99.93 
  

9 17 0.24 0.048 36.92 
      

-840.22 

10 16 0.25 0.048 25.06 
  

-267.89 
    

11 16 0.25 0.048 7.83 
     

-0.04 
 

12 17 0.25 0.039 8.45 
      

663.43 

13 18 0.25 0.033 12.84 
    

614.41 
  

14 16 0.26 0.045 37.72 -507.59 
      

15 17 0.26 0.037 2.01 
    

75.60 
  

16 19 0.26 0.024 10.46 
     

-0.04 
 

17 17 0.26 0.035 0.87 
     

0.15 
 

18 19 0.27 0.024 59.37 
  

-480.68 
    

19 16 0.27 0.038 23.88 
  

-162.89 
    

20 15 0.27 0.045 14.82 -172.77 
      

21 84 0.28 0.000 54.39 -751.93 -347.60 
 

735.15 
   

22 17 0.28 0.030 3.95 
     

0.01 
 

23 86 0.28 0.000 45.53 
 

-501.63 
  

457.89 
  

24 16 0.29 0.030 15.06 
  

-80.80 
    

25 16 0.30 0.028 73.52 
  

-575.11 
    

26 17 0.30 0.022 15.00 -169.46 
      

27 14 0.31 0.038 6.18 
    

500.79 
  

28 14 0.32 0.036 21.38 
     

-0.06 
 

29 13 0.33 0.039 3.56 
   

113.52 
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30 32 0.34 0.003 33.92 
 

-428.91 
 

315.67 
   

31 16 0.34 0.018 5.81 
     

-0.04 
 

32 12 0.35 0.044 24.14 -223.72 
      

33 18 0.35 0.010 35.48 -414.20 
      

34 15 0.36 0.019 66.68 
   

-862.70 
   

35 16 0.36 0.014 7.59 
    

516.27 
  

36 34 0.36 0.001 27.85 
  

-369.86 
 

292.04 
  

37 17 0.37 0.010 26.73 
     

-0.19 
 

38 13 0.37 0.028 26.32 
   

-382.82 
   

39 18 0.37 0.007 -1.40 
   

346.81 
   

40 16 0.37 0.012 63.72 -940.70 
      

41 19 0.37 0.005 0.58 
  

70.59 
    

42 13 0.38 0.026 -0.06 
     

0.65 
 

43 13 0.38 0.026 13.88 
     

-0.07 
 

44 14 0.38 0.018 12.06 
      

549.30 

45 17 0.39 0.007 0.05 
     

0.41 
 

46 11 0.39 0.039 63.44 -1007.45 
      

47 20 0.39 0.014 7.52 
 

-91.91 
  

153.47 
  

48 12 0.39 0.029 10.36 
     

-0.06 
 

49 11 0.39 0.038 0.14 
     

1.08 
 

50 15 0.40 0.012 30.08 -283.59 
      

51 18 0.40 0.005 2.68 
     

-0.02 
 

52 13 0.40 0.020 10.43 
    

264.93 
  

53 13 0.40 0.020 38.47 
  

-319.28 
    

54 13 0.40 0.020 59.64 
 

-616.21 
     

55 14 0.40 0.015 1.35 
    

168.50 
  

56 19 0.41 0.003 -0.35 
   

257.45 
   

57 27 0.41 0.002 7.70 -129.10 
  

237.60 
   

58 11 0.41 0.034 10.52 
      

-101.13 

59 14 0.41 0.013 1.77 
     

0.78 
 

60 11 0.41 0.033 5.60 
   

83.69 
   

61 18 0.42 0.004 45.41 
 

-438.98 
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62 12 0.42 0.022 34.93 -429.43 
      

63 17 0.43 0.004 15.57 
  

-91.88 
    

64 15 0.43 0.008 5.64 
     

1.75 
 

65 19 0.43 0.011 26.41 -433.58 
  

276.36 
   

66 13 0.44 0.014 62.01 
 

-475.79 
     

67 14 0.44 0.009 -1.18 
     

1.03 
 

68 32 0.45 0.000 51.98 
 

-645.54 
 

373.54 
   

69 14 0.45 0.009 38.34 
 

-376.47 
     

70 17 0.45 0.003 29.38 
     

-0.20 
 

71 11 0.46 0.022 22.88 
 

-111.25 
     

72 11 0.47 0.021 44.11 
 

-492.73 
     

73 15 0.47 0.005 14.85 
     

1.94 
 

74 16 0.48 0.015 39.81 
 

-470.10 
 

273.97 
   

75 13 0.48 0.009 7.96 
    

460.53 
  

76 17 0.48 0.002 22.16 
  

-132.73 
    

77 35 0.48 0.000 40.14 
 

-477.09 
 

275.59 
   

78 15 0.49 0.004 27.47 
     

-0.21 
 

79 17 0.49 0.002 35.03 
 

-295.55 
     

80 14 0.49 0.005 19.17 
     

0.06 
 

81 18 0.49 0.006 28.96 
 

-353.92 
 

240.10 
   

82 19 0.49 0.004 9.22 
 

-118.88 
    

201.10 

83 18 0.49 0.006 49.72 
  

-602.81 
 

455.25 
  

84 19 0.50 0.001 50.33 
 

-451.64 
     

85 18 0.50 0.006 12.96 -122.83 
     

319.30 

86 12 0.50 0.010 8.67 
    

402.16 
  

87 14 0.50 0.004 11.74 
      

508.30 

88 10 0.51 0.021 2.19 
    

98.66 
  

89 17 0.51 0.001 1.68 
     

0.77 
 

90 18 0.51 0.004 6.51 
  

-183.11 
   

339.58 

91 13 0.52 0.006 3.74 
    

855.63 
  

92 22 0.52 0.001 56.72 
  

-2108.12 1734.11 
   

93 11 0.53 0.012 1.35 
   

85.30 
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94 13 0.53 0.005 23.96 
 

-165.02 
     

95 25 0.53 0.001 30.31 -385.03 
     

-1323.36 

96 12 0.53 0.007 10.97 
     

-0.08 
 

97 16 0.54 0.001 -0.48 
      

1522.94 

98 15 0.54 0.002 8.62 
     

-0.05 
 

99 10 0.55 0.014 2.88 
    

606.57 
  

100 10 0.56 0.013 2.87 
   

-44.73 
   

101 14 0.56 0.002 16.62 
     

0.05 
 

102 14 0.56 0.002 67.08 
 

-652.25 
     

103 16 0.56 0.005 13.48 
  

-219.40 
 

554.99 
  

104 14 0.56 0.002 1.79 
      

127.28 

105 11 0.57 0.007 2.47 
     

0.78 
 

106 100 0.57 0.000 30.53 989.64 
-
2344.13 1396.67 

  
1.19 

 

107 20 0.57 0.001 103.05 
 

-
1836.71 

 
1291.41 

   
108 14 0.57 0.002 14.52 

     
0.05 

 
109 13 0.58 0.002 0.95 

     
0.58 

 
110 16 0.59 0.003 1.21 

     
0.58 -255.59 

111 11 0.59 0.006 0.83 
   

93.44 
   

112 20 0.60 0.000 49.01 
 

-613.41 
  

664.23 
  

113 15 0.60 0.004 4.40 
    

1958.17 
 

-1406.61 

114 17 0.61 0.001 12.90 
  

394.93 -298.79 
   

115 18 0.61 0.001 16.03 -160.91 
     

232.93 

116 13 0.61 0.009 30.19 
 

-410.98 
   

1.84 
 

117 11 0.62 0.004 2.56 
   

126.47 
   

118 13 0.62 0.001 80.32 
  

-649.61 
    

119 10 0.62 0.007 4.78 
   

-62.02 
   

120 14 0.62 0.005 19.73 
  

-274.85 425.91 
   

121 10 0.63 0.006 26.01 
  

-154.14 
    

122 16 0.64 0.000 31.67 
  

-178.74 
    

123 51 0.64 0.000 37.05 
 

-468.49 
 

238.52 
 

-0.02 
 

124 17 0.65 0.001 62.24 
 

-606.39 
    

495.34 
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125 14 0.65 0.000 28.07 
   

-417.35 
   

126 13 0.66 0.005 27.46 
  

-416.33 381.38 
   

127 12 0.66 0.001 11.70 
     

-0.10 
 

128 12 0.68 0.001 21.35 
     

-0.09 
 

129 10 0.69 0.003 -0.90 
     

2.32 
 

130 11 0.70 0.001 2.55 
    

199.74 
  

131 15 0.70 0.000 0.19 
    

517.15 
  

132 10 0.71 0.002 3.52 
     

-0.02 
 

133 12 0.71 0.004 15.18 
 

-218.23 
 

283.59 
   

134 16 0.71 0.000 15.30 
 

-119.76 
  

204.61 
  

135 16 0.71 0.001 8.41 
    

-
1036.41 0.31 

 
136 17 0.72 0.001 16.33 

  
-270.48 482.31 -311.86 

  
137 16 0.72 0.000 -15.51 355.94 

     
-238.26 

138 12 0.73 0.003 -0.98 
  

64.52 
  

-0.01 
 

139 11 0.74 0.001 15.06 
  

-70.68 
    

140 13 0.77 0.000 30.99 
   

-520.84 
   

141 12 0.77 0.001 11.99 
  

-88.00 
 

324.64 
  

142 10 0.77 0.001 4.64 
     

-0.03 
 

143 12 0.77 0.001 16.84 
  

-158.46 
   

1000.63 

144 10 0.77 0.001 -12.16 
   

482.98 
   

145 13 0.78 0.000 -2.05 
     

0.83 
 

146 16 0.79 0.000 61.78 
  

-792.72 -481.28 
   

147 12 0.79 0.004 9.49 
  

-85.01 
 

659.14 
 

-542.67 

148 11 0.79 0.000 3.62 
    

252.65 
  

149 11 0.80 0.002 2.45 
    

111.11 -0.02 
 

150 23 0.80 0.000 17.67 
     

-0.26 -712.63 

151 17 0.81 0.000 15.16 
  

-96.30 
   

134.64 

152 10 0.83 0.000 -11.88 
    

973.36 
  

153 12 0.85 0.000 1.24 
    

41.95 0.00 
 

154 17 0.85 0.000 7.07 
  

-23.27 
 

1432.00 
 

-520.33 

155 14 0.86 0.000 32.43 
 

-403.33 
  

680.73 
  

156 11 0.86 0.000 10.56 -230.10 
    

0.65 
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157 10 0.87 0.000 -6.72 
     

0.96 
 

158 12 0.91 0.000 0.73 
    

-236.81 0.95 
 

159 10 0.92 0.001 5.24 -197.75 
 

115.81 
  

0.00 
 

160 13 0.94 0.000 11.40 
 

1136.62 -1198.21 
 

328.67 
  

161 12 0.95 0.000 18.83 -636.14 
 

416.63 
  

0.30 
 

162 10 0.95 0.000 18.06 -555.81 
 

147.34 188.00 
   

163 10 0.96 0.000 8.13 
   

338.37 
 

0.51 
 

164 11 0.97 0.000 
-
2382.2 42498.97 

-
3093.11 35746.46 

    
165 10 0.97 0.000 54.22 -1349.40 

  
824.83 -657.72 

  
ID is sampling site ID. Num. is short for sample number at each site. R2 and P are from 
regression model summary. Inter. is short for intercept. Blue, Green, Red, NearIn, 
ShortIn1, TemC, and ShortIn2 are Landsat 5/7/8 bands of Blue, Green, Red, Near 
infrared, Shortwave infrared 1, brightness temperature, and shortwave infrared 2, 
respectively. 

 


