
CONSERVING AGRICULTURAL
WATER RESOURCES IN

OKLAHOMA USING
SMART TECHNOLOGIES

2018 / /  BY  SUMON DATTA AND SALEH TAGHVAEIAN



 

Title: Conserving Agricultural Water Resources in Oklahoma using Smart Technologies  

Authors’ Names and Affiliations: Sumon Datta1, Saleh Taghvaeian2  

1PhD Student; Department of Biosystems & Agricultural Engineering, 111 Ag Hall, 
Oklahoma State University, Stillwater OK, 74078; Phone: 701-730-4742; email: 
sdatta@okstate.edu 

2Assistant Professor; Department of Biosystems & Agricultural Engineering, 111 Ag 
Hall, Oklahoma State University, Stillwater OK, 74078; Phone: 405-744-8395; email: 
saleh.taghvaeian@okstate.edu 

Start Date: 03/01/2018 

End Date: 06/17/2019 

Congressional District: 3 

Focus Category:  AG, COV, GW, HYDROL, IG, MET, MOD, SW, WQN, WS, WU  

Descriptors:  Irrigation, soil moisture, salinity, soil texture, water conservation  

Students: Sumon Datta 

 

Principal Investigators:  Saleh Taghvaeian, Assistant Professor, Oklahoma State 
University; Sumon Datta, PhD Student, Oklahoma State University. 

Publications:  

1. Masasi, Blessing; Saleh Taghvaeian; Randy Boman; Sumon Datta, 2019, 
Impacts of Irrigation Termination Date on Cotton Yield and Irrigation 
Requirement, Agriculture, 9(2), 39. 

2. Datta, Sumon; Saleh Taghvaeian; Tyson E. Ochsner; Daniel Moriasi; Prasanna 
Gowda; Jean L. Steiner, 2018, Performance Assessment of Five Different Soil 
Moisture Sensors under Irrigated Field Conditions in Oklahoma, Sensors, 18(11), 
3786.  

  

Student Status Number Disciplines 
Undergraduate   

M.S.   
Ph.D. 1 Biosystems & Agricultural Engineering 

Post Doc   
Total 1  



 

Problem and Research Objectives:   

Agricultural irrigation is the prime consumer of freshwater in Oklahoma, accounting for 
41% of the total water withdrawal in the state in 2007. The demand for irrigation water is 
expected to increase 20% by 2060 in Oklahoma, whereas, the “Water for 2060” plan 
outlined by Oklahoma Comprehensive Water Plan has set a goal of maintaining the 
level of freshwater use in 2060 similar to 2012. A main approach to meeting the 
increasing demand is through water conservation in irrigated agriculture by improving 
irrigation management. This is not possible without implementing smart technologies to 
perform a precise irrigation scheduling (Masasi et al. 2019). Use of soil water sensors is 
one of these promising smart technologies. Currently, however, only 11% of Oklahoma 
growers use any type of sensors to schedule irrigations. This number is 23% for 
Nebraska and 17% for California. Thus, there is an enormous potential for improving 
irrigation management using soil water sensors. 

Implementation of soil water sensors is not straightforward. One reason is that 
variabilities in agricultural, climatological, and field conditions impact the accuracy and 
performance of sensors (Schwartz et al. 2016; Rüdiger et al. 2010). The lack of 
information on what type of sensor performs best under a given set of local conditions is 
one of the main barriers towards adoption of smart technologies. Therefore, conducting 
local research on the performance of different sensors can provide critical information 
for optimizing irrigation management. The primary objective of this study was to conduct 
a performance assessment test of five commercially available soil water sensors under 
soils with varying salinity and clay content in Oklahoma and to investigate how sensor-
reported values can be used in irrigation management. 

Methodology:   

Two sites were selected for performance assessment, one with lower salinity and lower 
clay content (LSLC) located in central Oklahoma and the other in southwest Oklahoma 
with higher salinity and higher clay content (HSHC) (Figure 1). The EC of the soil 
solution was 1.2 dS m-1 at LSLC compared to 7.0 dS m-1 at HSHC. The clay content 
was 13.4% at LSLC and 38.7% at HSHC. Corn was planted at the LSLC site under 
center-pivot irrigation system and HSHC site was under furrow-irrigated cotton.  

 
Figure 1. Experimental study site locations. 



 

Five commercially available sensors were installed at each study site: Acclima TDR315, 
Campbell Scientific CS655, MeterGroup GS1, Spectrum Technologies SM100, and 
CropX. Each sensor had four replications, except CropX (two replications). Dataloggers 
recommended by manufacturer were used to collect hourly soil water content (SWC) 
data in form of volumetric water content (θv). The sensors were used with factory 
calibrations because the results obtained in this manner would best represent the 
conditions that irrigators and farm managers would face in the field. All sensors were 
installed at a soil depth of 20 cm (~8 inches). 

At each replication, a pit was dug between two rows of crops to install the sensors. Soil 
samples were taken to determine important soil moisture thresholds, soil salinity, and 
soil textural information. Sensors were inserted horizontally into the sidewall of the pit 
(undisturbed soil) so that the rods of the sensors were on top of each other (vertical 
orientation). Tipping bucket rain gages were installed to collect irrigation and 
precipitation data. During the growing season, multiple gravimetric soil samples (four 
replications on each visit) were taken using Giddings soil sampling probe to estimate 
reference θv. 

To evaluate the performance of the selected sensors, their θv readings were compared 
with reference θv values. Four statistical parameters, namely root mean square error 
(RMSE), RMSE-observations’ standard deviation ratio (RSR), mean bias error (MBE), 
and index of agreement (k) were estimated. Better sensor performance was indicated 
by lower RMSE/MBE and RSR/k closer to unity. The coefficient of correlation was also 
determined to identify correlations between readings of different sensors. 

Efficient irrigation management requires knowledge of two important soil moisture 
thresholds that indicate water availability for plant consumption (Datta et al. 2017). 
These thresholds are field capacity (FC) and wilting point (WP). Any water application 
over FC would be wasted to deep percolation. It is also desired to maintain SWC of an 
irrigated field above WP to avoid water stress. The FC and WP were determined using 
three different approaches: laboratory, sensor-based, and the Rosetta model. 
Laboratory method is SWC determination at -33 kPa for FC and -1500 kPa for WP. 
Sensor-based method was based on ranking of the collected data following the 
procedure proposed in Hunt et al. 2008. Rosetta model estimated FC and WP based on 
various level of inputs, having soil textural information and bulk density in consideration. 
Soil moisture deficit (SMD), an indicator or required irrigation depth, was calculated as 
the difference between FC and measured θv. 

Principal Findings and Significance:  

The fluctuations in θv were similar across all sensors at both study sites (Figure 2). All 
sensors responded to most irrigation and precipitation events. In some cases, there was 
little or no change in θv following a watering event, mainly because the amount of water 
received was not large enough to reach sensor installation depth. The results of 
performance evaluation (statistical indicators) are summarized in Table 1. In general, all 
sensors performed better at the LSLC, compared to HSHC. At LSLC, the RMSE was 
the lowest for CS655 (0.019 m3 m-3), followed by TDR315 (0.028 m3 m-3) and GS1 



 

(0.048 m3 m-3). These sensors can be implemented for effective irrigation scheduling 
under conditions similar to those of LSLC. The MBE and RSR values indicated the 
same trend in overestimating the θv reported by sensors that can be also observed in 
Figure 3 (most points in the figure are above the 1:1 line).  

All sensors had larger RMSE at the HSHC site compared to LSLC. However, the 
magnitude of the increase in RMSE was not uniform and changed from a slight increase 
for CropX to over an eight-fold increase for CS655. The CropX sensor had the smallest 
RMSE, followed by TDR315, GS1, CS655, and SM100. High clay content and elevated 
levels of salinity seem to be the main reasons behind lower sensor accuracies at the 
HSHC site. Most of the previous studies have also reported overestimation error for 
electromagnetic sensors under saline conditions. 

 
Figure 2. Sensor-estimated and reference θv at (a) LSLC and (b) HSHC sites. 

Table 1. Performance indicators of soil moisture sensors. 

Indicators TDR315 CS655 GS1 SM100 CropX 
LSLC HSHC LSLC HSHC LSLC HSHC LSLC HSHC LSLC HSHC 

RMSE (m3 m−3) 0.028 0.064 0.019 0.165 0.048 0.122 0.110 0.233 0.051 0.055 
RSR 0.76 1.55 0.53 3.99 1.31 2.97 3.00 5.66 2.53 1.34 

MBE (m3 m−3) 0.020 0.053 0.008 0.160 0.042 0.121 0.108 0.233 0.045 −0.049 
k 0.85 0.69 0.94 0.30 0.69 0.41 0.44 0.26 0.58 0.75 



 

 
Figure 3. Sensor-estimated vs reference θv. 

In utilizing soil moisture sensors for irrigation management, obtaining a complete time 
series is as important as taking accurate readings. In this study, CropX and CS655 had 
significant data gaps for different reasons. On average, 41% of the CropX data were 
missing at LSLC compared to less than one percent at HSHC. Correspondences with 
the manufacturer revealed that the potential reason behind this issue could be the tall 
corn canopy at LSLC, which can block the transmitted signals. Upon recommendation 
from the manufacturer, extension antennas were installed on CropX sensors at LSLC. 
The observed crop height was 2.16 m and the extension antennas were installed in 
such a way that the tops of the antennae were 1.91 m from the ground. However, this 
modification did not help with the apparent transmission problem. Reliability of the 
sensors is as important as the accuracy. The CS655 had 21% missing data at HSHC 
due to combined effects of elevated salinity and clay content causing attenuation of 
electromagnetic signal from the sensor.  

In general, the Pearson’s correlation coefficients (r) of θv readings were larger at LSLC 
than HSHC (Table 2). At this site, the strongest correlation (r = 0.99) was between 
TDR315 and CS655 and the weakest was between CropX and SM100 (r = 0.79). The 
correlation coefficients for CropX were smallest among all sensors at the LSLC site, 
ranging from 0.79 to 0.81. Despite being the least accurate sensor, SM100 had strong 
correlation with the top two accurate sensors, i.e., TDR315 and CS655. This indicates 
that SM100 closely followed the temporal changes in θv of more accurate sensors. At 
HSHC, the correlation between TDR315 and GS1 was the strongest (r = 0.97). The 
SM100 also had strong correlations with TDR315, GS1, and CropX. On the other hand, 
CS655 had weak correlations with other sensors. 

The strong correlation between sensors with different accuracies suggests that the 
response of less accurate sensors to soil moisture fluctuations was similar to those of 
more accurate sensors. The differences in θv readings were relatively constant over the 
study period (offset error). This provides an opportunity for potential utilization of less 
accurate sensors in some limited applications where the user is only interested in 
determining the movement of the water front in the soil profile. One example of this 
application is leaching salts below the root zone. In this case, the user needs to ensure 



 

water front has moved below the bottom of the root zone. Another example is 
preventing deep percolation to ensure applied water remains within the root zone and 
that soluble chemicals are not transported to shallow groundwater resources. 

Table 2. Pearson correlation coefficients among installed sensors at study sites. 
LSLC 

 TDR315 CS655 GS1 SM100 CropX 
TDR315 1.00     
CS655 0.99 1.00    
GS1 0.97 0.99 1.00   

SM100 0.95 0.95 0.92 1.00  
CropX 0.79 0.81 0.81 0.79 1.00 

HSHC 
 TDR315 CS655 GS1 SM100 CropX 

TDR315 1.00     
CS655 0.50 1.00    
GS1 0.97 0.57 1.00   

SM100 0.90 0.48 0.90 1.00  
CropX 0.86 0.42 0.85 0.78 1.00 

Note all correlation coefficients were significant at p = 0.05. 

Results of this study reveal that the Rosetta model is capable of accurately estimating 
soil moisture thresholds (FC and WP) even with minimal input data (textural classes). 
The USDA’s Web Soil Survey also performed satisfactorily, despite the fact that it is 
based on coarse soil surveys. However, the ranking method resulted in significant 
overestimation of FC when compared to laboratory estimates, ranging from 59 to 117% 
at the LSLC and from 6 to 94% at HSHC site. The difference between WP estimates of 
the ranking and laboratory methods varied from 100 to 283% at LSLC and from −14 to 
129% at HSHC. A potential reason behind this poor performance could be that the full 
range of soil moisture conditions was not experienced at both sites during the period of 
study. However, this situation could be the case in many irrigated areas, since 
producers attempt to replenish soil moisture well before it reaches WP to avoid water 
stress and yield loss. Another reason behind the poor performance of the ranking 
method is the error in sensor readings, especially at HSHC, where most sensors 
overestimated soil moisture due to high clay content and elevated salinity levels. 

Variations in hourly SMD are presented in Figure 4. In this figure, dots represent 
observed SMD based on reference θv and laboratory-determined FC, while lines 
represent sensor SMD based on sensor θv and FC from two methods: laboratory and 
ranking. At LSLC, observed SMD values were zero except on two sampling dates in 
early September. This is because this site was under full to slightly over-irrigation at 
most times during the study period. The only exception for the same period was in 
September when crop water demand outpaced irrigation application. Possible 
underestimation of θv at FC in the laboratory method may have contributed to zero SMD 
on most measurement dates too. In this study, a soil matric potential of −33 kPa was 
used to measure SWC at FC. But as mentioned before, this value can be as high as 
−10 kPa in sandy loam soil, resulting in a larger SWC at FC and consequently a larger 
SMD estimate. Sensor SMDs based on laboratory-FC had similar patterns, indicating no 



 

depletion during the study period except in the month of September (Figure 4a). On the 
other hand, sensor SMDs based on ranking-FC showed significant depletions at most 
times, reaching values as large as 0.15 m3 m-3 (Figure 4b). This increase in SMD is 
mainly due to overestimation of FC in the ranking method, since the same sensors 
readings were used in both SMD approaches. 

At the HSHC site, the observed SMD indicated a larger depletion, especially during 
early September to early October. This pattern was expected since this site was under a 
low-frequency (7–10 days) flood irrigation regime that was not able to meet cotton water 
demand during the hot and dry month of September. At this site, sensor SMDs based 
on laboratory-FC showed no depletion except for CropX and TDR315. The SMD 
estimates of CropX were larger and the SMD estimates of TDR315 were smaller than 
observed SMD. This is because CropX underestimated θv, while TDR315 overestimated 
this parameter. The overestimation errors of the other sensors were so large that their 
θv readings were above laboratory-FC at all times, resulting in no depletion. The sensor 
SMDs based on ranking-FC were significantly larger than those based on laboratory-
FC, except for CS655. This was because of the overestimation of FC by the ranking 
method. Hence, depletion was calculated at most times. The SMDs of CS655 were 
similar to the observed SMD, since the overestimation errors in θv readings and ranking-
FC were similar in magnitude. 

 

 
Figure 4. Time series of hourly soil moisture depletion (SMD) estimated based on 

sensor readings of θv and FC estimates from laboratory (a) and ranking (b) methods at 
LSLC site and laboratory (c) and ranking (d) methods at HSHC site. Dots represent 

SMD estimated based on reference SWC and FC estimates from laboratory method. 



 

This study contributes to the existing knowledge on sensor-based irrigation scheduling 
through quantifying the accuracies of five widely-used soil moisture sensors as 
impacted by soil texture and salinity. In addition, the effectiveness of different soil 
moisture threshold estimation approaches for agricultural irrigation applications was 
investigated. The results highlighted the wide range of accuracies that exist among soil 
moisture sensors and methods for determining soil moisture thresholds. Such a wide 
range creates major challenges in utilizing soil moisture sensors for irrigation scheduling 
applications. As new sensors are being developed frequently, studies like this need to 
be conducted under variable field conditions to evaluate the performance of the new 
sensors and to provide guidelines on how they can be used for irrigation scheduling 
purposes. 
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