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Problem and Research Objectives: 

Statement of Critical Regional or State Water Problem  
As of October 1, 2014, Lake Altus-Lugert, the primary water supply for the Lugert-Altus Irrigation 

District (LAID) in southwest Oklahoma, was only 10% full, was recovering from a golden algae bloom 
which killed all fish in the lake, and did not contain enough water to produce an irrigated cotton crop 
until 2015. Severe drought in 2011 and 2012 played a major role in the demise of the lake, but local 
residents suspected upstream land use change and groundwater development may have contributed. 
Furthermore, according to the Southern Climatic Impact Planning Program (SCIPP), the climate of the 



2 
 

region is changing in both precipitation and evapotranspiration, and the region may face increased 
frequency and severity of drought. The relative importance of these various contributing factors was 
unknown, and the future of the lake, the irrigation district, and the Altus community which depends on 
both is highly uncertain. There was a pressing need for research to better understand the drivers of 
change in this regionally-significant watershed.  
 
Nature, Scope, and Objectives of the Project  

The long term goal of this research group is to identify strategies by which the community of 
Altus can successfully adapt to changing water availability. The objective of this proposal was to evaluate 
the effects of climate, groundwater development, and land use change on streamflow into Lake Altus-
Lugert. To accomplish our objective, we devised three specific aims: 
 
Specific Aim #1: Quantify changes in streamflow, climate, groundwater use, and land use in the North 
Fork of the Red River watershed upstream from Lake Altus-Lugert from 1970-2014 
Significant changes and trends in precipitation, reference evapotranspiration (ET0), groundwater use (for 
irrigation and non-irrigation), land use (i.e. planted acres), streamflow, and baseflow were identified for 
the 45-yr period from 1970-2014 and also for relevant sub-periods within the study. 
 
Specific Aim #2: Determine the relative contributions of climate and human factors to changes in flow. 
The relative contributions of climate and human factors to changes in flow variables were determined 
using the climate elasticity model. 
 
Specific Aim #3: Develop statistical models describing the relationships of climate and human 
variables with flow. 
Multiple regression was used to model annual streamflow and baseflow using climate and human 
variables that were significantly correlated with each flow variable.  Variables included precipitation, 
ET0, ground water use for irrigation and non-irrigation in the Oklahoma and Texas portions of the 
watershed, and one year lagged values for each of these variables. 
 
Methodology:   
Streamflow 

Inflow into Lake Altus-Lugert is determined from changes in reservoir storage volume each 
month by the United States Department of Interior Bureau of Reclamation (USDOI BOR) (USDOI  BOR, 
2015), and inflow data obtained from 1970-2014 were used to calculate baseflow, the portion of 
streamflow that comes from groundwater discharge.  The period 1970-2014 was chosen because 
groundwater and land use datasets prior to 1970 were incomplete.  Each flow variable was reported on 
a water year basis (1 October – 30 September) as a depth of water (water volume divided by watershed 
area).  Baseflow was calculated using the recursive digital filter method (Nathan and McMahon, 1990) 
on monthly data (Smakhtin, 2001).  For month m, baseflow was calculated as  

𝑞𝑚 = 𝛽 𝑞𝑚−1 + 0.5(1 + 𝛽)(𝑄𝑚 −  𝑄𝑚−1)   [1] 
𝑄𝐵𝑚 =  𝑄𝑚 − 𝑞𝑚     [2] 

where q is the filtered monthly inflow, Q is total monthly inflow, β is the filter parameter, and QB is the 
monthly baseflow.  A default β value of 0.925 has been suggested (Nathan and McMahon, 1990), but 
the optimal value varies by stream.  Although baseflow is typically calculated on a daily basis (Smakhtin, 
2001), it was necessary to calculate it from monthly data because daily inflow data were not available 
through the USDOI BOR.  Monthly baseflow for Lake Altus-Lugert was calculated after determining the 
optimal β value for this stream using daily streamflow data from nearby USGS gage station 07301500 
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(USGS WR, 2015).  The station is located approximately 25 km upstream of Lake Altus-Lugert (Fig. 1), 
and 6870 km2 of the watershed (94%) is upstream of this station. 
 

 
Figure 1.  The North Fork of the Red River (North Fork) watershed upstream from Lake Altus-Lugert 
stretches from the central Texas Panhandle to southwest Oklahoma, covering approximately 7,300 
km2.  The Lugert-Altus Irrigation District (LAID) is downstream (south) of Lake Altus-Lugert. 
 

Monthly baseflow for Lake Altus-Lugert was determined by (1) calculating baseflow from daily 
data from nearby station 07301500 for a range of β values and comparing the results with previously 
published baseflow data for that station, (2) calculating baseflow from monthly data for station 
07301500 and comparing the results with those from step 1, and (3) using the β from step 2 to calculate 
baseflow from monthly Lake Altus-Lugert inflow.  In step one, annual baseflow for station 07301500 was 
calculated from daily streamflow data (1945-1999), with β adjusted until the resulting calculated 
baseflow was similar to that reported by Smith and Wahl (2003) for the 1945-1999 period.  This step 
allowed us to determine the optimal β value for calculating baseflow from daily data for station 
07301500 (β  = 0.985).  Baseflow calculated in this way resulted in a median annual baseflow of 4.4 mm, 
which is comparable to the value of 3.9 mm reported by Smith and Wahl (2003).  In step 2, monthly 
baseflow was calculated after aggregating daily streamflow data for station 07301500 for each month.  
The value of β was adjusted until baseflow calculated from monthly streamflow data (step 2) most 
closely matched baseflow calculated from daily streamflow data (step 1) as suggested by Smakhtin 
(2001).  A β value of 0.630 was optimal, resulting in a Pearson correlation coefficient of 0.91 (P < 0.001) 
between monthly baseflow calculated from daily and monthly streamflow data.  Finally, in step 3, the β 
value of 0.630 was applied to monthly inflow data for Lake-Altus Lugert, and monthly baseflow was 
calculated. 
 
Precipitation and ET0 

Areal average annual precipitation and reference evapotranspiration (ET0) were calculated using 
monthly data retrieved from weather stations within or near the watershed, which included total 
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monthly precipitation and monthly minimum, maximum, and mean temperature (NOAA-NCEI, 2015).  
Only weather stations with a data record completeness of at least 80% from 1965-2014 were included, 
resulting in 17 possible stations for precipitation and 15 for temperature. To fill missing data, monthly 
precipitation or temperature data for each station were correlated against data from all other stations, 
and data were filled using data from the station with the highest correlation (Peel et al., 2010).  If data 
from the most highly correlated station were also missing, data from the next most highly correlated 
station were used.  Data were generally filled after one attempt, but up to three attempts were 
necessary in some cases.  The correlation coefficients of stations used to fill missing data ranged from 
0.70-0.92 for precipitation and were > 0.99 for temperature.   

Monthly ET0 was calculated from filled temperature data using the Hargreaves method, which 
requires only temperature and extraterrestrial radiation as inputs (Hargreaves and Allen, 2003).  The 
method is commonly used when temperature is the only available weather input (Peel et al., 2010; 
Sankarasubramanian et al., 2001; Tomer and Schilling, 2009) and has shown reasonable results without 
local calibration (Allen et al., 1998b).  Reference evapotranspiration was calculated as: 

𝐸𝑇0 = 0.0023 𝑅𝑎 (𝑇𝑚𝑒𝑎𝑛 + 17.8)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5  [3] 
where ET0 is monthly reference evapotranspiration (mm), Ra is monthly extraterrestrial radiation (mm), 
and Tmean, Tmax, and Tmin are monthly mean, maximum, and minimum temperatures (°C), respectively.  
Extraterrestrial radiation was calculated according to Allen et al. (1998b) using the latitude of each 
weather station, with monthly sums calculated by multiplying the value at the midpoint of each month 
by the number of days in the month. 

Areal average precipitation and reference evapotranspiration for each water year (1 October – 
30 September) were calculated using the Thiessen polygon method (Thiessen, 1911), a commonly used 
area-weighted average technique (Wang, 2014).  Averages were calculated by weighting each station by 
the proportion of its Thiessen polygon within the watershed, multiplying data values at each station by 
its weight, and summing values across all stations.  For precipitation, data from 11 of a possible 17 
stations had Thiessen weights > 0 and were used (i.e., their polygons overlapped the watershed), while 
data from 9 of a possible 15 stations were used for ET0, resulting in a spatial measurement density of 
one station per 668 and 816 km2 for precipitation and ET0, respectively.  For the stations used, 98% of 
data were present for precipitation and 95% of data were present for ET0. 

 
Groundwater and land use 

Groundwater use data in the Oklahoma portion of the watershed from 1970-2014 were 
obtained from the Oklahoma Water Resources Board.  Data included estimated annual water use for 
each permitted well in the North Fork Red River Alluvial Aquifer and were separated by use:  irrigated 
agriculture, public, industrial, commercial, mining, power generation, and recreation.  Groundwater use 
is not measured, but instead data were compiled by the Oklahoma Water Resources Board from 
estimates of individual waters users.  Unlike Texas data that included groundwater use at the county 
level, Oklahoma data were limited only to those wells in the North Fork Red River Alluvial Aquifer.  The 
aquifer is of major importance along the Oklahoma portion of the river (Ryder, 1996) where it sustains 
streamflow most of the year (Kent, 1980).  A small portion of the alluvial aquifer extends across the 
state line into southeastern Wheeler County, Texas (Ryder, 1996), but data from this portion of the 
alluvial aquifer were not available.  We did not attempt to assess the impact of surface water diversions 
upstream of Lake Altus-Lugert on streamflow because permitted diversions are minor, representing < 
1% of average annual lake inflow (OWRB, 2016; USDOI  BOR, 2015). 

Groundwater use data in the Texas portion of the watershed were obtained for Carson, Gray, 
and Wheeler counties from 1970-1980 and 1985-2013 (TWDB, 2015).  Data prior to 1970 were available 
only for the years 1958, 1964, and 1969.  Data included estimated groundwater use for irrigated 
agriculture (1985-2013 only), municipalities, manufacturing, mining, power generation, and livestock.  
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Irrigation data for 1974, 1979, 1984, 1989, 1994, and 2000 were obtained from a secondary source 
(TWDB, 2001).  The two datasets contained the same information during the years for which they 
overlapped (1989, 1994, and 2000), suggesting continuity between them.  Groundwater use estimates 
for municipalities, manufacturing, mining, and steam-electric power sources were derived from annual 
surveys, whereas annual groundwater use by livestock was estimated from animal populations and 
typical water use per animal.  Groundwater use for irrigated crop production was estimated using 
annual irrigated cropland data and ET0, with final estimates reviewed by local authorities (TWDB, 2015).  
The aquifer from which the groundwater was withdrawn was included for most annual estimates, with 
98% of groundwater use by volume in the Texas portion of the watershed coming from the High Plains 
Aquifer. 

Unlike flow data that were presented on a water year basis, groundwater data were necessarily 
presented on an annual basis.  We assume that all irrigation was applied during the growing season of a 
given year, approximately April through September in Oklahoma (Senay and Elliott, 2000), and therefore 
within the corresponding water year.  Separate analyses for groundwater use for irrigation and non-
irrigation purposes were performed for each state.  Throughout the manuscript, groundwater use for 
irrigation in the Oklahoma and Texas portions of the watershed are referred to as Oklahoma irrigation 
and Texas irrigation, respectively.  Likewise, Oklahoma non-irrigation and Texas non-irrigation refer to 
groundwater use for non-irrigation purposes in the Oklahoma and Texas portions of the watershed, 
respectively. 

Land use trends were assessed using annual county level planted cropland data from 1969-2014 
(USDA-NASS, 2015) and conservation reserve program (CRP) data from 1986-2014 (USDA-FSA, 2015).  
County level planted cropland data for Texas were unavailable prior to 1968.  Annual data include crops 
planted the previous fall for harvest a given year, which is important for fall planted winter wheat.  
Planted area was used rather than harvested area because it includes land that was not harvested due 
to crop failure.  Data were area weighted by multiplying county level values by the proportion of the 
county within the watershed and then summing across all counties to get watershed totals for each year 
(Tomer and Schilling, 2009).  The planted area and CRP datasets were 97% and 100% complete, 
respectively.  Missing planted area data were filled using nearest neighbor extrapolation for data at the 
beginning and end of the time series and linear interpolation for other missing data.  These data filling 
techniques assume area planted is generally consistent from year to year, which was supported by the 
high autocorrelation of annual county level planted area data in our study.  Averaged across counties 
and major crops (wheat, sorghum, and cotton), the autocorrelation coefficient (r) was 0.85 at a lag of 
one year and was greater than 0.5 for a lags of up to seven years.  Average correlation coefficients were 
calculated from z-transformed data for each county and major crop and then back transformed (Silver 
and Dunlap, 1987). 

Planted area data may have been missing for a given year because data were not collected, 
there were no planted acres for that crop and year, or because the number of reporting operations was 
low.  When three or fewer operations report crop data for a given county and year or when one 
operation controls more than 60% of the reporting area, NASS data are withheld from public view (Allen 
et al., 1998a).  To avoid filling data for years with no or low planted area, missing data was first 
subjected to a nearest neighbor test.  If the value from the year nearest the missing year was low (< 809 
ha), it was assumed that the data were not missing (i.e. actual planted area was zero); otherwise the 
missing value was interpolated or extrapolated as described above. 
 
Detecting Long Term Trends and Change Points 

Long term trends in flow, climate, and human factors were assessed using the non-parametric 
Mann-Kendall test, and Kendall’s slope was used to quantify detected changes (Kendall, 1970; Mann, 
1945).  In small samples, the outcome of the Mann-Kendall test can be influenced by autocorrelation 
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within the time series, with positive autocorrelation potentially increasing trend detection when one 
does not exist and negative autocorrelation decreasing trend detection when one does (Yue and Wang, 
2002).  Therefore, data were checked for autocorrelation, and significant positive autocorrelation (P < 
0.05) was found for baseflow, Oklahoma and Texas irrigation and non-irrigation, and planted crop area.  
No variables displayed significant negative autocorrelation.  Of the autocorrelated variables, significant 
trends, and consequently possible influences of autocorrelation, were found for Oklahoma irrigation, 
Oklahoma non-irrigation, and planted crop area.  To protect against the influence of autocorrelation on 
the Mann-Kendall test, it is often recommended that the autocorrelation component of a trend be 
removed by prewhitening time series data, but prewhitening is not universally recommended because it 
can also reduce the power of the test (Bayazit and Önöz, 2007).  We applied the approach of Bayazit and 
Önöz (2007) and found that prewhitening was not necessary because the low coefficients of variation 
and high absolute values of slope of the autocorrelated variables indicated that the potential impact of 
autocorrelation was low. 

Absence of long term trends is not an indication that variables did not change within the study 
period, as multiple changes in opposite directions could counteract one another.  Therefore, changes in 
variables without significant long term trends were also assessed using a change point analysis based on 
the cumulative sum (CUSUM) technique (Taylor, 2000), which is an iterative approach suitable for 
detecting multiple changes.  Change points were identified as the year in which the CUSUM deviation 
from zero was greatest.  The significance of each identified change was determined by performing the 
CUSUM analysis on 1000 bootstrap samples and assessing the magnitude of the difference (maximum 
CUSUM – minimum CUSUM) for each bootstrap sample.  The significance level was the fraction of 
bootstraps for which the magnitude of the difference was smaller than the original sample.  Next, the 
time series was divided at the point of the significant change, and the analysis was repeated.  In our 
study, no more than two significant change points were identified.   

Flow, climate, and human variables were then compared between three sub-periods defined 
based on the results of the change point analysis (1970-1986, 1987-2000, and 2001-2014).  The second 
change points for inflow and baseflow were each adjusted by one year so the sub-periods were the 
same for each flow variable.  Data between sub-periods were compared using either analysis of variance 
for normally distributed data or Kruskal-Wallis analysis for non-normally distributed data.  Normality 
was determined using the Lilliefores test (P = 0.05), with non-normally distributed data including inflow, 
baseflow, Texas irrigation, and Texas non-irrigation.  With the exception of Texas non-irrigation, 
between period differences were found for all variables, although differences for precipitation, ET0, and 
Texas irrigation were significantly different only at P = 0.11, 0.06, and 0.07, respectively. Variables with 
significant between period differences were then subjected to a multiple comparisons test using Fishers 
LSD (P = 0.10) to determine which sub-periods differed from others.   
 
Climate elasticity model 

We quantified the relative effects of climate (precipitation and ET0) and human factors on flow 
variables (inflow and baseflow) by (1) using the climate elasticity of streamflow model to estimate the 
response of flow variables to changes in climate (Sankarasubramanian et al., 2001; Schaake, 1990), and 
(2) using estimated elasticities to determine the relative influence of climate and human factors on 
observed changes between periods (Ma et al., 2010; Xu et al., 2013; Zheng et al., 2009).  The climate 
elasticity model states that a change in a climate variable such as precipitation will produce a 
corresponding change in streamflow and is described by: 

∆𝑄

�̅�
=  𝜀

∆𝑃

�̅�
,   [4] 

where ΔQ/Q̅ and ΔP/ P̅ are proportional changes in streamflow and precipitation relative to the pre-
change period, respectively, and ε is the elasticity of streamflow to changes in precipitation.  Climate 
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elasticity can be interpreted as the degree of sensitivity of streamflow to a change in climate.  For ε = 2 
in equation 4, for example, the proportional change in streamflow is twice the proportional change in 
precipitation.  Zheng et al. (2009) used a two parameter model to assess the impacts of precipitation 
and ET0 on streamflow: 

∆𝑄

�̅�
= 𝜀𝑃

∆𝑃

�̅�
+ 𝜀𝐸𝑇0

∆𝐸𝑇0

𝐸𝑇̅̅ ̅̅ 0
   [5] 

where ΔET0/ET̅̅0 is the proportional change in reference evapotranspiration relative to the pre-change 
period, and εET0 is the reference evapotranspiration elasticity of streamflow. The advantage of using ET0 
rather than temperature is that it better reflects the impacts of climate on streamflow, and it can 
integrate multiple climate variables (Zheng et al., 2009). 

Climate elasticities (ε) are typically estimated using either nonparametric methods or hydrologic 
models (Sankarasubramanian et al., 2001).  Nonparametric methods use directly observed long-term 
climate and streamflow data to estimate the response of streamflow to climate, and this approach may 
be preferred to hydrologic modeling because the resulting elasticities are not influenced by the 
structure and calibration of the model from which they were derived (Sankarasubramanian et al., 2001).  
Therefore, we chose a nonparametric (i.e., data based) approach similar to Zheng et al. (2009) who 
proposed calculating elasticities for individual climate variables as linear regression coefficients: 

∆𝑄𝑖

𝑄𝑚𝑒𝑎𝑛
=  𝜀

∆𝑋𝑖

𝑋𝑚𝑒𝑎𝑛
.    [6] 

Here, the subscript ‘mean’ signifies the mean calculated across the entire study period.   ΔQi = Qi - Qmean, 
where Qi is the streamflow for year i and Qmean is the long term mean and ΔXi = Xi - Xmean, where Xi is the 
climate variable for year i and Xmean is the long term mean. 

Elasticities can be estimated separately in this way for each climate variable, but separate 
estimates can be inaccurate because precipitation and temperature (or temperature derived ET0) are 
often correlated, and the residual effect of temperature on streamflow is difficult to determine 
compared with the direct effect of precipitation (Chiew et al., 2014).  In our study, we found that 
precipitation and ET0 had a Pearson correlation coefficient of -0.75 (P < 0.001).  To overcome 
complications presented by collinearity between climate variables, Ma et al. (2010) proposed estimating 
elasticities simultaneously as multiple linear regression coefficients rather than using separate simple 
linear regressions.  Multiple regression is preferable because any correlation between independent 
variables is incorporated into the coefficient (i.e., elasticity) estimation procedure (Potter et al., 2011).  
Following Ma et al. (2010), we calculated precipitation and ET0 elasticities as multiple linear regression 
coefficients (partial slopes) using: 

∆𝑄𝑖

�̅�
=  𝜀𝑃

∆𝑃𝑖

𝑃𝑚𝑒𝑎𝑛
+ 𝜀𝐸𝑇0

∆𝐸𝑇0𝑖

𝐸𝑇0𝑚𝑒𝑎𝑛

,   [7] 

where Q represents individual flow variables (inflow and baseflow) and other variables were previously 
defined. 

After estimating elasticities, we calculated the relative effects of climate and human factors on 
flow variables between periods, which were determined using the Taylor change point analysis above.  
The predicted change in each hydrologic variable due to climate factors was calculated by rearranging 
equation 5 as   

∆𝑄𝐶 = (𝜀𝑃
∆𝑃

�̅�
+ 𝜀𝐸𝑇0

∆𝐸𝑇0

𝐸𝑇̅̅ ̅̅ 0
) �̅� ,   [8] 

where ΔQc, ΔP, and ΔET0 are changes in flow variable (inflow or baseflow), precipitation, and ET0 
between periods, respectively (Zheng et al., 2009).  Q̅, P̅, and ET̅̅0 were calculated as averages across pre 
and post-change periods for each change (rather than the average for the pre-change period) (Zheng et 
al., 2009) to avoid the complication of asymmetry associated with standard relative change calculations 
(Törnqvist et al., 1985).  The overbar notation was used to distinguish these means from long term 
means in equations 6 and 7.  Assuming that changes in streamflow are the result of independent climate 
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and human factors (Zheng et al., 2009), the contribution of human factors to the total change in 
hydrologic variables was then calculated as  

∆𝑄𝐻 = ∆𝑄 − ∆𝑄𝐶  ,    [9] 
where ΔQc was calcualted using equation 8 and ΔQ is the total observed change in each hydrologic 
variable between periods. 
 
Correlation and Multiple Regression 

Relationships between flow (inflow and baseflow), climate (precipitation and ET0) and human 
activities (groundwater use for irrigation, non-irrigation, and land area planted to crops) were also 
examined using Pearson’s linear correlation.  As is often the case with annual streamflow data (Vogel 
and Wilson, 1996), annual inflow and baseflow were log normally distributed and were therefore 
subjected to natural log transformation prior to the correlation analysis (Burt et al., 2002; Vogel et al., 
1999).  Climate and human activities were assessed for concurrent and one-year lagged values.  
Assessment of longer lags was not possible because Texas groundwater use data before 1969 were 
available for only two years (1958 and 1964), and no Texas cropland data were available before 1968. 

Multiple linear regression models were constructed to explain inflow and baseflow patterns 
using climate and human variables.  Candidate variables were those that were significantly (P < 0.05) 
related to inflow or baseflow in the correlation analysis above.  We used a stepwise regression 
procedure with forward selection and backward elimination of variables, and the best model was 
identified by the minimization of the Schwarz Bayesian Information Criterion (BIC).  An advantage of 
using BIC for variable selection instead of the commonly used Akaike Information Criteria (AIC) is that 
BIC often results in a model with a simpler explanatory equation because it is more restrictive than AIC 
(Hyndman and Athanasopoulos, 2013).  Collinearity among included variables was assessed using the 
variance inflation factor (VIF), with VIF values of < 1.1 for both the inflow and baseflow final models 
indicating little or no collinearity (Menard, 2001).  Our statistical approach is an alternative to 
comprehensive physical modeling, with such results often offering a meaningful comparison to those 
derived from modeling (Burt et al., 2002).  All statistical analyses were conducted with Matlab R2012a 
(The MathWorks, Inc., Natick, MA). 
 
Principal Findings and Significance:   
 
Summary of Principle Findings and their Significance 
 
Specific Aim #1: 

We found no long-term trends in inflow or baseflow, but found counteracting increases (after 
1986) and decreases (after 2000) in each flow variable. Likewise, we did not find a long term trend in 
precipitation and reference evapotranspiration (ET0), but found a significant step increase in 
precipitation around 1984.  ET0 decreased around 1981 and increased around 2006.   Groundwater 
withdrawal for irrigation and non-irrigation uses in the Oklahoma portion of the watershed increased at 
rates of 0.16 million m3 yr-1 and 0.10 million m3 yr-1, respectively. No trends in groundwater use in Texas 
were found.  Cropland area planted in the watershed decreased at a rate of 2366 ha yr-1, or 0.32% of the 
watershed area per year  
 
Specific Aim #2: 

Human factors were responsible for more than half (52%-60%) of each of two observed changes 
in flow (around 1986 and 2000).  The recent period of low inflow (2001-2014) corresponded with low 
precipitation, high ET0, and a 66% increase in groundwater use for irrigation in the Oklahoma portion of 
the watershed.  
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Specific Aim #3: 

Precipitation and ET0 were highly correlated with each flow variable, but several human factors 
were also important.  Of them, lagged and concurrent groundwater use for irrigation in Oklahoma were 
the most highly correlated with inflow and baseflow, and lagged Oklahoma and Texas irrigation were 
the only significant human variable in the final inflow multiple regression model.  Conversely, cropland 
area planted was related to neither inflow nor baseflow.  A multiple regression model containing 
precipitation and groundwater use for irrigation explained 81% and 75% of the variability in annual 
inflow and baseflow, respectively.   
 
      The statistical relationships between groundwater use and inflow into Lake Altus-Lugert suggest 
that ground and surface water interactions help drive streamflow changes and that effective conjunctive 
water management strategies may be necessary to sustain agricultural productivity in the region.  Lake 
Altus-Lugert and a portion of its watershed have been labeled a water resources “hot spot” because of 
projected severe water scarcity.  While conservation measures may partially improve the water supply 
outlook, other approaches are likely needed to ensure adequate ground and surface water availability in 
the region.  Water use both upstream of Lake Altus-Lugert and within the LAID need to be critically 
evaluated.  Oklahoma’s current water permitting system typically does not recognize connections 
between ground and surface water, but studies like ours are evidence to the contrary.  Effective 
conjunctive water management strategies may be key to sustaining Lake Altus-Lugert and the irrigated 
agricultural which depends on it, but a state-mandated conjunctive water use plan could infringe upon 
property rights of upstream landowners and may be met with resistance.  On the other hand, a water 
conservation district organized by stakeholders in the watershed and focused on developing effective 
conjunctive management strategies would ensure that important water use decisions were being made 
by those who depend on water availability for their livelihoods.  The difficulties of implementing 
conjunctive management may be great, but for North Fork watershed, and similar irrigation-dependent 
regions around the world, the looming prospect of water scarcity may mean that “business as usual” is 
not a valid option. 
 
Principle Findings in Detail 
 
Specific Aim #1: Quantify changes in streamflow, climate, groundwater use, and land use in the North 
Fork of the Red River watershed upstream from Lake Altus-Lugert from 1970-2014 
 

The recent severe decline in the level of Lake Altus-Lugert on the North Fork of the Red River in 
southwestern Oklahoma, USA, caused substantial economic and ecological damage and prompted many 
in the region to wonder to what extent climate and human factors contributed to the decline.  Despite 
recent annual inflow that was a fraction of its historical average and a lake level that reached an all-time 
low, we found no significant long-term trends in annual inflow or baseflow.  The absence of long-term 
trends was a consequence of counteracting short-term trends.  Two change points were identified for 
inflow and baseflow, with each variable displaying a pattern of low flow from 1970-1986, high flow from 
1987 until 2001 (inflow) or 1999 (baseflow), and low flow thereafter (Fig. 2). The long term annual mean 
inflow was 17 mm, and long term mean annual baseflow was 10 mm. During the period when flow was 
high, inflow and baseflow were 16 mm and 12 mm greater, respectively, than during the preceding low-
flow period.  Average annual inflow then declined by 19 mm and baseflow declined by 11 mm from the 
period of high flow to the period of low flow from about 2000-2014.  During the time of 
unprecedentedly low lake levels from 2011-2014, annual inflow averaged only 2.2 mm, by far the lowest 
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four-year average for any time during the study, with the next lowest four-year average being 1970-
1973 when annual inflow averaged 7.6 mm. 

 

 
Figure 2.  Annual inflow and baseflow for the North Fork watershed from 1970-2014.  Year and 
significance of identified changes are given, with periods separated by vertical lines and period means 
represented by gray horizontal lines.  While there was no long term trend in inflow or baseflow, each 
flow variable displayed low flow at the beginning and end of the study period, separated by a period 
of high flow. 

 
Long term areal average precipitation was 593 mm, and the corresponding average for ET0 was 

1387 mm.  Precipitation and ET0 trends were similar to those for flow.  While long term trends did not 
exist, annual precipitation increased 71 mm around 1984, and annual ET0 decreased 46 mm around 
1981 (Fig. 3); changes that were conducive to the higher flow that we observed from about 1986-2000.  
ET0 then increased 69 mm around 2006, corresponding with the period of decreased inflow and 
baseflow after 2000.  The recent period of extreme low inflow (2011-2014) corresponded with a period 
when precipitation was 25% below and ET0 was 5% above their respective long term long term (1970-
2014) averages.  Four-year average precipitation from 2011-2014 was only 442 mm, 42 mm (9%) lower 
than the next lowest four-year period in the study (1968-1971).  Likewise, four-year average ET0 from 
2011-2014 (1460 mm) was the second highest for any four-year period in the study, falling behind only 
2009-2012.  These trends suggest a close connection between climate and streamflow, as has been 
previously reported in Oklahoma (Esralew and Lewis, 2010) and throughout the Great Plains (Garbrecht 
et al., 2004). 
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Figure 3. Annual Precipitation and reference evapotranspiration (ET0) for the North Fork watershed 
from 1970-2014.  Year and significance of identified changes are given, with periods separated by 
vertical dotted lines and period means represented by gray horizontal lines. While there was no long 
term trend for either variable, a significant increase in precipitation occurred around 1984, and ET0 
was higher at the beginning and end of the study period. 
 

Unlike flow and climate variables, some human variables displayed significant long term trends.  
Oklahoma irrigation (i.e. groundwater withdrawal from the North Fork Red River alluvial aquifer for 
irrigation) increased at a rate of 0.16 million m3 yr-1, and Oklahoma non-irrigation groundwater use 
increased at a rate of 0.10 million m3 yr-1 (Fig. 4).  Notably, groundwater use was greatest when inflow 
and baseflow were at their lowest (approximately 2011-2014).  Our observed increase in Oklahoma 
irrigation conflicts with trends reported for Oklahoma as a whole and for alluvial and terrace aquifers 
within the state.  Assessed between 1990 and 2005, statewide groundwater use for irrigation was found 
to decrease after 1995, and groundwater withdrawal from alluvial and terrace aquifers remained steady 
or declined slightly (Tortorelli, 2009).  Our observed increase was in part a result of the sharp increase 
after 2010, which had not been previously reported.  In Texas, neither irrigation nor non-irrigation 
groundwater use displayed a significant long term trend, whereas others have reported declines in 
groundwater use for irrigation in the Texas High Plains beginning in the mid 1970’s (Musick et al., 1990).  
The declines were attributed to a reduction in irrigated area and improved irrigation systems and water 
management.  While our data suggest a similar decline, our inability to detect a statistically significant 
trend was possibly the result of data gaps before 1985. 
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Figure 4. Annual groundwater withdrawals for irrigation and non-irrigation uses in the Oklahoma and 
Texas portions of the North Fork watershed from 1970-2014.  In Oklahoma, groundwater use for 
irrigation and non-irrigation increased throughout the study (dashed black lines), whereas no 
significant trends for groundwater use in Texas were identified.  

 
Cropland area planted in the watershed decreased at a rate of 2366 ha yr-1, or 0.32% of the 

watershed area per year (Fig. 5).  The proportion of the watershed planted to crops was at its maximum 
from the mid-1970’s to the mid-1980’s, before declining thereafter, with land enrolled in the 
conservation reserve program (CRP) likely accounting for much of the decline.  CRP land area averaged 
48,083 ha (6.5% of the watershed area) from 1986-2014, but decreased slightly over the study period (P 
= 0.06) (222 ha yr-1 or 0.03% of the watershed area per year).  Our observed trend in planted cropland 
corroborates trends reported throughout the Great Plains, with agricultural land area reaching its 
maximum about 1980, before declining as land was converted to grassland in conjunction with the CRP 
(Drummond and Auch, 2013). 
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Figure 5.  Cropland area planted and land in the conservation reserve program (CRP) as percentage of 
watershed area in the North Fork watershed from 1970-2014.  Cropland area planted decreased from 
1970-2014, and a slight decrease (P = 0.06) was detected for CRP land from 1986-2014. 
 

Trends in climate and human factors suggested that each contributed to low inflow into Lake 
Altus-Lugert, with periods of low precipitation, high ET0, and high irrigation corresponding with low flow. 
To more rigorously assess these relationships, we compared flow, climate, and human factors for each 
of the high and low flow periods (1970-1986, 1987-2000, and 2001-2014), and statistical comparisons 
(Table 1) reflect observed temporal trends (Figs 2-4).  Average annual inflow, baseflow, and precipitation 
were highest from 1987-2000 when ET0 and groundwater use for irrigation in Oklahoma and Texas were 
at their lowest (Table 1).   Oklahoma irrigation was 66% higher during the low flow period from 2001-
2014 than during previous periods, and Texas irrigation was 52% higher during the low flow period from 
1970-1986 than during subsequent periods.  Oklahoma non-irrigation increased each period, but the 
magnitude of water use averaged only 6.5 million m3 yr-1 compared with Oklahoma and Texas irrigation, 
which averaged 12.3 and 170 million m3 yr-1, respectively.  Texas non-irrigation groundwater use did not 
change.  The large volume of groundwater use in the Texas compared with the Oklahoma portion of the 
watershed was likely a reflection of differing groundwater resources.  In 1974, the estimated combined 
groundwater storage for Carson, Gray, and Wheeler counties in Texas, which are underlain by the High 
Plains aquifer, was 24,000 million m3 (Bell and Morrison, 1979; Bell and Morrison, 1980; Bell and 
Morrison, 1982).  This is nearly 8-fold greater than the 1973 estimated groundwater storage in the 
alluvial aquifer (3,200 million m3) from which groundwater is drawn in Oklahoma portion of the 
watershed (Kent, 1980). 
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Table 1.  Average annual flow, climate, and human factors (groundwater use for irrigation and non-
irrigation and cropland area planted) during periods identified by the change point analysis in the 
Oklahoma (OK) and Texas (TX) portions of the North Fork watershed from 1970-2014.  
 

 Inflow1 Baseflow P ET0 Irrigation  Non-Irrigation Planted 
     OK TX OK TX  

 mm million m3 % 
1970-1986 12.6 a 6.2 a 563 a 1394 b  10.7 a 220   b 5.2  a 25 a 27 c 
1987-2000 29.0 b 17.3 b   656 b 1358 a 9.7 a 140   a 6.6  b 24 a 21 b 

2001-2014 10.9 a 6.5 a 566 a 1407 b 16.9 b 149 ab 7.8  c 24 a 17 a 

1 Values within a given column followed by the same lower case letter are not significantly different at 
P < 0.1. 
 

Cropland area planted showed no obvious relationship to inflow or baseflow, with low flow 
periods occurring when area planted was at its highest (1970-1986) and at its lowest (2001-2014).  
While others have found that streamflow was negatively related to cropland area and positively related 
to grassland area (Dale et al., 2015), the relationship is complex.  An increase in CRP land can result in 
decreased runoff (Lindstrom et al., 1998) and increased evapotranspiration (Khanal et al., 2014), thereby 
decreasing streamflow.  On the other hand, increased infiltration on CRP land can lead to increased 
groundwater levels (Rao and Yang, 2010), which in turn support increased baseflow (Barlow and Leake, 
2012).  The absence of a relationship in our study may have resulted because of these counteracting 
influences or because cropland was a relatively minor land use in our study, averaging < 22% of 
watershed area. 
 
Specific Aim #2: Determine the relative contributions of climate and human factors to changes in flow. 
 

Greater than 50% of each change in inflow and baseflow was attributable to human factors, but 
climate also contributed significantly to each change (Table 2).  Average inflow increased by 16.4 mm 
and average baseflow increased by 11.2 mm around 1987, with changes in flow due to climate being 7.9 
mm (48% of the total change) for inflow and 4.5 mm (40%) for baseflow.  Inflow and baseflow then 
respectively decreased by 18.0 and 10.8 mm around 2000, with changes in flow due to climate being 7.9 
mm (44% of the total change) for inflow and 4.8 mm (44%) for baseflow.  Flow variables were related 
positively to precipitation and negatively to ET0, and each flow variable was more sensitive to 
precipitation than ET0.  The proportional change in inflow, for example, was 2.37 times the change in 
precipitation but -1.23 times the change in ET0.  That is, a 10% increase in precipitation resulted in a 
23.7% increase inflow, whereas a 10% increase in ET0 resulted in a 12.3% decrease in streamflow.  Our 
calculated precipitation elasticity of inflow is similar to that reported by Sankarasubramanian et al. 
(2001), which ranged from 1.5-2.5 for western Oklahoma and the Texas Panhandle, although values as 
high 3.0 have been reported for the area (Khanal et al., 2014). 

Our observation that climate was responsible for less than half of each change in inflow and 
baseflow underscores the control humans can have on streamflow in the region.  While previously 
unquantified, the importance of human influences on streamflow in the North Fork Red River watershed 
has been reported by others.  Esralew and Lewis (2010), for example, found a significant decline in 
precipitation-adjusted streamflow in the North Fork Red River, and they suggested that human factors 
such as changes in water use and water-management practices were likely responsible for the decline.  
Likewise, Smith and Wahl (2003) reported an increase in watershed precipitation without an 
accompanying increase in streamflow, with human factors possibly counteracting the influence of 
increased precipitation.  In the Cimarron river watershed in north central Oklahoma, Dale et al. (2015) 
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found that nearly half (48%) of streamflow variability was attributable to human factors.  Among the 
human factors they studied, increased groundwater use was associated with decreased streamflow, and 
conversion of cropland to grasslands was associated with increased streamflow.  Zume and Tarhule 
(2008) found a simulated 47% decline in streamflow due to groundwater pumping from the terrace and 
alluvial aquifer along the Beaver-North Canadian River in northwest Oklahoma.  The decline was due to 
a reduction in baseflow and a reversal of the stream-aquifer hydraulic gradient, or stream leakage. 
 
Table 2.  Precipitation (P) and reference evapotranspiration (ET0) elasticity of inflow and baseflow for 
the North Fork watershed from 1970-2014.  Absolute and percentage changes in flow and climate are 
reported, as well as the percentage of each change in flow attributable to climate (C) and human (H) 
factors.  Human factors explained >50% of both the first (around 1987) and second changes (around 
2000).   
 

 Climate Elasticity Change 1 Change 2 
Variable P ET0 mm %C %H mm %C %H 

Inflow 2.37 -1.23 16.4 48.4 51.6 -18.0 43.8 56.2 
Baseflow 2.34 -1.48 11.2 40.0 60.0 -10.8 44.0 56.0 

 
Our results and the results of these prior studies suggest that groundwater use was potentially 

an important human factor contributing to changes in inflow in our study.  Groundwater use for 
irrigation and non-irrigation in the Oklahoma portion of the watershed were 74% and 18% higher, 
respectively, during the low flow period from 2000-2014 than during the previous high flow period.  
These increases occurred at the same time that the climate elasticity model indicated that human 
contribution to the change in inflow was at its greatest (57%), which is consistent with a connection 
between groundwater use and inflow.  The connection may be especially strong in the Oklahoma 
portion of the watershed because of the close proximity of the alluvial aquifer (and therefore 
groundwater withdrawal) to the stream.  By contrast, the High Plains aquifer that underlies the Texas 
portion of the watershed spans the entirety of some counties, and the distance between groundwater 
wells and the river can be large, which would reduce their impact on streamflow (Barlow and Leake, 
2012). 

We emphasize, however, that the relative contributions of climate and human factors to 
changes in flow are dependent on the elasticities assigned to climate variables, which can be calculated 
by a number of different techniques that give different results (Khanal et al., 2014; Zheng et al., 2009).  
Our methodology (Ma et al., 2010; Zheng et al., 2009) has been shown to produce slightly lower 
estimates of precipitation elasticity of streamflow compared with other methods.  This uncertainty has 
implications when determining the contributions of climate and human factors on changes in 
streamflow.  For example, a precipitation elasticity of inflow that is 20% higher than our value of 2.37, as 
has been found when comparing the methods of Zheng et al. (2009) and Sankarasubramanian et al. 
(2001), would reduce the calculated human contribution to our second observed change in inflow from 
57% to 48%.  This small change in precipitation elasticity of inflow would lead to the conclusion that 
climate factors, not human factors, were responsible for the largest portion of the change.  Nonetheless, 
our calculated elasticities are typical of those for western Oklahoma and the Texas Panhandle (Khanal et 
al., 2014; Sankarasubramanian et al., 2001), and despite possible uncertainties regarding elasticities, we 
conclude that climate and human factors were each important drivers of changes in flow in our study. 
 
Specific Aim #3: Develop statistical models describing the relationships of climate and human variables 
with flow. 
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The climate elasticity analysis showed that both human and climate factors were important 
drivers of inflow and baseflow in the North Fork Red River watershed, and the comparison of variables 
for each sub-period suggested that groundwater use was potentially an important human factor 
influencing inflow into Lake Altus-Lugert.  Next, correlation was used to determine which climate and 
human factors were most closely related to annual flow, and multiple regression models were 
developed using significantly correlated variables.   
      Inflow and baseflow tended to be higher when precipitation was high and ET0 was low (Table 3), 
and the directions of these relationships were also reflected in the signs of precipitation and ET0 
elasticities.  Concurrent values of precipitation and ET0 showed stronger linear relationships to flow than 
their values lagged by one year, with for example, the correlation between precipitation and inflow 
being more than double for concurrent compared with lagged precipitation (r = 0.67 vs. 0.32) (Table 3).  
Our observed correlation coefficients between concurrent climate variables and flow were consistent 
with previous reports for western Oklahoma and the Texas Panhandle, which have ranged from 0.3 to 
0.7 for precipitation (Dale et al., 2015; Khanal et al., 2014) and from -0.2 to -0.6 for ET0 (Dale et al., 
2015).  Of the human factors, concurrent and lagged Oklahoma irrigation had the strongest correlations 
to each flow variable.  Neither concurrent nor lagged cropland area planted were significantly correlated 
to the flow variables (Table 3).  

 
Table 3. Correlation coefficients for inflow and baseflow with concurrent and one year lagged 
precipitation (P), reference evapotranspiration (ET0), groundwater use for irrigation and non-irrigation 
in Oklahoma (OK) and Texas (TX), and cropland area planted for the North Fork watershed from 1970-
2014.  

 Flow Variables Climate Irrigation Non-Irrigation Cropland 
 Inflow1 Baseflow P ET0 OK TX OK TX Planted 

Baseflow 0.98         
P 0.67 0.66        
P -1 yr. 0.32 0.36 -0.15 0.07 -0.16 -0.11 0.05 -0.10 -0.07 
ET0 -0.55 -0.53 -0.75       
ET0 -1 yr. -0.30 -0.32 0.23 0.01 0.34 0.13 0.00 0.18 -0.11 
OK irrigation -0.65 -0.62 -0.45 0.46      
OK irrigation -1 yr. -0.60 -0.57 -0.17 0.26 0.84 0.14 0.19 0.12 -0.54 
TX irrigation -0.43 -0.46 -0.40 0.46 0.18     
TX irrigation -1 yr. -0.46 -0.47 -0.20 0.05 0.08 0.61 -0.30 0.24 0.37 
OK non-irrigation -0.05 -0.02 -0.19 0.26 0.34 -0.19    
OK non-irrigation -1 yr. -0.31 -0.25 -0.11 0.29 0.37 -0.02 0.50 0.24 -0.51 
TX non-Irrigation -0.26 -0.25 -0.29 0.40 0.23 0.25 0.45   
TX non-irrigation -1 yr. -0.40 -0.40 -0.27 0.42 0.33 0.50 0.37 0.79 0.02 
Area planted 0.14 0.05 0.05 -0.13 -0.57 0.31 -0.52 -0.02  
Area planted -1 yr. 0.20 0.13 0.08 -0.19 -0.62 0.17 -0.48 -0.05 0.95 
1 Bold font indicates statistical significance at P = 0.05   

 
Increased groundwater use was associated with decreased inflow and baseflow for all 

groundwater use variables (irrigation and non-irrigation in both states), and most of these correlations 
were stronger than those reported elsewhere in Oklahoma.  For example, our observed correlation 
between inflow and Oklahoma irrigation was -0.66, whereas the streamflow-consumptive water use 
correlation (which incorporates groundwater use for irrigation) in the Cimarron River watershed ranged 
from -0.19 to -0.38 (Dale et al., 2015).  The high correlation that we observed suggests that the North 
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Fork Red River may be more susceptible to alluvial aquifer withdrawals than is the Cimarron River, 
possibly because of the greater extent of the Cimarron River alluvial aquifer (Ryder, 1996).  

Relationships among climate and human variables were also evaluated in order to understand 
their interrelations.  For example, precipitation and concurrent irrigation were negatively related, which 
is expected since increased irrigation would likely be required during dry years.  We considered the 
possibility that the correlation between Oklahoma irrigation and streamflow was a spurious relationship 
resulting from the fact that both low streamflow and high levels of irrigation were caused by low 
precipitation.  However, precipitation and lagged irrigation were not significantly correlated, yet lagged 
Oklahoma irrigation was almost as strongly related to flow as concurrent irrigation (Table 3).  This is 
evidence that groundwater withdrawal itself impacted inflow and baseflow and that streamflow 
changes were not simply the result of variable precipitation.   

While many climate and human variables were significantly correlated with inflow and baseflow 
(Table 3), of these candidate variables, only precipitation, Oklahoma irrigation -1 year, and Texas 
irrigation -1 year were retained in the final multiple linear regression model for each flow variable (Table 
4).  Even with this limited number of predictor variables, our models explained 81% of annual inflow 
variability and 75% of annual baseflow variability.  These results apply only to the period when data for 
each input parameter were available (1986-2014).  Our results are similar to those of Burt et al. (2002) 
who found that precipitation, lagged precipitation, and the number of groundwater wells explained 
between 64% and 94% of the streamflow variability in southwest Nebraska.  Unlike their study where 
lagged precipitation was important, precipitation -1 year was not significant in the regression models for 
inflow of baseflow.  The importance of concurrent precipitation is not surprising, but it is important that 
Oklahoma and Texas irrigation -1 year were the only other significant variables, which is perhaps 
evidence of the negative impact that groundwater withdrawal can have on streamflow and lake levels as 
has been reported elsewhere (Brikowski, 2008).  Groundwater withdrawal can reduce groundwater 
levels, thereby decreasing the amount discharging to streams, and when depletion is severe, 
groundwater withdrawal can reverse the hydraulic gradient causing recharge from the stream to the 
aquifer (Barlow and Leake, 2012). 

 
Table 4. Stepwise multiple regression of inflow and baseflow against significantly correlated 
concurrent and one year lagged precipitation (P), reference evapotranspiration (ET0), groundwater use 
for irrigation and non-irrigation in Oklahoma (OK) and Texas (TX), and cropland area planted for the 
North Fork watershed from 1970-2014.  Variables retained by the stepwise procedure are displayed. 

 

Inflow  Baseflow  

Parameter  Model Parameter  Model 
Variable Estimate P value Adj. R2 P value Estimate P value Adj. R2 P value 

Intercept 3.0 < 0.001 0.81 < 0.001 2.6 0.001 0.75 < 0.001 
P 0.004 < 0.001   0.003 < 0.001   
OK irrigation -1 yr. -0.122 < 0.001   -0.122 < 0.001   
TX irrigation -1 yr. -0.008 0.003   -0.008 0.007   

 
We emphasize, however, that our analyses describe statistical associations, and unlike 

hydrologic modeling, they do not represent mechanistic controls that climate and human factors can 
have on flow.  That is, our results are not evidence of cause and effect.  We also acknowledge that there 
are factors for which we did not account.  For example, increased forest and urban lands have been 
correlated with increased streamflow (Dale et al., 2015), whereas the proliferation of floodwater 
retarding structures can reduce streamflow (Van Liew et al., 2003).  Likewise, salt cedar encroachment, a 
common problem throughout much of the southwestern United States, can result groundwater 
depletion and reduced streamflow (Di Tomaso, 1998).  Irrigation itself can alter streamflow 
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characteristics because it dictates antecedent soil moisture content, which can influence infiltration and 
runoff during precipitation events (Castillo et al., 2003), irrigation return can promote streamflow and 
recharge (Barlow and Leake, 2012), and large-scale irrigation can alter climate (Sacks et al., 2008).  
Furthermore, our analyses were restricted to available data, and may have been improved with a more 
complete groundwater use record for Texas or improved groundwater use data for Oklahoma, which 
were self-reported by users.  The difficulty in untangling the effects of individual climate and human 
factors on streamflow is obvious. 

Nevertheless, the results of each of our analyses suggest that streamflow in the North Fork Red 
River watershed has been substantially impacted by human factors.  Without question, drought was a 
major contributing factor to the extremely low inflows to Lake Altus-Lugert in recent years, but humans, 
likely in part through groundwater withdrawals from the North Fork Red River alluvial aquifer, also 
contributed to the demise of the lake.  The connection between groundwater use and inflow and 
baseflow is evidenced by the high correlation between these variables and the importance of lagged 
Oklahoma and Texas irrigation in the inflow and baseflow regression models.  Moreover, Oklahoma 
irrigation was highest during the period from 2000-2014 when inflow was low, reaching its maximum 
during the extreme low flow years after 2010.  This was also the time when the climate elasticity model 
suggested that the human contribution to the inflow change was largest.  Our results suggest that if 
precipitation and groundwater use for irrigation remain near levels seen during 2000-2014, severe water 
scarcity will be an ongoing challenge for the region served by Lake Altus-Lugert. 

Surface water supply shortages and groundwater depletion in the North Fork Red River 
watershed are projected to grow as demand for water increases (OWRB, 2012), and at the same time, 
climate change models suggest precipitation in the Texas Panhandle and western Oklahoma will become 
less frequent (Shafer et al., 2014).  With these increased pressures on water resources, irrigation release 
from Lake Altus-Lugert at the levels that were typical before the 2010 drought may be impossible.  
Producers in parts of the Oklahoma Panhandle and western Kansas have faced just these circumstances, 
with dwindling reservoir storage resulting from groundwater withdrawal and changing climate 
(Brikowski, 2008).  Projected water shortages in the North Fork Red River watershed may be partially 
addressed through conservation measures (OWRB, 2012), and improvements in irrigation efficiency 
have been credited with decreasing groundwater use elsewhere in Oklahoma (Tortorelli, 2009).  But 
conservation will likely fill only a portion of the projected water supply gap, and other measures such as 
increased development of the North Fork Red River alluvial aquifer have also been suggested (OWRB, 
2012).   

Our results, however, suggest that increased groundwater development in the North Fork Red 
River alluvial aquifer could have negative consequences for Lake Altus-Lugert and for producers in the 
Lugert-Altus Irrigation District (LAID).  For this reason, other innovative strategies to address water 
scarcity in the region are needed.  The construction of new reservoirs and the sourcing of out-of-basin 
water are possible alternatives (OWRB, 2012), or perhaps the problem calls for a fundamental change in 
farming strategies in the region (Iglesias and Garrote, 2015).  A transition from irrigated agriculture to 
rainfed ranching would be more in synch with the natural vegetation in the region both upstream and 
downstream of Lake Altus-Lugert.  This transition may offer long term sustainability, but there are 
currently significant economic incentives for producers to continue growing irrigated crops (Conner et 
al., 2001). Unfortunately, these are potential long-term solutions to a problem that may demand 
attention in the near term.   

Implementing conjunctive management of ground and surface water has been suggested as an 
important step toward meeting Oklahoma’s water needs (OWRB, 2010), and based on our results, 
conjunctive management may be necessary to sustain irrigated agriculture in the North Fork Red River 
watershed.  Currently, surface and groundwater are treated and permitted as separate and unrelated 
resources in Oklahoma water law and policy, with the exception of one isolated aquifer where 
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conjunctive management is required (OWRB, 2012). This artificial separation in law and policy does not 
provide a suitable management framework for locations where surface and groundwater interact.  For 
example, in the permitting process for wells in the North Fork Red River alluvial aquifer, current policy 
does not consider the potential impact of the proposed wells on the flow in the river. If groundwater 
pumping is impacting flows in Oklahoma rivers, as our results and others suggest, then there is a need 
for increased conjunctive management of surface and groundwater within the state.  

One possible approach to implementing conjunctive water management would be the creation 
of a water conservation district (Blomquist et al., 2001) charged with developing conjunctive use 
strategies for the North Fork watershed.  Our work has shown that people, as much as climate, dictate 
changes in water availability in the region.  Concentrating decision making ability within the people 
dependent upon the watershed would entrust them to develop strategies to sustain it.  The effort would 
require tremendous cooperation among stakeholders, decisions would unlikely be unanimous, and 
winners and losers would be almost unavoidable.  Still, by banding together and using information from 
studies like ours, stakeholders in such a water conservation district would have the opportunity to 
cooperatively make conjunctive water management decisions and could avoid having decisions imposed 
upon them. 

These findings will be disseminated to the broader scientific community through a peer 
reviewed journal article.  Our manuscript is in preparation and will be submitted to Agricultural Water 
Management. We have also presented preliminary results to stakeholders in the LAID.  This project has 
furthered our understanding the diverse factors that affect irrigation water quantity in the Lake Altus-
Lugert watershed and our results will be a valuable tool to inform irrigation planning, water permits, and 
conservation measures throughout the watershed. 
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