A Fluvial Geomorphic and Sediment Transport Study of the Little River Upstream of Lake Thunderbird Using an Acoustic Doppler Current Profiler (ADCP)

PROJECT REPORT

Oklahoma Water Resources Research Institute 003 Life Sciences East, OSU Stillwater, Oklahoma 74078-3011

May 2011

Russell C. Dutnell, P.E., M.S.¹, Randall L. Kolar, P.E., Ph.D.², Baxter E. Vieux, P.E., Ph.D.³, Robert W. Nairn, Ph.D.⁴, Gerald A. Miller, P.E., Ph.D.⁵, Jason P. Julian, Ph.D.⁶

¹PhD student ²Austin Presidential Professor ³Brandt Professor ⁴Associate Professor ⁵Professor School of Civil Engineering and Environmental Science University of Oklahoma 202 West Boyd St., Room 334 Norman, OK 73019

⁶Assistant Professor Department of Geography & Environmental Sustainability University of Oklahoma 100 East Boyd Street, SEC 684 Norman, OK, 73019-1007

A Fluvial Geomorphic and Sediment Transport Study of the Little River Upstream of Lake Thunderbird Using an Acoustic Doppler Current Profiler (ADCP)

Russell C. Dutnell¹, Randall L. Kolar², Baxter E. Vieux³, Robert W. Nairn⁴, Gerald A. Miller⁵, and Jason P. Julian⁶

¹ PhD student; School of Civil Engineering and Environmental Science; University of Oklahoma; 202 W. Boyd, Room 334, Norman, OK 73019; phone: 405-620-2004; email: rdutnell@ou.edu

² Austin Presidential Professor; School of Civil Engineering and Environmental Science; University of Oklahoma; 202 W. Boyd, Room 334, Norman, OK 73019; phone: 405-325-4267; email: <u>kolar@ou.edu</u>

³ Brandt Professor; School of Civil Engineering and Environmental Science; University of Oklahoma; National Weather Center; 120 David L. Boren Blvd., Suite 3630, Norman, OK 73072; phone: 405-325-3600; email: <u>bvieux@ou.edu</u>

⁴ Associate Professor; School of Civil Engineering and Environmental Science; Director, Center for Restoration of Ecosystems and Watersheds; Associate Director, Water Technologies for Emerging Regions Center; University of Oklahoma; 202 West Boyd Street, Room 334, Norman, OK 73019; phone: 405-325-3354; email: <u>nairn@ou.edu</u>

⁵ Professor; School of Civil Engineering and Environmental Science; University of Oklahoma; 202 West Boyd St., Room 334, Norman, OK 73019; phone: 405-325-4253; email: gamiller@ou.edu

⁶ Assistant Professor; Department of Geography & Environmental Sustainability; University of Oklahoma; 100 East Boyd Street, SEC 684, Norman, OK, 73019-1007; phone: 405-325-9862; e-mail: jjulian@ou.edu

Start Date: 3/1/2010

End Date: 2/28/2011

Congressional District: Oklahoma Fourth

Focus Category: GEOMOR, HYDROL, MET, SED, SW & WQN

Descriptors: Fluvial Geomorphology, Sediment Transport, Acoustic Doppler Current Profiler (ADCP)

Principal Investigators: See above

Publications

Dutnell, Russell, Hollis Henson, Robert Nairn, Randall Kolar, Baxter Vieux, and Jason Julian, 2010, Preliminary Findings of a Fluvial Geomorphic and Sediment Transport Study of the Little River Upstream of Lake Thunderbird Using an Acoustic Doppler Current Profiler (ADCP), in 2010 Governor's Water Conference and Oklahoma Water Research Symposium, Student Poster (2nd Place), Norman, OK.

Dutnell, Russell, Hollis Henson, Robert Nairn, Randall Kolar, Baxter Vieux, and Jason Julian, 2011, Preliminary Findings of a Fluvial Geomorphic and Sediment Transport Study of the Little River Upstream of Lake Thunderbird Using an Acoustic Doppler Current Profiler (ADCP), in 2011 National Surface Water Conference and Hydroacoustics Workshop, Poster Session, Tampa, FL.

Student Status	Number	Disciplines
Undergraduate	1	Civil Engineering
M.S.	1	Civil Engineering
Ph.D.	1	Civil Engineering
Post Doc		
Total	3	Civil Engineering

Students supported by this program

TABLE OF	CONTENTS
----------	----------

TABLE OF CONTENTSiii
LIST OF FIGURES iv
LIST OF TABLES iv
Context of this Technical Report
Problem 1
Research Objectives
Methodology
Documentation of the FGM of the Little River from the headwaters to Lake Thunderbird 4
Development of discharge and sediment rating curves for the Little River Watershed
Development of frequency-duration curves for the Little River Watershed
Estimation of the annual and long-term sediment load to Lake Thunderbird 10
Estimation of the amount of expected channel degradation for the Little River
Potential recommendations for stopping or slowing the expected channel degradation
Development of sediment loading rates estimation protocol
Principal Findings and Significance
Principal Findings and Significance
Development of discharge and sediment rating curves for the Little River watershed 11
Development of discharge and sediment rating curves for the Little River watershed
Development of discharge and sediment rating curves for the Little River watershed
Development of discharge and sediment rating curves for the Little River watershed
 Development of discharge and sediment rating curves for the Little River watershed
 Development of discharge and sediment rating curves for the Little River watershed
Development of discharge and sediment rating curves for the Little River watershed
Development of discharge and sediment rating curves for the Little River watershed
Development of discharge and sediment rating curves for the Little River watershed11Development of a frequency-duration curve for the Little River watershed13Estimation of the annual and long-term sediment load to Lake Thunderbird14Estimation of the amount of expected channel degradation for the Little River14Potential recommendations for stopping or slowing the expected channel degradation14Development of sediment loading rates estimation protocol14References16Appendix A – Example of FGM Assessment Forms18Appendix B – FGM Site Summary Sheets25
Development of discharge and sediment rating curves for the Little River watershed11Development of a frequency-duration curve for the Little River watershed13Estimation of the annual and long-term sediment load to Lake Thunderbird14Estimation of the amount of expected channel degradation for the Little River14Potential recommendations for stopping or slowing the expected channel degradation14Development of sediment loading rates estimation protocol14References16Appendix A – Example of FGM Assessment Forms18Appendix B – FGM Site Summary Sheets25Appendix C – FGM Site Photographs28

LIST OF FIGURES

Figure 1: Indications of the Little River channel incision and widening including a) an exposed
high pressure gas line and b) tributary head cuts2
Figure 2: Channel Evolution Model – The Little River is currently at Stage IV, the degradation
and widening stage. (Simon (1989))
Figure 3: a) Channelized versus natural meandering Wildhorse Creek channel, in Garvin County,
Oklahoma (Barclay, 1980); b) Comparison of Wildhorse Creek channel dimensions in 1933
(Barclay, 1980) and 1999 (Dutnell, 2000)
Figure 4: Teledyne RDI Workhorse Rio Grande 600 kHz Acoustic Doppler Current Profiler
(ADCP) operating from a bridge
Figure 5: The Teledyne RDI Workhorse Rio Grande 600 kHz Acoustic Doppler Current Profiler
(ADCP) with Hemisphere RTK-GPS and the inflatable "KaBoat"
Figure 6: Discharge and Sediment Rating Curve Sites7
Figure 7: HOBO Water Level Logger with PVC housing
Figure 8: Vflo Calibration Plot for Rock Creek – July 3 and 4, 201014

LIST OF TABLES

Table 1: Cell Size Determination Results			•••••	•••••	9
Table 2: HOBO Deployment Dates				•••••	12
Table 3: Discharge Measurement Comparison between	Teledyne	RDI Rio	Grande	600	and
Marsh McBirney Flo-Mate				•••••	13
Table 4: Discharge Measurement Comparison between	Teledyne	RDI Rio	Grande	600	and
USGS Gauge 07240000 - Lake Hefner Canal				•••••	13

Context of this Technical Report

This report is being prepared as an annual report for OWRRI grant #2010OK181B. Due to delays in the equipment purchase and the lack of significant rain events during the Fall/Winter of 2010/2011, the study is incomplete. Findings to date will be presented in subsequent sections, but the work, which comprises the dissertation topic for the first author on this report, is ongoing. That document (the dissertation), which is now expected to be finished in Spring 2012, will contain more complete findings from this study. An amended report will also be filed with the OWRRI at that time.

Problem

Sediment transport has a profound impact on streams, rivers, lakes, and impoundments. It affects the morphology of streams and rivers, the life span of lakes and impoundments, due to lost capacity, and the water quality in all water bodies, as many nutrients and contaminants (e.g., metals) are bound to the solid particles being transported. Given its importance however, sediment transport is one of the more poorly quantified water quality variables, primarily due to the difficulty in obtaining accurate estimates of both the suspended fraction, that being transported in the water column, and the bed load fraction, the material moving along the bed. The current research project attempts to fill this knowledge gap by developing a cost-effective, yet accurate measurement protocol utilizing an Acoustic Doppler Current Profiler (ADCP) to measure sediment movement in creeks and rivers. The Little River, a tributary of Lake Thunderbird, due to its proximity to the OU campus and the fact that it is representative of many streams in central Oklahoma, is serving as the test bed for the project.

A bathymetric study of the lake conducted by the OWRB (Oklahoma Water Resources Board) in 2001 found that the pool capacity of the lake has been reduced from 119,600 acre-feet in 1966 to 105,644 acre-feet in 2001 for a loss of capacity of 13,956 acre-feet or 11.7% in 35 years (OWRB, 2002). The observed loss rate of 399 acre-feet/year is 14% higher than the 350 acre-feet/year reportedly estimated by the U.S. Bureau of Reclamation (BOR) in correspondence to OWRB back in 1965 (Flaigg, 1965) and is attributed to "larger grained sediment washed in from the watershed" (OWRB, 2002). McHenry (1974) reports an average annual percentage loss of 0.23% per year for reservoirs predominantly from the Midwest, Texas and California with a capacity between 100,000 and 1,000,000 acre-feet. Lake Thunderbird's loss rate exceeds this value.

Lake Thunderbird, which supplies drinking water to the municipalities of Norman, Midwest City, and Del City, is designated in the Oklahoma Water Quality Standards as a sensitive public and private water supply (SWS) with a nutrient limited watershed. Studies by the Oklahoma Water Resources Board (OWRB, 2005) indicate that the lake is "eutrophic, indicative of high levels of productivity and nutrient rich conditions" due to the fact that the average trophic state index (TSI), using Carlson's TSI (chlorophyll-a), was found to be 58.

The Oklahoma Conservation Commission (OCC) (prepared by Vieux & Associates, 2007) used total phosphorous concentration as a surrogate to estimate the current chlorophyll-a concentration in the lake, finding it to be 30.8 μ g/L, three times the State Water Quality Standard of 10 μ g/L. Chlorophyll-a concentrations in excess of 20 μ g/L result in hyper-eutrophic water conditions with excessive algae growth (OWRB, 2004). OWRB also determined that the turbidity was sufficiently high so that the Fish and Wildlife Propagation, a beneficial use criteria, was deemed to be only partially supported (OWRB, 2005). Data from 2006 indicates that Lake Thunderbird is impaired due to excessive turbidity and low dissolved oxygen.

The OCC study addressed sediment loading to the lake, modeling it as a function of imperviousness, but did not directly measure it. Prior to the current study, there has never been a comprehensive study of the sediment transport characteristics of the Little River and the morphological processes that both drive them and are driven by them. Yet, there is evidence, based upon a preliminary examination, that the Little River is highly unstable and undergoing an evolutionary process of morphological change as a response to increasing urbanization and "channel improvements" made in the past. A reconnaissance study of the river conducted in September 2007 by one of the investigators in the current work revealed clear indications of significant channel incision and widening, including exposed bridge abutments, exposed high pressure gas lines (Fig 1 a), slumping banks, exposed tree roots, fallen trees and tributary head cuts (Fig 1 b). The importance of this cannot be overstated as the ramifications to infrastructure, lost property, and increasing sedimentation rates to the lake are potentially substantial.

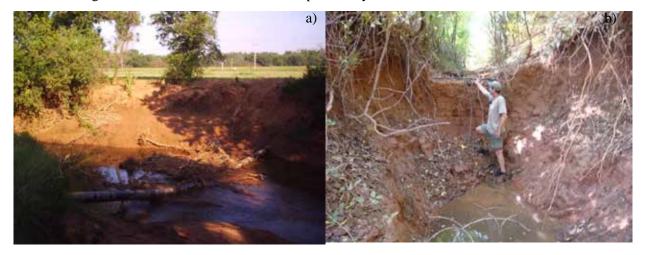


Figure 1: Indications of the Little River channel incision and widening including a) an exposed high pressure gas line and b) tributary head cuts.

Lane (1955) described that the morphology of a channel is the result of several factors, including the sediment load and size transported through the channel, the discharge in the channel and the slope of the channel. The size and load of sediment transported through a channel is balanced by the stream slope and discharge. If the balance is altered, the channel morphology adjusts to accommodate the change. Schumm, et al (1984), and later Simon (Simon, 1989, 1994) developed a process-based classification scheme that describes a natural channel's adaptation to straightening. As shown in Figure 2, the Channel Evolution Model describes a complete "cycle" of bank-slope development from the pre-modified conditions through stages of adjustment to the eventual reestablishment of stable bank conditions. The Little River channel bed, in the reach surveyed in the vicinity of 12th Avenue NE, appears to have recently entered Stage IV of the evolutionary cycle, the degradation and widening phase, and appears to have incised at least 6-8 feet thus far.

To fully understand the significance of this process, one needs only to look at Wildhorse Creek, near Hoover, in Garvin County, Oklahoma. Between 1922 and 1933 the channel was "improved" by constructing a straight 10 feet deep trapezoidal channel with a top width of 25 feet and 2:1 side slopes, as may be seen in Figure 3a (Barclay, 1980). In 1999, Dutnell (2000) found the channel to be 193 feet wide and approximately 25 feet deep. The channel has thus incised approximately 15 feet and experienced a 20-fold increase in cross-sectional area (Figure 3b). It appeared to be at Stage V, the aggradation and widening phase, as there was evidence of deposition on inside bends and point bars were beginning to form. As a result of the experienced erosion, the sediment loading to Lake Texoma, since the "channel improvements" were completed, exceeds 50 million cubic yards.

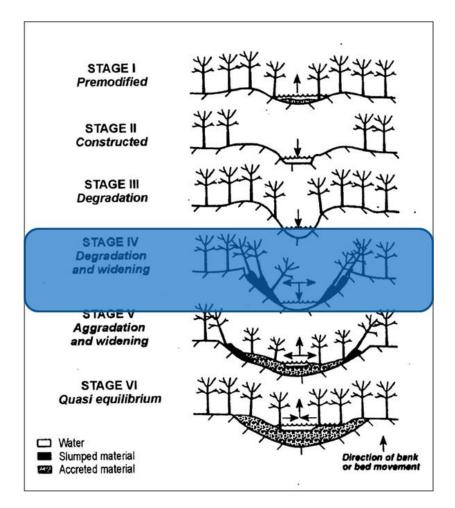


Figure 2: Channel Evolution Model – The Little River is currently at Stage IV, the degradation and widening stage. (Simon (1989))

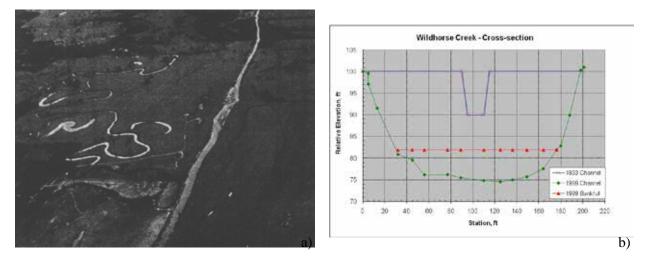


Figure 3: a) Channelized versus natural meandering Wildhorse Creek channel, in Garvin County, Oklahoma (Barclay, 1980); b) Comparison of Wildhorse Creek channel dimensions in 1933 (Barclay, 1980) and 1999 (Dutnell, 2000)

Little River may, or may not experience the same level of degradation and widening as Wildhorse Creek, but the process is certainly ongoing and the degradation and widening occurring in the channel already appears to be significant. Further, the Little River and Wildhorse Creek are not the only streams that are undergoing this process of change. A large number of the creeks and rivers in the State of Oklahoma are undergoing the exact process described here, i.e., they have been straightened and/or are receiving more flow due to urbanization and thus are incising and widening. The current project is attempting to develop a methodology that may be used for assessing and documenting this process in the State's streams.

Research Objectives

The current study is addressing multiple objectives, including the following:

- 1) Documentation of the Fluvial Geomorphology (FGM) of the Little River from the headwaters to Lake Thunderbird;
- 2) Development of discharge and sediment rating curves for the Little River watershed;
- 3) Development of a frequency-duration curve for the Little River watershed;
- 4) Estimation of the annual and long-term sediment load to Lake Thunderbird;
- 5) Estimation of the amount of expected channel degradation for the Little River;
- 6) Potential recommendations for stopping or slowing the expected channel degradation; and
- 7) Development of a protocol that may be used by other entities, including GRDA, to estimate sediment loading rates to reservoirs and better understand the sediment transport characteristics of streams flowing within their jurisdiction.

Methodology

The methods used to meet the various objectives of the current study are described below. The work centers around the use of a Teledyne RDI Workhorse Rio Grande 600 kHz Acoustic Doppler Current Profiler (ADCP) (see Figure 4) and available off-the-shelf software to estimate stream discharge, suspended sediment concentrations, and at higher flows, the bed load velocities. The equipment and methodology being used in the current project, though relatively new, are becoming more accepted as the use of ADCPs increases. In 2005, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Detroit District, developed a Quality-Assurance Plan for discharge measurements using ADCPs (Oberg, 2005). More recently, the USGS, recognizing that the use of ADCPs "is now a commonly used method for measuring streamflow," has released guidance on the use of ADCPs for that purpose (Mueller and Wagner, 2009). Similar protocols had previously been developed by the Water Survey of Canada (2004). Both of these publications address all aspects of measuring discharge and bed movement using an ADCP. They do not, however, address measuring suspended sediment concentrations. Software is available on the market that can be used to convert the back-scatter data obtained from the ADCP to sediment concentration using an iterative approach (Aqua Vision, 2009a).

Documentation of the FGM of the Little River from the headwaters to Lake Thunderbird

Documenting the FGM of the Little River requires the surveying of cross-sections and longitudinal bed profiles using traditional surveying methods and a total station. In addition, the project will attempt to measure the elevation of the Little River bed from the lake to the headwaters (or as far up as the channel as possible) using an ADCP in conjunction with a real-time kinematic (RTK) GPS receiver. In this configuration, the RTK determines the elevation of the boat and the ADCP determines the depth from the boat to the bottom of the channel.

Figure 4: Teledyne RDI Workhorse Rio Grande 600 kHz Acoustic Doppler Current Profiler (ADCP) operating from a bridge.

Subtracting the depth from the boat elevation will provide the bed elevation of the channel bottom. An inflatable Saturn "KaBoat" with an electric motor (Figure 5) is to be used to guide the ADCP/RTK down the river. Measurements must be made at intermediate flows so that the water is deep enough for the ADCP to work (>2.5'), but not so swift as to be dangerous. Preferably the work will take place in early fall when the leaves are off of the trees, to allow for better radio reception between the boat GPS and Base GPS, but before the weather gets too cold.

In addition to the surveys, the FGM documentation includes an assessment of stream channel morphology (Rosgen, 1996), evolution (Schumm, et al., 1984; Simon and Hupp, 1986; Simon, 1989; and Simon, 1994), and stability utilizing several different indices, including the Pfankuch Stream Stability Index (Pfankuch 1975), the Bank Erosion Hazard Index (BEHI) (Rosgen, 1996), the Near Bank Stress (NBS) rating (Rosgen, 1996), the Channel Stability Index (CSI) as modified by Simon and Klimetz (2008), and the Ozark Streambank Erosion Potential Index (OSEPI) developed by Storm et al. (2010) for streams in the Ozark eco-region. It is not clear if the latter is particularly applicable in the Little River watershed; the data being collected will provide the information needed to determine its applicability in the Little River watershed.

The data from the surveys and the stream channel morphology, evolution and stability assessments are being collected using a TDS Recon Pocket PC. The survey data is being collected using SurveyPro software interfacing with a Sokkia Set 500 Total Station. The stream channel morphology, evolution and

stability data is being collected using Excel installed on the Recon. A tabular form was created so that the data required by the various indices could be input into the Recon item by item, line by line. This raw data is then copied and pasted to a "RawData" sheet in a larger, multi-sheet Excel spreadsheet that selects the data needed for each stability index, determines each index and prepares a summary. Indices are being determined at four locations for each reach surveyed. An example of the forms produced by the spreadsheet is shown in Appendix A. The spreadsheets can be made available upon request.

The data from the survey is then combined with the data from the stream channel morphology, evolution and stability assessment to develop a site summary sheet as shown in Appendix B. Photographs of the cross-section and the assessment sites are also included.

Figure 5: The Teledyne RDI Workhorse Rio Grande 600 kHz Acoustic Doppler Current Profiler (ADCP) with Hemisphere RTK-GPS and the inflatable "KaBoat"

Development of discharge and sediment rating curves for the Little River Watershed

Developing discharge and sediment rating curves for the Little River watershed requires measuring the discharge, the concentration of the suspended sediment and bed load movement over a large range of discharges (i.e., at multiple stages), at multiple sites. These sites (shown as triangles in Figure 6) were selected based on being representative of the system being assessed and on site accessibility.

The discharge is being determined using traditional wading methods with a Marsh McBirney Flo-Mate portable velocity meter, and a Teledyne RDI Workhorse Rio Grande 600 kHz Acoustic Doppler Current Profiler (ADCP) mounted to a tethered boat. The Flo-Mate is being used to determine the discharge for lower flows, the ADCP is being used at higher flows, and both are being used at intermediate flows. At higher flows, when most sediment is transported, the Visea Plume Detection Toolbox (PDT) software is being used to convert the back-scatter intensity recorded by the ADCP to suspended sediment concentrations. Visea PDT does this by integrating the back-scatter intensity with information on salinity, temperature and reference measurements of sediment concentrations (Aqua Vision, 2009b). Bed load movement only occurs at high flows, and it is being determined using the ADCP and methods described by the U.S. Geological Survey (Mueller and Wagner, 2009).

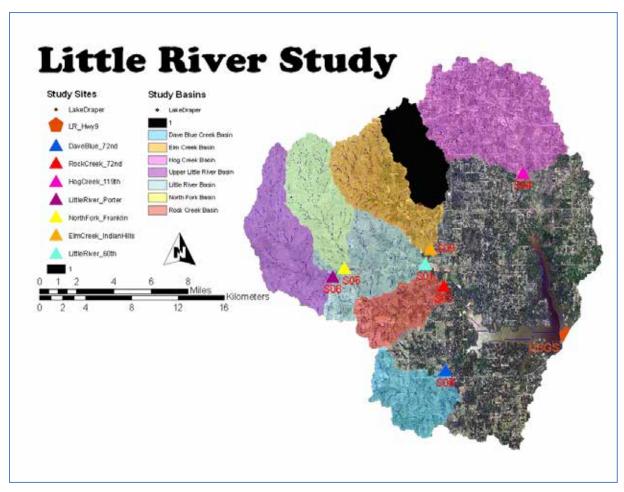


Figure 6: Discharge and Sediment Rating Curve Sites.

The stage, or depth of the water, at the study sites is being measured with HOBO Water Level Data Loggers. HOBOs are pressure transducers that can be set to measure pressure and temperature at varying time steps. For this study the HOBOs are installed in a PVC housing (Figure 7) and mounted to t-posts or re-bar with plastic zip-ties as close to the bottom of the stream as possible. Pressure is being measured every 30 minutes at the seven sites shown in Figure 6. A seventh HOBO is recording atmospheric pressure on the same 30 minute interval. By subtracting the atmospheric pressure from the total pressure of a stream mounted HOBO, the hydrostatic pressure at each HOBO is determined. Knowing the

temperature and salinity (assumed to be zero), the density of the water may be determined, and thus the depth of the water above the HOBO may be calculated. Therefore, the HOBOs are essentially providing a record of depth every 30 minutes.

Discharge rating curves that relate stream discharge to channel stage are being developed by measuring discharge at various stages, as provided by the HOBOs. Sediment rating curves that relate sediment discharge to stage are being developed by measuring discharge and sediment concentration at various stages, again as provided by the HOBOs.

Figure 7: HOBO Water Level Logger with PVC housing.

Validation of the data obtained in the Little River watershed is complicated by the fact that there is not a USGS stream gauge on any portion of the river or the creeks upstream of Lake Thunderbird, so there is very little existing flow data for the Little River or its tributaries. Even though several studies have been conducted validating the use of ADCPs for measuring stream discharge (Fulton and Ostrowski, 2008; Everard, 2009; Schinkel, 2009; and Terek, 2009) and sediment movement (Rennie et al., 2002; Kostaschuk et al., 2005; Gaeuman and Jacobson, 2007; and Kim and Voulgaris, 2008) it is still necessary to validate the measurements being taken by the ADCP.

Validation of the use of the ADCP for measuring discharge is being conducted using two approaches. At intermediate flows, when it is still safe to use wading methods, the discharge results are compared to the results from a Marsh McBirney. Validation of higher flows requires measuring discharge at a nearby USGS gauge station and comparing the measured results to the discharge reported by the gauge station. Verification is considered to be achieved if the discharge measurement is within $\pm 5\%$ of the reported gauge discharge. Validation of the suspended sediment is to be accomplished by comparing values obtained using the ADCP to grab samples collected at the time of the measurement.

Unfortunately, there is no reliable means of validating the bedload velocity observed using the ADCP. The quantities of sediment captured in bed-load samplers are highly variable in both space and time. Gaeuman and Jacobson (2007) therefore concluded "conventional physical sampling appears to be the least reliable means for estimating bed-load transport rates in large sand-bed rivers," and therefore should not be used as a means for evaluating the performance of ADCPs. They did note that however that bed-load transport rates estimated from dune migration rates correlated well with ADCP measured bed-load velocities over a wide range of conditions. Obviously, the Little River is not a large sand-bed river, but it is a sand-bed river. It is not completely certain that bed features will be observed sufficient for performing validation in the manner presented, but it is suspected that it might.

Development of frequency-duration curves for the Little River Watershed

Since long-term information on the discharge history of the Little River is not available, the current study is relying on hydrologic modeling to generate the frequency-duration curve for the Little River and its tributaries. The model used in this study is Vflo which is a physics-based distributed hydrologic model developed by Vieux & Associates, Inc (Vieux, 2007). Vflo uses radar rainfall data for hydrologic input to simulate distributed runoff. The model generates distributed runoff maps covering the watershed and hydrographs at selected drainage network grids.

The rainfall data used in this study is produced by the ScourCast system that performs continuous distributed watershed model simulation and rainfall monitoring. ScourCast provides continuous rainfall at 15-minute intervals at a resolution of 2 kilometers. Model parameters, including roughness, saturated hydraulic conductivity, wetting front suction, and effective porosity are derived in ArcGIS at a resolution of 10 meters from maps of land use and soil type.

In order for the program to function properly, the number of cells imported into Vflo must be less than 30,000. Table 1 shows the minimum cell size that may be used to model the various sub-basins and the entire Lake Thunderbird watershed. The minimum allowable cell size for the sub-basins ranges from 35 square meters for the Dave Blue Creek sub-basin to 70 square meters for the Little River sub-basin above 60th Avenue Northeast. Modeling the entire watershed requires a minimum cell size of 150 square meters is being used in the current study. All data, however is at a resolution of 10 meters so future modeling of sub-basins could be conducted using finer resolutions as provided in Table1.

By modeling the sub-basins and generating hydrographs at drainage network grids that correspond to the monitoring sites where the HOBOs are installed, we can calibrate the model using the data collected in the current study. The model, thus calibrated is being used to generate frequency-duration curves, showing the percentage of time various flows are exceeded.

	LR Below Lk	Little River @	Little River @		Elm Creek			Dave Blue	
	Tbird	60th	Porter Ave	North Fork	(w/o Draper)	Rock Creek	Hog Creek	Creek	
# of cells	6642426	1434356	524887	430349	520333	296330	924852	343092	
Cell size (m)	10	10	10	10	10	10	10	10	
Cell area (m ²)	100	100	100	100	100	100	100	100	
Total area (m ²)	664,242,600	143,435,600	52,488,700	43,034,900	52,033,300	29,633,000	92,485,200	34,309,200	
Total area (km ²)	664.2	143.4	52.5	43.0	52.0	29.6	92.5	34.3	
Total area (mi ²)	256.5	55.4	20.3	16.6	20.1	11.4	35.7	13.2	
Cell size (m)	150	70	45	40	45	35	60	35	
# of cells	29522	29273	25920	26897	25695	24190	25690	28008	

Table 1: Cell Size Determination Results

Estimation of the annual and long-term sediment load to Lake Thunderbird

Utilizing the information from the sediment rating curves, which allow for estimation of sediment loading rates at various flows, together with the frequency-duration curves, which predict how often a given discharge occurs, the annual sediment yield to Lake Thunderbird is being estimated.

Estimation of the amount of expected channel degradation for the Little River

Using the results of the surveys, including the longitudinal profile survey described above, an estimate of how far the Little River channel has degraded is being made. An estimate of how much farther it is anticipated to degrade will also be made.

Potential recommendations for stopping or slowing the expected channel degradation

Using the results of the surveys and the estimation of expected channel degradation, recommendations on potential methods for stopping or slowing the degradation will be prepared.

Development of sediment loading rates estimation protocol

Upon completion of the study, the lessons learned in the study will be used to develop a protocol for other entities to use to determine sediment loadings in other stream systems.

Principal Findings and Significance

Although delays in purchasing equipment and the lack of significant rain events prevented completion of this study in the proposed time period, the time was spent working on preliminary studies and related research tasks, as presented briefly below. In addition, researchers took the opportunity provided by the lack of rain to become more familiar with operating the equipment and software that it interfaces with. Training on the use of the Hemisphere RTK GPS system was provided by the manufacturer in Scottsdale, AZ in April 2010; and training on the use of ADCPs was obtained at a USGS course in Houston, Texas in January 2011, and at the 2011 USGS Surface-Water Conference and Hydroacoustics Workshop in Tampa, Florida in March 2011.

Documentation of the Fluvial Geomorphology (FGM) of the Little River from the headwaters to Lake Thunderbird

Work on documenting the FGM of the Little River has been somewhat slower than anticipated, mainly due to the lack of survey control in the vicinity of the river. Since the objective is to document the morphology of the entire length of the channel, it is desirable to know locations (Easting and Northing) and elevations to a high degree of accuracy. Methods typically used to measure channel morphology (i.e., a level and tape measure) are insufficient for the current study, and accurately using a total station over the length of the study is proving more time consuming than expected. Further, using the total station is particularly difficult when the leaves are on the trees, due to blocked line-of-site, so the only efficient time to conduct these surveys is in the fall and winter. Thus the surveys, including the longitudinal profile, will be completed this fall.

A couple of FGM surveys have been completed and the results are provided in Appendix B. Each summary sheet includes a legal description of the site location; the drainage area; an aerial photograph of

the site showing the points surveyed and the location of the assessment sites; locations of the control points in both Oklahoma State Plane (NAD83-South Zone) coordinates and geodetic coordinates (Lat/Long – Decimal Degrees); a summary of the channel morphology including the bankfull width, the mean bankfull depth, the maximum bankfull depth, the flood prone area width, the bankfull area, the entrenchment ratio, the width to depth ratio, the sinuosity, the slope, the bed material, the Rosgen stream type, and the channel evolution stage; the stream channel stability data for the site that includes the scores and ratings of the various erosion indices (CSI, Pfankuch, BEHI, NBS and OEBSI) for each of the four assessment locations at the site; a cross-section of the site showing the ground, the water surface, the bankfull level and the flood prone area level; and a longitudinal profile plot showing the thalweg, the water surface, the location of the cross-section and surveyed points at the bankfull level and on top of the left and right banks.

Photographs of the sites are also taken at the time of the survey. Photographs are taken of both banks and facing upstream and downstream at the cross-section and of the study bank and facing upstream and downstream at the assessment sites. Photographs of the sites surveyed thus far are provided in Appendix C.

The results thus far are not surprising. They show a channel that is entrenched, with a Rosgen classification of F5 and G5c, and getting wider and deeper, with a channel evolution stage of IV. Practically every metric at every site assessed indicates that the channel is unstable or highly unstable with high to extreme near bank stress. Three other sites have been surveyed but the data has not yet been processed for inclusion in this report.

Development of discharge and sediment rating curves for the Little River watershed

The first information required to develop rating curves is a record of stage and discharge. As described above, the stage is being determined every thirty minutes using HOBO water level loggers deployed at seven sites as shown previously in Figure 6. At each of the sites, $18" \times \frac{1}{2}"$ iron pins were placed on both sides of the channel and the channel cross-section was surveyed. The elevations of the HOBOs were surveyed relative to the re-bar markers on the left banks.

Plots of the cross-sections, information on the HOBO deployments and aerial photographs of the rating curve sites, are provided in Appendix D. The depth and elevation of the HOBO is based on the elevation of the left pin, which is provided either as a reference elevation or a true elevation, if it has been determined. Two sites, the Little River at 60th and Hog Creek have staff gauges installed and at these sites the datum for the staff gauge was also surveyed relative to the left pin. The aerial photographs show the location of the cross-section and HOBO.

The dates that the HOBOs were deployed at the study sites are provided in Table 2. Plots of the stages recorded for each station, extending from the date of deployment through March 22, 2011 are provided in Appendix E. Perhaps, the most notable feature of the plots is the lack of peaks after September 2010. This is most pronounced at Rock Creek (Figure E-4). Another noteworthy feature is the rise in stage at Elm Creek (Figure E-5) beginning in October 2010. This perplexed the researchers prompting an investigation downstream, which revealed a newly constructed beaver dam that has since seemed to have fallen in disrepair. The last feature of note is the missing data at the Little River at 60th (Figure E-1) in May and August 2010. This occurred due to an error in logging the data. This highlights the necessity of diligence when logging the data and of logging the data at a frequency not to exceed a month.

Site	Date
Little River @ 60th	3/6/2010
Hog Creek	3/29/2010
North Fork	3/29/2010
Rock Creek	3/29/2010
Elm Creek	3/26/2010
Dave Blue Creek	4/16/2010
Little River @ Porter	4/16/2010

Table 2: HOBO Deployment Dates

The discharge has been measured multiple times at each site using the Marsh McBirney Flo-Mate, and multiple times at the Little River at 60^{th} using the ADCP. Unfortunately, discharge has not been measured for larger flow events, due to a lack of precipitation. Plots of Stage versus Discharge for the sites are provided in Appendix F. The coefficient of determination (r^2) is somewhat low for the Little River at 60^{th} , 0.545, fairly good for the Little River at Porter, 0.778, and good at the other sites, ranging from 0.845 to 0.969. The plots are not complete however because of a lack of measurements at higher discharges. This will be remedied in the coming months, provided the weather cooperates.

A few comparisons have been made between discharge measurements taken with the ADCP and measurements taken with the March McBirney. Measurements were taken at Site S01 the Little River at 60th. Table 3 shows the results of those measurements. The comparisons range from very good to very poor. Comparisons were also made between the measurements taken with the ADCP and the reported discharge from an active USGS gauge station. The gauge station used for the comparison was USGS Gauge Number 07240000, the Lake Hefner Canal. The results of those measurements are shown in Table 4.

There are a couple of potential reasons for the inconsistent performance of the ADCP including; operator error, which is very likely, as the investigators are still learning proper field protocol for using the equipment; instrument limitations, another likely reason, as the conditions under which the tests were conducted are near, or at, the limiting conditions in which the instrument will not operate, in that the advertised minimum depth for the 600 kHz Rio Grande is 0.7 meters (2.3 feet). More comparison tests are planned in the upcoming months.

`	Junite 000 un	<i>u</i> 1 11 <i>u</i> 5 <i>u</i> 11	ic Dii ney 1	10-11111C		
		Mean		Marsh	ADCP	Number of
	Date	Depth	ADCP	McBirney	% Diff.	Measurements
	7/9/2010	2.88	69.80	69.98	-0.3%	10 ADCP; 1 MMB
	7/9/2010	2.95	68.49	69.98	-2.1%	10 ADCP; 1 MMB
	7/10/2010	2.75	31.78	28.48	11.6%	10 ADCP; 5 MMB
	7/10/2010	2.77	31.89	26.31	21.2%	10 ADCP; 4 MMB
	7/12/2010	2.83	64.62	60.84	6.2%	10 ADCP; 9 MMB
	7/13/2010	2.97	63.79	51.50	23.9%	10 ADCP; 5 MMB
	7/13/2010	2.89	55.45	49.89	11.1%	10 ADCP; 5 MMB
	7/13/2010	2.97	63.79	51.50	23.9%	10 ADCP; 5 MM

Table 3: Discharge Measurement Comparison between Teledyne RDI RioGrande 600 and Marsh McBirney Flo-Mate

 Table 4: Discharge Measurement Comparison between Teledyne RDI Rio

 Grande 600 and USGS Gauge 07240000 - Lake Hefner Canal

	0			
Mean		USGS	ADCP	Number of
Depth	ADCP	GAUGE	% Diff.	Measurements
2.80	21.90	27	-18.9%	10 ADCP
2.71	21.95	27	-18.7%	10 ADCP
2.80	84.37	82	2.9%	11 ADCP
2.80	85.47	82	4.2%	10 ADCP
2.80	90.17	82	10.0%	10 ADCP
2.80	89.27	82	8.9%	10 ADCP
	Depth 2.80 2.71 2.80 2.80 2.80	Depth ADCP 2.80 21.90 2.71 21.95 2.80 84.37 2.80 85.47 2.80 90.17	DepthADCPGAUGE2.8021.90272.7121.95272.8084.37822.8085.47822.8090.1782	DepthADCPGAUGE% Diff.2.8021.9027-18.9%2.7121.9527-18.7%2.8084.37822.9%2.8085.47824.2%2.8090.178210.0%

Sediment monitoring has yet to be conducted, with the exception of a few samples collected to practice the methods of collection and analysis being used in the study. Comparisons of ADCP results with traditional methods therefore, have not been conducted. A rainy season, or even a couple of severe events, will change that.

Development of a frequency-duration curve for the Little River watershed

Development of frequency-duration curves, as described earlier, is being conducted using Vflo, calibrated to the hydrographs obtained from the study sites, to develop "historical" long term hydrographs, from which the required curves can be constructed. However, the required hydrographs have not been fully developed due to a lack of high flow measurements and the subsequent lack of sufficient discharge rating curves. Nevertheless, the methods described above were tested using data from Rock Creek and rainfall records from July 3rd and 4th, 2010. The Vflo model was calibrated by adjusting model parameters, primarily the imperviousness, which was set to 40 percent at the upper end of Rock Creek with its value decreasing downstream. A plot of the model calibration is provided in Figure 8. The red line is from the site hydrograph generated by the HOBOs and the discharge rating curve and the black line is the model output. Note that the calibration focused on the timing of the event and not the peak discharge, which is questionable due to the incomplete rating curve. Nevertheless, the output shows that the Vflo model can be effectively used to generate a representative hydrograph. More work remains to be done after more validation data has been collected.

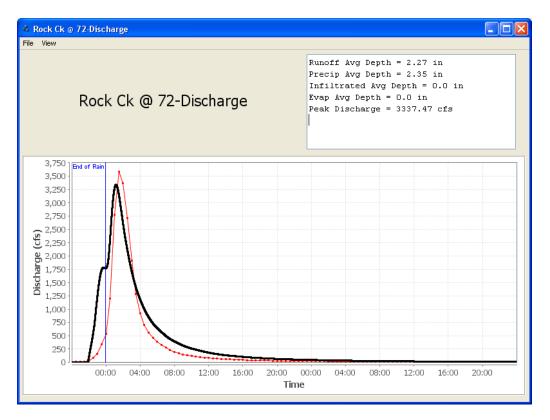


Figure 8: Vflo Calibration Plot for Rock Creek – July 3 and 4, 2010

Estimation of the annual and long-term sediment load to Lake Thunderbird

This work cannot be completed until the previous work is accomplished.

Estimation of the amount of expected channel degradation for the Little River

Early indications are that the channel has incised at least six feet over the last couple of decades but final estimation of the amount of anticipated channel degradation remains to be determined.

Potential recommendations for stopping or slowing the expected channel degradation

Due to the incomplete status of the project, recommendations for stopping or slowing the expected channel degradation cannot be made at this time.

Development of sediment loading rates estimation protocol

Due to the incomplete status of the project, a protocol for estimating sediment loading rates has yet to be developed, although development of such protocol remains a primary objective of the study.

The significance of the study is yet to be determined, but already it has provided data on the hydrology of the Lake Thunderbird watershed, in the form of a year's worth of stage data on the major tributaries to the lake. When the rating curves are complete this will provide a record of the discharge to the lake that would not have been developed without the current research, and the HOBOs will be maintained and

continue to provide data as long as the researchers are physically capable of doing it. The FGM study is providing detailed information on the morphology of the Little River, which will provide a baseline for future researchers and could be extremely significant if they wanted to look at changes to the channel morphology over time, perhaps due to increased development or climate change. Without a baseline with which to compare, these studies would not be possible. The sediment data to be collected in the study will be invaluable. The samples being collected to validate the effectiveness of the ADCP will provide data that would not have been available without the funding of this project, and if the ADCP is proven to be an effective means of measuring both discharge and sediment, it would be a very significant contribution to science and would be beneficial to many fields of study.

The use of ADCPs for measuring discharge is fairly established. The use of ADCPs to measure sediment is a newly emerging field, a fact that became apparent at the 2011 USGS Surface-Water Conference and Hydroacoustics Workshop in Tampa, Florida. This project, though incomplete at this point, will continue until it addresses each of the stated objectives, and when complete, will add significantly to the research in the field.

Acknowledgments

The authors would like to acknowledge the contributions from the other students working on the project: Hollis Henson, Fifame (Maryse) Sagbohan, and Derek Reid. Additional funding was provided by the Department of Education (GAANN #P200A090148), the University of Oklahoma, and the EPA. Any opinions, conclusions, or findings are those of the authors and not necessarily endorsed by the funding agencies.

References

Aqua Vision, 2009a, ViSea Plume Detection Toolbox (PDT), (available online at http://www.aquavision.nl/eng/viseapdt.php).

Aqua Vision, 2009b, Sediment Concentration Measurements with Aqua Vision's Plume Detection Toolbox, (available online at http://www.aquavision.nl/pdfs/PDT%20factsheet.pdf).

Barclay, J.S., 1980, "Impact of Stream Alterations on Riparian Communities in Southcentral Oklahoma, Fish and Wildlife Service Contract 14-16-0008-2039, Fish and Wildlife Service, U.S. Department of the Interior, FWS/OBS-80/17, August, 1980.

Dutnell, Russell, 2000, Development of Bankfull Discharge and Channel Geometry Relationships for Natural Channel Design in Oklahoma Using a Fluvial Geomorphic Approach, Master's Thesis, University of Oklahoma.

Everard, N, 2009, The Environmental Agency Regatta- Strawberries and Primms by the River and a Proper Test of Our Instruments," (UK), Proceedings of ADCPs in Action 2009, San Diego, CA., Ocotber 5-7, 2009. In Publication.

Fulton, J and J Ostrowski, 2008, Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept, Journal of Hydrology (2008) 357, 1–10, Elsevier.

Gaeuman, D. and R.B. Jacobson, Field Assessment of Alternative Bed-Load Transport Estimators, Journal of Hydraulic Engineering, December 2007, pp 1319-1328.

Kim, Y.H. and G Voulgaris, 2008, Estimation of Suspended Sediment Concentration in Estuarine Environments using Acoustic Back-scatter from an ADCP, Teledyne RD Instruments.

Kostaschuk, R., J. Best, P. Villard, J. Peakall and M. Franklin, 2004, Measuring Flow Velocity and Sediment Transport with an Acoustic Doppler Current Profiler, Geomorphology, 68 (2005) 25–37.

Lane, E.W. 1955, "Design of stable channels," in American Society of Civil Engineers Transactions, Vol. 120, pp-1234-1279.

McHenry, J.R., 1974, Reservoir Sedimentation, Water Resources Bulletin, Vol. 10, No. 2, pp 329-337.

Mueller, D.S., and Wagner, C.R., 2009, Measuring discharge with acoustic Doppler current profilers from a moving boat: U.S. Geological Survey Techniques and Methods 3A–22, 72 p. (available online at http://pubs.water.usgs.gov/tm3a22).

Oberg, K.A., S.E. Morlock and W.S. Caldwell, 2005, Quality-Assurance Plan for Discharge Measurements Using Acoustic Doppler Current Profilers, Scientific Investigations Report 2005-5183, U.S. Department of the Interior, U.S. Geological Survey

OWRB, 2002. Lake Thunderbird Capacity and Water Quality for the Central Oklahoma Master Conservancy District. Final Report. June 2002. Published by the OWRB.

OWRB, 2004. Lake Thunderbird Water Quality 2003 for the Central Oklahoma Master Conservancy District. Final Report. May 2004. Published by the OWRB.

OWRB, 2005. Report of the Oklahoma Beneficial Use Monitoring Program Lakes Report. Lakes Sampling 2004-2005. Published by the OWRB.

OWRB, 2007, Oklahoma Water Atlas. Oklahoma Water Resources Board, Oklahoma City, OK

Pfankuch, D.J., 1975, Stream Reach Inventory and Channel Stability Evaluation, (USDAFS No. RI-75-002, GPO No. 696-260/200), Washington, DC, U.S. Government Printing Office.

Rennie, C.D., R.G. Millar and M.A. Church, 2002, Measurement of Bed Load Velocity Using an Acoustic Doppler Current Profiler, Journal of Hydraulic Engineering, pp 473-483, May 2002.

Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, Colo.: Wildland Hydrology Books.

Schinkel, Lawrence, 2009, Streampro ADCP Compared to Wading with Conventional Flow Measurement Systems, Proceedings of ADCPs in Action 2009, San Diego, CA., Ocotber 5-7, 2009. In Publication.

Schumm, S.A., Harvey, M.D. and Watson, C.C., 1984. Incised Channels: Morphology, Dynamics, and Control. Water Resources Publications, Littleton, CO, 200 pp.

Simon, A., 1989, A model of channel response in disturbed alluvial channels, Earth Surface Processes and Landforms 14, 11-16

Simon, A., 1994, Gradation Processes and Channel Evolution in Modified West Tennessee Streams: Process, Response, and Form, USGS Professional Paper 1470, United States Government Printing Office, Washington, D.C., pp 44 – 58.

Simon, A. and C.R. Hupp, 1986, Channel evolution in modified Tennessee channels, Proceedings of the 4th Interagency Sedimentation Conference, Las Vegas, Nevada, vol. 2, 5-71 – 5-82.

Simon, A., and L. Klimetz. 2008. Magnitude, frequency, and duration relations for suspended sediment in stable southeastern streams. Journal of the American Water Resources Association 44(5): 1270-1283.

Storm, D.E., 2011, Quantifying Streambank Erosion Using Geomorphic Assessment Methods, OWRRI Grant Proposal.

Terek, B., 2009, Regional Inter-comparative ADCP Measurement," (Croatia), Proceedings of ADCPs in Action 2009, San Diego, CA., Ocotber 5-7, 2009. In Publication.

Vieux & Associates, Inc, 2007, Lake Thunderbird Watershed Analysis and Water Quality Evaluation, Prepared for the Oklahoma Conservation Commission, Final Report, June 30, 2007.

Water Survey of Canada, 2004, Procedures for Conducting ADCP Discharge Measurements, First Edition, qSOP-NA001-01-2004, Meteorological Service of Canada, Environment Canada, Ottawa, Canada, 2004.

Appendix A – Example of FGM Assessment Forms

			Bank Erc	sion Haza	ard Index	(BEHI)			
Site No.	LR-02	Site Name:	Little Rive	r - LR Ranc	Bank No.:	1	Date:	12/17	/2010
									BEHI
					В	an <mark>k</mark> Height	t/ Bankfull	Height (C)	Score
		Bank		Bankfull					
		Height (ft)	24.1	Ht (ft)	15.1	(C)	= (A)/(B) =	1.596026	7
		(A)		(B)					
						Root De	pth / Bank	Height (E)	
		Root		Bank					
		Depth (ft)	10	Height	24.1	(E) :	= (D)/(A) =	0.414938	5
		(D)		(ft) (A)					
						Weigh			
				Root					
				Density	10	(G) =	: (F) x (A) =	4.149378	10
				(%) (F)					
							Bank	Angle (H)	
						Bank	Angle		
						(Deg	rees)	57.93226	4
						()	Н)		
						Surfa	ce Protecti	ion (I)	
						Surface P	rotection		
						(9	%)	5	10
						(I)		
	Bank M	aterial Adjus	tment						
Bedrock (Overall very	low BEHI)				Dank	Matorial A	diustmont	
Boulders (Overall ver	y low BEHI)				Bank	Material A	ujustment	0
Cobble (St	ubtract 10 pt	ts. If uniform	med. to li	rg. Cobble)					
Gravel or	Composite (Add 5-10 pts	dependin	ig on		Stratifia	action Adju	ustment	
percentag	e of bank m	aterial comp	osed of sa	nd)		Add 5-10 p	points dep	ending on	
Sand (Add	10 points)					position o	of unstable	layers in	5
Silt/Clay (No adjustm	ent)				relation to	o bankfull s	stage	
	Low	Moderate	Ulah	Very	Eutroper		Adject	ive Rating	41
Very Low	Low	wouerate	High	High	Extreme			and	41
5-9.5	10-19.5	20-29.5	30-39.5	40-45	46-50	, , , , , , , , , , , , , , , , , , ,	Т	otal Score	Very High

Figure A-1: Example Bank Erosion Hazard Index (BEHI) Form

				Near-Ba	nk Stress (N	BS)			
Site No.	LR-02	Site Name:	Little Rive	r - LR Ranch		Bank No.:	1	Date:	12/17/2010
Stream Ty	ype:	E5	Valley Typ	e:	Х				
			Methods	for estimat	ing Near-Ba	nk Stress	(NBS)		
(1) Channe	el patterr	n, transverse b	ar or split d	hannel/centra	al bar creating I	NBS	Level I	Recona	aissance
(2) Ratio o	f radius o	of curvature to) bankfull wi	dth (R _c /W _{bkf})			Level II	General	prediction
(3) Ratio o	f pool slo	ope to average	e water surf	ace slope (S _p /	S)		Level II	General	prediction
(4) Ratio o	f pool slo	ope to riffle sl	ope (S _p /S _r)				Level II	General	prediction
(5) Ratio o	f near-ba	nk maximum	depth to ba	nkfull mean d	epth (d _{nb} /d _{bkf})		Level III	Detailed	prediction
		ank shear stre			s (τ _{nb} /τ _{bkf})		Level III	Detailed	prediction
(7) Velocit	y profile:	s / Isovels / Ve	elocity grad	ient			Level IV	Valio	dation
		Transverse a	nd/or centra	al bars-short	and/or discont	tinuous	NBS =	High	/ Very High
Level	(1)	Extensive dep	position (co	ntinuous, cro	ss-channel)		NBS =	Extr	reme
Ľ		Chute cutoffs	, down-vall	ey migration,	converging flo	ws	NBS =	Extr	eme
		Radius of	Bankfull	Ratio	Near-Bank				
	(2)	Curvature R _c	Width	R _e /W _{bkf}	Stress (NBS)				
	(2)	(ft)	W _{bkf} (ft)	COLOR DET	60,000 (1100)				
		66.569679	52.5	1.2679939	Extreme				
_		De al Class	Average			Ĩ			
e	(2)	Pool Slope Sp	Slope	Ratio S _p /S	Near-Bank Stress (NBS)		Domi	nant	
Level II	(3)	Jp	S		30,633 (1403)		Near-Bar	nk Stress	
<u> </u>		***	***	***	***		Extre	eme	
			Riffle						
		Pool Slope	Slope	Ratio	Near-Bank				
	(4)	S _P	S,	S _p /S _r	Stress (NBS)				
		***	***	***	***]			
		Near-Bank	Mean	Ratio	Near-Bank				
	(5)	Max Depth	Depth	d _{nb} /d _{bkf}	Stress (NBS)				
=	(3)	d _{nb} (ft)	d _{bkf} (ft)	- Hov - oki	,				
Level III		4.5	4.197547	1.0720548	Low				
S .		Near-Bank	Near-Bank	Near-Bank	Mean Depth	Average	Bankfull	Ratio	Near-Bank
-	(0)	Max Depth	Slope	Shear Stress	d _{bkf} (ft)	Slope	Shear Stress	τ_{nb}/τ_{bkf}	Stress
	(6)	d _{nb} (ft)	S _{nb}	$\tau_{nb} (Ib/ft^2)$	CIDKT (14)	S	$\tau_{bkr} (Ib/ft^2)$	SUDA SOKE	(NBS)
		***	***	***	***	***	***	***	***
		V-1- 11 -	Second Second	Near-Bank					
	(7)	Velocity G (ft/se		Stress					
Level IV	(7)	(10/30		(NBS)					
-		**	*	***					
		Cor	verting v	alues to a	Near-Bank S	Stress (NB	S) rating		
Near-E	Bank Str	ess (NBS)				thod num			
	rating		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Very Lo		N/A	> 3.00	<0.20	<0.40	<1.00	<0.80	<0.50
	Low		N/A	2.21-3.00	0.20-0.40	0.41-0.60	1.00-1.50	0.80-1.05	0.50-1.00
Moderate			N/A	2.01-2.20	0.41-0.60	0.61-0.80	1.51-1.80	1.06-1.14	1.01-1.60
	High		See	1.81-2.00	0.61-0.80	0.81-1.00	1.81-2.50	1.15-1.19	1.61-2.00
	Very Hi	gh	(1)	1.50-1.80	0.81-1.00	1.01-1.20	2.51-3.00	1.20-1.60	2.01-2.40
	Extrem	ie	Above	<1.50	>1.00	>1.20	>3.00	>1.60	>2.40
			0	verall Near	-Bank Stress	s (NBS) rat	ting	Extr	eme

Figure A-2: Example of Near Bank Stress (NBS) Form

				Cha	nnel Stabili	ty Index			
ite N	lo.	LR-02	Site Name:	Little Rive	- LR Ranch	Bank No.:	1	Date:	12/17/2010
Pictu	res (circle)	Upstream	Downstream	Cross-	Section	Slope:	1.92	Pattern:	Meandering
									Shallow curve
									Straight
. Pri	mary bed r	naterial							
	Bedrock	Boulder/	Cravel	Sand	cilt/class				Value
	веагоск	Cobble	Gravel	Sand	Silt/Clay				Value
	0	1	2	3	4				3
. Bed	d/bank pro	tection		1 bank	2 banks				
	Yes	No	(with)	protected	protected				
	0	1		2	3				1
. De	gree of inc	ision (Relat	ive elev. of "	normal" lov	w water; flo	odplain/ter	race @ 1	100%)	
	0-10%	11-25%	26-50%	51-75%	76-100%		_	-	
	4	3	2	1	0				3
. De	gree of cor	nstriction (R	elative decre	ase in top-	bank width	from up to	downstr	eam)	
	0-10%	11-25%	26-50%	51-75%	76-100%				
	0	1	2	3	4				3
	-	_	_	-					-
. Str	eambank e	erosion (Eac	h bank)						
		None	Fluvial	Mass wast	ing (failure	5)			
	Left	0	1	2		- /			1
	Right	0	1	2					0
	Man	•	-	2					
: Ctr	oambank i	netability (D	ercent of eac	ah hank fail	ing)				
. su	eannyann	0-10%	11-25%	26-50%	51-75%	76-100%			
	Left	0-10%	0.5	20-30%	1.5	2			2
		0		_					0
	Right	U	0.5	1	1.5	2			0
	- h Park - d - t			15	h h				
. Est	ablished ri	-	dy-vegetativ		_	75.4000/			
		0-10%	11-25%	26-50%	51-75%	76-100%			
	Left	2	1.5	1	0.5	0			2
	Right	2	1.5	1	0.5	0			1.5
. Oce	currence o		tion (Percent				ion)		
	1 - 51	0-10%	11-25%	26-50%	51-75%	76-100%			
	Left	2	1.5	1	0.5	0			2
	Right	2	1.5	1	0.5	0			0
	-								
. Sta	-	nel evolutio							
	1	Ш	III	IV	V	VI			
	0	1	2	4	3	1.5			4
	TOTAL CH	ANNEL STAE	ILITY INDEX	(CSI)					22.5
		CSI ≤10		STABLE					
		10 < CSI <	20	MODERAT	ELY UNSTAB	LE			
		CSI ≥ 20							UNSTABLE

Figure A-3: Example of Channel Stability Index (CSI) Form

No	10.00	Sito Name:		_	Bank Stabilit			12/17/2	010
No.	LR-02	site Name:	Little River	- ск калсп	Bank No.:	1	Date:	12/1//2	010
		1.7.5.1	- >						
0. Most		nk (circle on	e):		Left		Right		
	Bank Heigh			24.1					
		ength, FL (ft		15.1					
	Reach Leng	th Upstream	of Cross Sec	tion, L _u (ft):		225.06562			
	Reach Leng	th Downstre	am of Cross	Section, L _d (ft):	221.78478			
	Coordinate	s of Cross Se	ction:	Lat:	35.280115	Long:	97.367392		
						-			
ics at Re	presentative	e Cross Secti	on						
	Height (ft):								
	0-5	5-10	10-15	15-20	20+			Value	
	0	2.5	5	7.5	10			10	
Notes:									
2. Bank	AngleDeg.)								
	0-20°	21-60°	61-80°	81-90°	91-119°	>119°			
		(0.35-0.86)				(<0.87)		Value	
DH/FL=	0.00-0.34)	(0.35-0.86) 2	4	(0.99-1.0)	8	(<0.87)		2	
Notes:	U	2	4	U	õ	10		2	
notes:									
		1		1.6.1					
3. Perce		nk Height wi							
	0-10%	11-25%	26-50%	51-75%	76-100%			Value	
	0	2.5	5	7.5	10			5	
Notes:									
	ntire Reach L								
4. Evide		Wasting (pe							
	0-10%	11-25%	26-50%	51-75%	76-100%			Value	
	0	2.5	5	7.5	10			10	
Notes:									
5. Unco		Aaterial (Per							
	0-10%	11-25%	26-50%	51-75%	76-100%			Value	
	0	2.5	5	7.5	10			0	
Notes:									
			entage of Str	eambank Co	overed by Pla	ant Roots, Ve	egetation, Do	owned Logs	
and Bra	nches, Rocks	s, etc.)							
	0-10%	11-25%	26-50%	51-75%	76-90%	91-100%		Value	
	15	12.5	10	7.5	2.5	0		15	
Notes:									
7. Estab	lished Bene	ficial Riparia	n Woody-Ve	getation Co	ver:				
	0-10%	11-25%	26-50%	51-75%	76-90%	91-100%		Value	
	15	12.5	10	7.5	2.5	0		15	
Notes:									
8. Strea	m Curvature	:							
	Meander		Shallov	v Curve		Straight		Value	
	5			.5		0		5	
	-		_					-	
		62				Highly L	In stable		
Т	OTAL SCORE	0/		Current Sta	DILITY:	Highly I	Instable		

Figure A-4: Example of Ozark Eco-Region Bank Stability Index (OEBSI) Form

	Poor (unstable)	Fair (mod. Unstabl	Good (Stable)	Stream Type	Poor (unstable)	Fair (mod. Unstab)	Stream Type		Bottom				Lower Banks					Uj	pper	Banks		Location	Site No:			
	ĕ	nstable	<u>n</u>	ň	Ö	nstable	ĕ		15	14	13	12	11	10	9	60	7	ø	(s	4	60	2	1	Key	5	
	87 *	-	-	-	+	44-47 38	+		Aquatic	Scouring and deposition	Bottom size distribution	Consolidation of particles	Brightness	Rock angularity	Deposition	Outting	Obstructions to flow	Bank rock content	Channel capacity	Vegetative bank protection	Debris jam potential	Mass erosion	Landform slope	Category	LR-02 Site	
	97 -	-	-	-	-	44-47			2.5		10 10		a s		Dars	5		8 8			e (7				Site Name:	
	87+ 87+	-	-	+	-	91-129 96-182		_	Abundant growth moss-like, dark green perenniai. In swift water too.	<5% of bottom affected by scour and deposition.	No size change evident. Stable material 80- 100%	Assorted sizes tightly packed or overlapping	Surfaces dull dark or stained. Generally not bright	Well rounded in all dimensions, surfaces smooth.	Little or no enisrgement of channel or point bars	Littie or none. Infrequent raw banks <6	Rocks and logs firmly imbedded. Flow pattern w/o cutting or deposition. Stable bed.	>65% with large angular boulders. 12- common	Bank heights sufficient to contain the bankfull stage. W/D ratio departure from reference W/D ratio =1.0. Bank Height Batio (BHR) =1.0	 90% plant density, Vigor and variety suggest a deep, dense soll-binding root mass. 	Essentially absent from immediate channel area.	No evidence of past or future mass erosion	Bank slope gradient < 30%			
	+	-+	-	+		_			swift w	n affecte	je evide	s tightly	dark or	s in all d	llargeme	. Infrequ	utting or	nBue al	sufficie e. W/D r D ratio =	ensity. V bp, dens	bsent fro	of past o	adient	0450	e River	
	97 •	-+	~	+		S1-110 S1		Exc	ater too.	d by sco	nt. Stable	packed	stained.	imensio	ent of ch	ent raw	imbedd: deposit	ar bould	nt to con atio dep 1.0. Bani	e soli-bi	minme	r future	30%	Excellent	Little River - LR Ranch	
	\$	-	~	+	-+	\$0-80	+	Excellent Total =	ark gree	urand	e materi	or overla	General	ns, surfa	annel or	banks <	ed, Flow don, Stal	Jers, 12"	cain the arture fr t Height	nding ro	diate ch	mass en			nch	
	97	-+	~	8	-+	26-52	+	otal =	2		8 80-	pping	ly not	ces	point		ä		om Ratio	8	annel	osion		39		
	874	54-85	40-63	6	ş	44-52	82	10	-	5	*	2	۰	*	4	4	2	•	4		2	3		Racing		
	105+	_	<u>~</u>	22	-+	40-60			Common. Algae forms in ic pool areas. Moss here too	5-30% affected. Scour at constrictions and where grades steepen. Some deposition i pools.	Distribution shift light. Stabel material Sp 80%.	Moderately packed with some overlapping	Mostly dull, but may have <35% bright surfaces	Corners and edges well rounded in 2 dimensions	Some new bar increase, mostly from coarse gravel.	Some, intermittently at outcurves and constrictions. Raw banks may be up to 12	Some present causing erosive cross currents and minor pool filling. Obstructions fewer and less firm.	40-65% cobbles and small boulders. 6-12	Bohkfull stage is contained within banks. W/D ratio departure from reference W/D ratio = 1.0-1.2. Bank Height Ratio (BHR) = 1.0- 1.1	70-90% density. Fewer species or less vigor suggest less dense or deep root mass.	Present, but mostly small twigs and limbs	Infrequent. Mostly healed over. Low future potential.	Bank slope gradient 30-40%			
	ię.	_	60-85	23	ş	5 5 5 5 5	2		Algae fo s. Moss	des stee	on shift	y packe	l, but m	nd edges ns	bar inc	ns. Raw	ient cau nd mino ns fewe	obles an	departu 1.2. Ban	nsity. Fe ss dens	ut mosti	t. Mostiy	e gradie			
	126+	_	8	22	+	64-52 52	8		iommon. Algae forms in low velocity and pool areas. Moss here too.	tpen. Som	light. Stab	d with son	ay have <3	s well rou	rease, mo	tly at outo banks ma	sing erosi r pool fill r and less	d small b	iontained re from re k Height S	e or deep	y small tw	/healed o	nt 30-40%	Good		
	126+	111-125	85-110	E	3	40-60	8	Good	v velocit;	e depos	el mater	he overli	15% brigt	nded in i	stiy from	urves an av be up	ve cross Ing. firm.	ouiders.	within b ference latio (BH	es or les root ma	higs and	ver. Low			•	
	131+	116-130	90-115	8	2	38-50	β	Good Total =	and	tion in	rial 50-	apping	3	2	coarse	10 12'		6-12"	venks. W/D SR) = 1.0-	15 Vigor 155.	limbs.	future				THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY ADDRESS
Rating	111+	96-110	80-95	5	\$	38-50	ß	0	N	12		4	2	2		a	4	45	2	6	4	6	4	Rating		
Rating should be adjusted to potential stream type, not existing Potential Stream	79+	61-78	40-60	9	106+	86-105	۵		Present t Seasona	30-50% a obstructi pools.	Moderat 20-50%	Mostly Ic overlap.	Mixture o range	Rounded corners smooth and flat.	Moderat coarse si	Significa	Moderately freq move with high and pool filling	20-40%. N	Bankfull departur 1,4. Bank	species f mass.	Moderate of heavy amounts, mor sizes.	Frequent year long	Bank slope gradient 40-60%	T	1	
e adjust	7 9 •	61-78	40-60	ଛ	111+	91-110	2		algae g	ons and	e change	ose ass	full and	corners and flat.	e deposi and on o	nt. Outs : Is and si	ely frequ h high fi filling.	fost in t	stage is e from re Height i	rom a st	e ot hea	or large	pe gradi			
ted to po	121+	108-120	85-107	ຄ	¥.	02-010	a		Present but spotty, mostly in back water. Seasonal algae growth makes rocks slick	30-50% affected. Deposits and scour at obstructions and bends, Some filling of pools.	Moderate change in sizes. Stable materials 20-50%.	Mostly loose assortment with no overlap.	Mixture duil and bright, i.e., 35-6 range	Rounded corners and edges. Sur smooth and flat.	Moderate deposition of new gravel and coarse sand on old and some new bars	Significant. Cuts 12-24" high. Root overhangs and sloughing evident	Moderately frequent, unstable obstructions move with high flows causing bank cutting and pool filling.	20-40%. Most in the 8-6" class	Bankfull stage is not contained. W/D ratio departure from reference W/D ratio = 1.2- 1.4. Bank Height Ratio (BHR) = 1.1-1.3.	50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass.	w amoun	Frequent or large, causing sediment nearly year long.	ent 40-60	Description	Bank No.:	
otential	121+	108-120	85-107	ହ	105+	86-105	ß	2	In back	ome filli	Stable		r., 35-65M		ew grave	h. Root n evident	able obs	355		r and fe		sedime	2	Fair	8	
stream	126+	-	90-112	ß	-+-	108-192	8	Fair Total =	s silck.	ng of	naterials	apparent	5% mixture	ace	w bars.	1 mat	t outling		W/D radio cio = 1.2- -1.3.	ver Jous root	stly larger	nt nearly				
type, no	121+		-	66	_	108-192		6	ŵ	18	12	on			11	t	01		60		•	9	a	Rating	1	
ot existil		-		+	_	2 108-192			Perenn green,	More t flux or	Marke	No packing ev easily moved.	Predon	Sharp e	partici	Almos: Pailure	Freque bank e channe	<20% rd	Bankfull s flows are (bankfull.V reference) (BHR) >1.3	<so% d<br="">vigor in shallov</so%>	Moder. predon	Freque year lo	Bank s	Ħ		
npoter	Exist			÷	_	2 99-125			short-te	change i	Marked distribu materials 0-20%	king evic moved.	Predominantly br scoured surfaces	edges ar	ive depo es. Accel	t of over	int obstr rosion y ti migrat	ock fragn	ill stage are comm ill.W/D n ill.W/D n vce W/D vce W/D	<soft density="" f<br="" plus="">vigor indicating poo shallow root mass.</soft>	ate ot he ninantly	int or lar ing OR in	lope (in		Date:	
ntial Str	Existing Stream	Chann			-	w 100			m bloor	More than 50% of the bottom i flux or change nearly yearlong	ution ch	dent. Los	bright, >	td come	erated b	Almost continuous cuts, some Paillure of overhangs frequent	Frequent obstructions and d bank erosion yearlong. Sed in thannel migration occurring.	nents of	is not or non with atio dep ratio >1.	tus fewe 1 poor, d 955.	Moderate of heavy amounts, predominantly larger sizes.	ge, caus minent	Bank slope gradient >60%	Description		
	_	el Stabi	Stree	g	_	Frict	Ga	P	m may be	tarlong.	Marked distribution change. Stable materials 0-20%	No packing evident, Loose assortment, easily moved.	Predominantly bright, >65%, exposed or scoured surfaces.	rs. Plane	Extensive deposit of predominantly fine particles. Accelerated bar development	equent.	and defi Sedime Irring.	gravel s	Bankfull stage is not contained. Over by flows are common with flows less than bankfull.W/D ratio departure from reference W/D ratio >1.4. Bank Height R (BHR) >1.3.	CSD% density plus fewer species & less vigor indicating poor, discontinuous an shallow root mass.	junts, izes.	Frequent or large, causing sediment ne year long OR imminent danger of same	0%	Poor	12/	
Poor-Unstable	Fair-Mod. Unstable	Channel Stability Rating	Stream Type =	Potential	Type =	no Stream	Grand Total =	Poor Total =	Perennial types scarce or absent. Yellow- green, short-term bloom may be present.	More than 50% of the bottom in a state of flux or change nearly yearlong.	bie	rtment,	losed or	Sharp edges and corners. Plane surfaces rough.	Extensive deposit of predominantly fine particles. Accelerated bar development.	Almost continuous cuts, some over 24" high Failure of overhangs frequent.	Frequent obstructions and deflectors cause bank erosion yearlong. Sediment traps fuil, channel migration occurring.	(20% rock fragments of grave) sizes, 1-3" or less.	Bankfull stage is not contained. Over bank flows are common with flows less than bankfull.W/D ratio departure from reference W/D ratio >1.4. Bank Height Ratio (BHR) >1.3.	CSD% density plus fewer species & less vigor indicating poor, discontinuous and shallow root mass.		Frequent or large, causing sediment nearly year long OR imminent danger of same.			12/17/2010	
able	Istable		8		5		116	100	4	24	16	00	4	4	16	16	20	90	4	12	00	12		Rating		

Figure A-5: Example of Pfankuch Stream Stability Form

			Stream B	ank Erosi	on Data Su	mmary			
Site No.	LR-02	Site Name:	Little River - LR Ranch Bank No			1	Date:	12/17	/2010
Bank Loo	ation:	Latitude:	35.280115		Longitude:	97.367392			
REACH	IORPHOLO	GY							
Bankfull	Width W _{bk}	_f (ft)	52.5		Mean Bank	full Depth	, d _{bkf} (ft)	4.2	
Width o	f Flood Pro	ne Area, (ft)	59.7		Max Bankfu	ull Depth, d	d _{max} (ft)	5.4	
Width/D	epth Ratio	, W _{bkf} /d _{bkf}	12.507306		Entrenchm	ent Ratio		1.1	
Stream S	lope		0.0011		Sinuosity			1.9	
Existing	Stream Typ	e:	F5		Potential S	tream Type	E5		
Stage of	channel ev	olution (I-VI)	IV						
BANK DA	ATA								
Bank He	ight (ft)		24.1		Bank Angle (Deg)			57.9	
Bank Ma	terial		Silt		Bank Orien	tation (Rig	ht/Left)	Left	
Radius o	f Curvature	e Rc (ft)	66.6		Ratio Rc/W	bkf	1.27		
Mass Wa	asting (% of	Bank):	100		Unconsolid	ated Matl	0		
Bank Pro	otection (%	of bank)	5		Riparian W	oody-Veg.	5		
STREAM	BANK ERO	SION INDICES							
						Score	Stability	Rating	
	Channel St	ability Index (22.5 HIGHLY U		NSTABLE			
	Bank Erosi	on Hazard Inde	x (BEHI)	41	Very	High			
	Near Bank	Stress (NBS)		*** Extre		eme			
	Pfankuch			116	116 Poor-Uns				
	Ozark Eco-	Region Bank St	ability Inde	x (OEBSI)		62	Highly U		

Figure A-6: Example of Stream Bank Erosion Data Summary Form

Appendix B – FGM Site Summary Sheets

Site No.: LR-02		Site Name:	Little River - 02						
	CONTRACTOR OF THE OWNER.	Legal Descriptio		SW 1/4 Sec	t. 1, T9N-R2W, Cle	weland Co			
State State State		Drainage Area		53.9	is a province in plan				
and the second second	1. 1.000								
A Cal Maria		Cross Section Survey Control							
	- 0 13	OK State Plane	NAD83, South Zone	(U.S. Foot); N	AVD88 (U.S. Foot)			
the second second	Tenna (Ca)	Left Pin			Right Pin				
A THE AND THE PARTY AND THE PA		Name:	LR02-LT		Name:	LR02-RT			
Sin all she all	and the set	Easting:	2157712.814		Easting:	2157741.681			
	and the set	Northing:	709007.639		Northing:	708870.849			
a Sterna	and the second s	Elevation:	1062.15		Elevation:	1066.07			
and the second sec	Little River - 02	Geodetic Coord	inates (Decimal Deg	rees)					
	· Samifus	Left Pin			Right Pin				
	0 121 200 500 700 LOOM	Lat. (N):	35.279874529		Lat. (N):	35.279498241			
	NAMES OF OCTOBER OF OCTOBER	Long. (W):	97.366076193		Long. (W):	97.36598236			
Channel Morphology	Data			Channel Stat					
Bankfull Width (ft): 56.52		Bank No.	1	2	3	4			
Mean Bankfull Depth (ft): 8.09		CSI Score:	22.5 HIGHLY	22.5 HIGHLY	24 HIGHLY	25 HIGHLY			
Maximum Bankfull Depth (ft): 9.78		Rating:	UNSTABLE	UNSTABLE	UNSTABLE	UNSTABLE			
Flood Prone Area Width (ft): 92.83		Pfankuch Score	116	114	122	118			
				Poor-					
Bankfull Area (ft ³): 457.52		Rating:	Poor- Unstable	Unstable	Poor- Unstable	Poor- Unstable			
		BEHI Score:	41	34.5	34	37.5			
Entrenchment Ratio: 1.64	Rosgen Stream Type:	Rating:	Very High	High	High	High			
Width/Depth Ratio: 6.98	F5	NBS Score:	•••	•••	•••	•••			
Sinuosity: 1.92	Channel Evolution Stage:	Rating:	Extreme	Extreme	Low	Extreme			
Slope: 0.0011	IV	OEBSI Score:	62	62 Highly	65	69			
Bed Material: Sand		Rating:	Highly Unstable	Unstable	Highly Unstable	Highly Unstable			
1070	Cross-	Section -	STA 10+02						
1070									
₩1060				\checkmark					
U 1060 U 1060 U 1050 U 1050									
1050						ation			
ش ₁₀₄₀					W/S	;			
					Wfp	a			
1030									
0 20 40	60 80	100 Station(ft)	120	140	160	180			
	Longi	tudinal Pro	file						
1070					x+ 1064 4 🔺				
£1060					100414				
5	• 3			- 1 -					
5 1050 1040			v=-0.0	016x + 10	46.4				
1040					y = -0.0011	+ 1041.7			
1030 Thalweg		Right 🔍 🖤	TOB - Left 🛛 🔶	Bank Fu					
0 400	800 st	ation(ft)	1600		2000	2400			

Figure B-1: Site Summary Sheet – Little River -02

		Site	No.:	LR-03			Site Name:	Little River - 03			
5	1.9	Tido	1.00	A State of State	Mary Train		Legal Description	on:	NW 1/4, Sec	t. 10, T9N-R2W, C	leveland Co.
10								(mi ²):	47.4		
1 Providence								Cross Section Survey Control			
				bratter	1 Avenue	Carlos A	OK State Plane	NAD83, South Zone	(U.S. Foot); N	AVD88 (U.S. Foot)	1
	1			No. of Concession, Name	AL CONTRACTOR		Left Pin			Right Pin	
- 6	and and	-				1 50 5	Name:	LR-03LT		Name:	LR-03RT
1		and the	4	and a state		P	Easting:	2149376.872		Easting:	2149495.76
1	1	地	37	and the second sec		1000	Northing:	707217.5692		Northing:	707184.9514
1	30		2		Little River -	03	Elevation:	1081.0		Elevation:	1083.55
No.	100	here.	3,		Canadiana and	A. P		inates (Decimal De	grees)	01-1-1 01-	
10	3			T	2 211 20° 10	. Top	Left Pin			Right Pin	
20	100	(TE		aller an	and the second	and and	Lat. (N):	35.275097464		Lat. (N):	35.275005895
	7/	2111		A State of the sta	v Data	1. 10	Long. (W):	97.394039596	Changed Stat	Long. (W):	97.39364197
Broth	ull Widt	h (8)	0	hannel Morpholog 39.1			Bank No.	1	Channel Stal	anty Data	4
	Bankful		101-	3.3	-		CSI Score:	22.5	2	25	20.5
	num Bar						Rating:	Highly unstable	Highly	Highly unstable	Highly unstable
	Prone A				,		Pfankuch Score:	116	99	109	99
									Poor-		
Bank	lull Area	(ft²):		128.9	0		Rating:	Poor-Unstable	Unstable	Poor-Unstable	Poor-Unstable
							BEHI Score:	41	35.5	35.5	28.5
Entre	nchmen	t Ratio:		1.3	Rosgen Strea	im Type:	Rating:	Very High	High	High	Moderate
Width	/Depth	Ratio:		11.8	5 G5c		NBS Score:	•••	•••	•••	•••
Sinuo				1.5		tion Stage:	Rating:	Extreme	Moderate	High	High
Slope	6			0.000	9 IV		OESBI Score:	62	77 Highly	52	57
Bed N	Aaterial:			San	4		Rating:	Highly unstable	unstable	Unstable	Highly unstable
	1090	_				Cr	oss-Section	on			
€	1080			-				\varGamma			
<u>8</u>	1070	-									
Elevation		Ē									ation
l a	1060	-				_				B/F	_
	4050	Ē									a
	1050	0		20 4	0 60	80	100 Station (ft)	120	140	160	180
\vdash											
	1090						inal Profile				
£	1080						-				
Elevation (ft)	1070					S					
Mat			•		+ +	<u> </u>	•	- 2 Y	-0.0003	+ 1065.6	0007x + 1061.9
1	1060	5		~~~~						1-0.0	
	1050										
		0		400	800	I	station (ft)	1600		2000	2400
_											

Figure B-2: Site Summary Sheet – Little River -03

Appendix C – FGM Site Photographs

Cross Section Photographs

Figure 1: LR-02 Cross Section - Facing upstream.

Figure 2: LR-02 Cross Section - Facing downstream.

Figure 3: LR-02 Cross Section - Left Bank.

Figure 4: LR-02 Cross Section - Right Bank.

Figure C-1: Cross-Section Photographs at LR-02

Assessment Banks Photographs

Figure 5: LR-02 Bank 1 - Bank

Figure 8: LR-02 Bank 2 - Bank

Figure 6: LR-02 Bank 1 - Facing upstream

Figure 9: LR-02 Bank 2 - Facing upstream

Figure 7: LR-02 Bank 1 - Facing downstream

Figure 10: LR-02 Bank 2 - Facing downstream

Figure C-2: Assessment Site Photographs at LR-02

Assessment Banks Photographs

Figure 11: LR-02 Bank 3 - Bank

Figure 14: LR-02 Bank 4 - Bank

Figure 12: LR-02 Bank 3 - Facing upstream

Figure 15: LR-02 Bank 4 - Facing upstream

Figure 13: LR-02 Bank 3 - Facing downstream

Figure 16: LR-02 Bank 4 - Facing downstream

Figure C-3: Assessment Site Photographs at LR-02 (Cont.)

Cross Section Photographs

Figure 1: LR-03 Cross Section - Facing upstream.

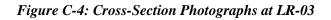

Figure 2: LR-03 Cross Section - Facing downstream.

Figure 3: LR-03 Cross Section - Left Bank.

Figure 4: LR-03 Cross Section - Right Bank.

Assessment Banks Photographs

Figure 5: LR-03 Bank 1 - Bank

Figure 8: LR-03 Bank 2 - Bank


Figure 6: LR-03 Bank 1 - Facing upstream

Figure 9: LR-03 Bank 2 - Facing upstream

Figure 7: LR-03 Bank 1 - Facing downstream

Figure 10: LR-03 Bank 2 - Facing downstream

Assessment Banks Photographs

Figure 11: LR-03 Bank 3 - Bank

Figure 14: LR-03 Bank 4 - Bank

Figure 12: LR-03 Bank 3 - Facing upstream

Figure 15: LR-03 Bank 4 - Facing upstream

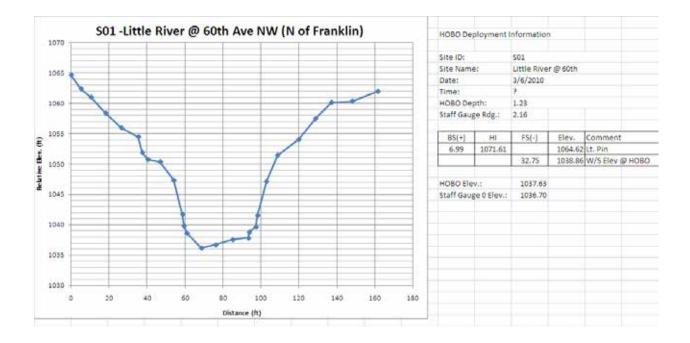


Figure 13: LR-03 Bank 3 - Facing downstream

Figure 16: LR-03 Bank 4 - Facing downstream

Figure C-6: Assessment Site Photographs at LR-03 (Cont.)

Appendix D – Rating Curve Site Information

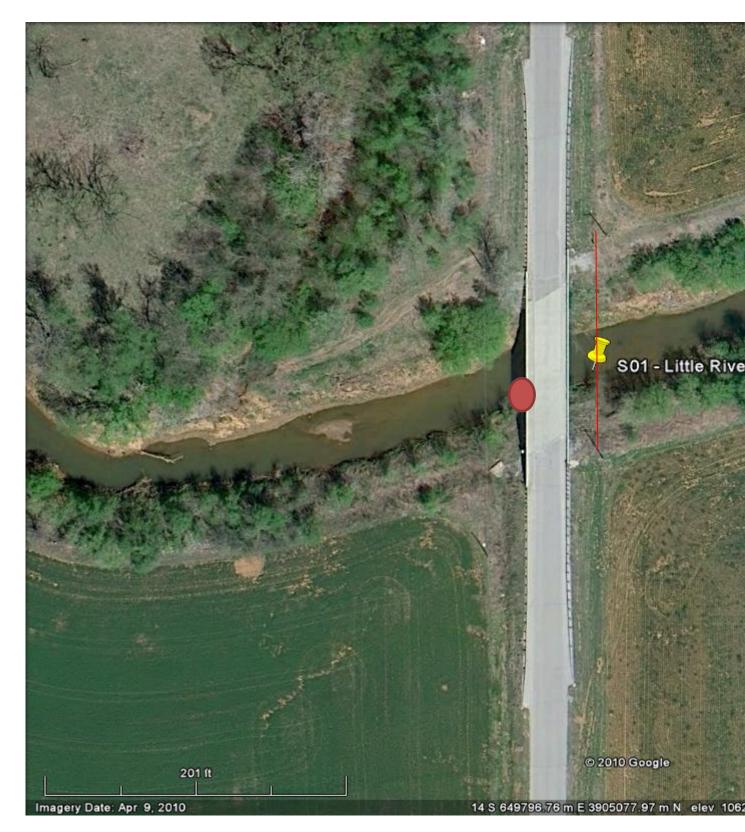


Figure D-1: Rating Curve Site Information – S01 – Little River @ 60th

102	SO2 - Little Riv	HOBO Deployment Information						
		r		Site ID:		S02		
98				Site Name	Little River @ Porter			
96		Date:		4/16/2010				
94			Time: HOBO Depth:		1115 0.7			
92				Staff Gauge Rdg.:		NA		
90				BS(+)	н	FS(-)	Elev.	Comment
88				4.36	104.36			Lt. Pin
86						17.85	86.51	W/S Elev @ HOB
84	4000 4010 4020 40	HOBO Ele	v.:	85.81				
3330	4000 4010 4020 40.	Staff Gauge 0 Elev.:		: NA				

Figure D-2: Rating Curve Site Information – S02 – Little River @ Porter

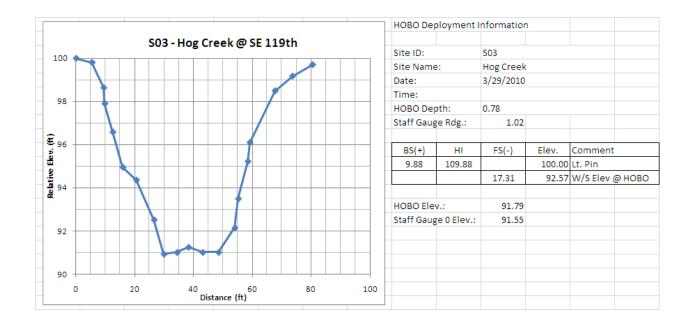


Figure D-3: Rating Curve Site Information – S03 – Hog Creek @ SE 119th

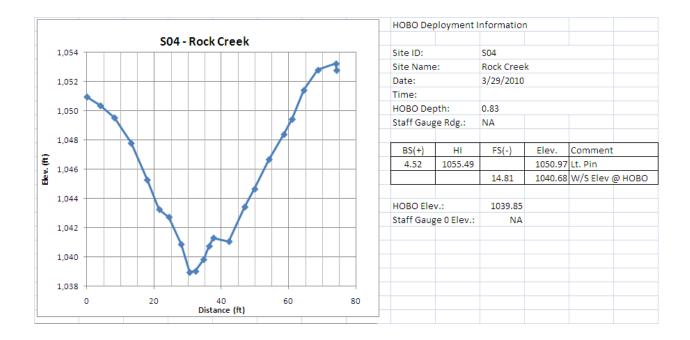
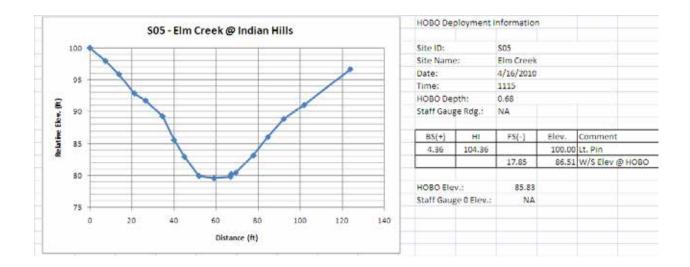


Figure D-4: Rating Curve Site Information – S04 – Rock Creek @ 72nd



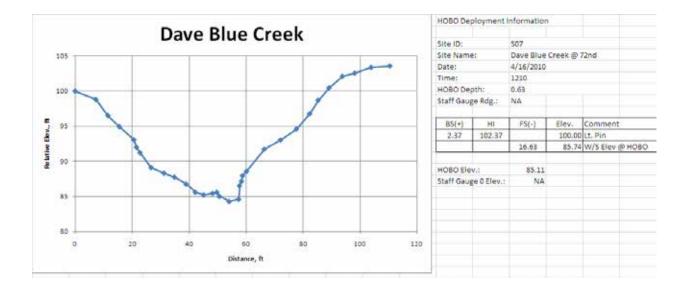



Figure D-5: Rating Curve Site Information – S05 – Elm Creek @ Indian Hills

	S06 - N	orth Forl	(@ Fra	nklin		HOBO De	ploymen	t Informat	ion		
100 ┥						Site ID:		S06			
						Site Nam	ie:	North Fo			
						Date:		3/29/201			
	1					Time:					
			• 1			HOBO De	epth:	0.77			
2 ⁹⁵						Staff Gau	ige Rdg.:	NA			
	1										
ă			K			BS(+) HI		FS(-)	Elev.	Comment	
iti M						2.47 102.47			100.00	Lt. Pin	
Relative Elev. (ft) 06								18.73	83.74	W/S Elev	@ HOBO
						HOBO Elev.:		82.97			
	×		•			Staff Gauge 0 Elev.		: NA			
		~~									
85 -											
C	20	40 Distance	60 e (ft)	80	100						

Figure D-6: Rating Curve Site Information – S06 – North Fork @ Franklin

Imagery Date: Apr 9, 2010

263 ft

14 S 651590.83 m E 3895949.06 m M

© 2010 Google

Figure D-7: Rating Curve Site Information – S07 – Dave Blue Creek @ 72nd

Appendix E – HOBO Stage Plots

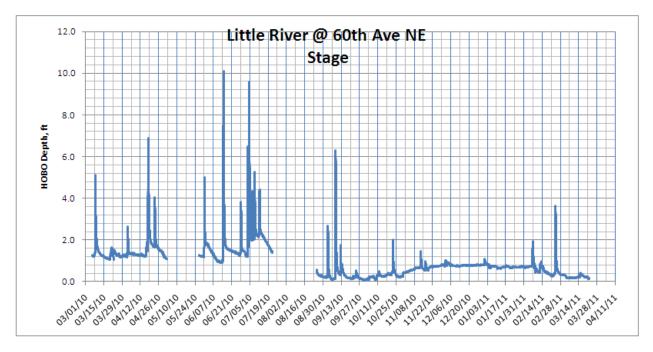


Figure E-1: Stage Record – Site S01 – Little River @ 60th

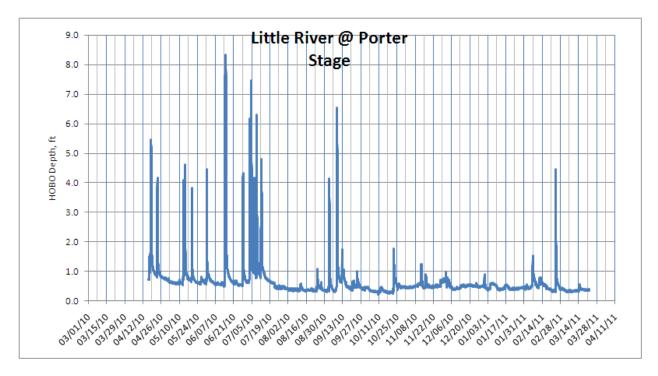


Figure E-2: Stage Record – Site S02 – Little River @ Porter

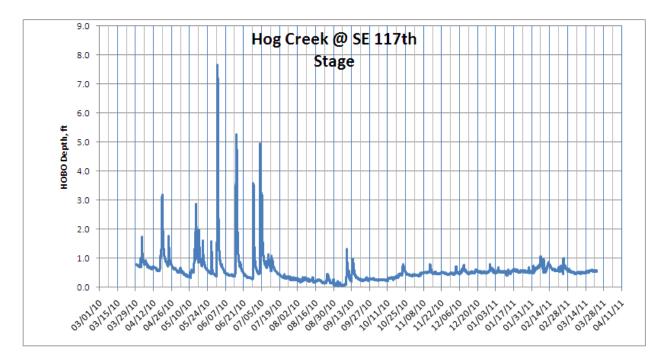


Figure E-3: Stage Record – Site S03 – Hog Creek @ 117th

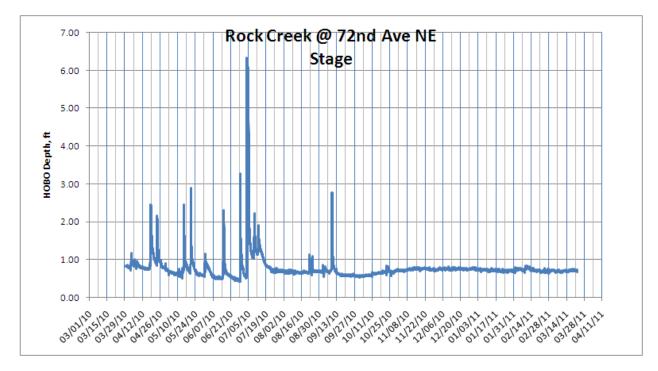


Figure E-4: Stage Record – Site S04 – Rock Creek @ 72nd

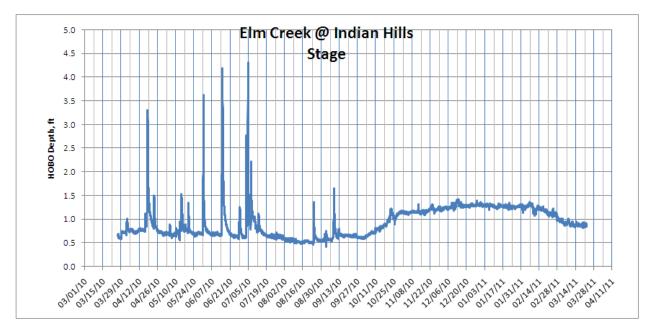


Figure E-5: Stage Record – Site S05 – Elm Creek @ Indian Hills

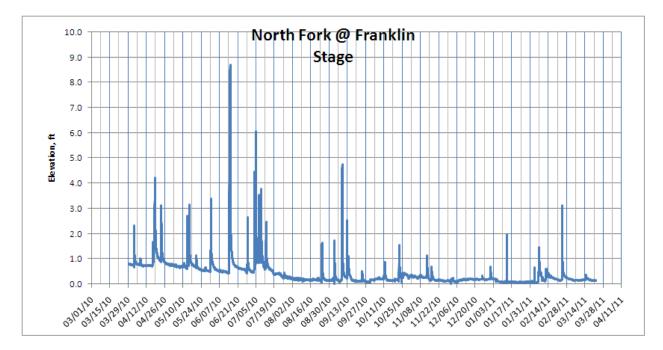


Figure E-6: Stage Record – Site S06 – North Fork @ Franklin

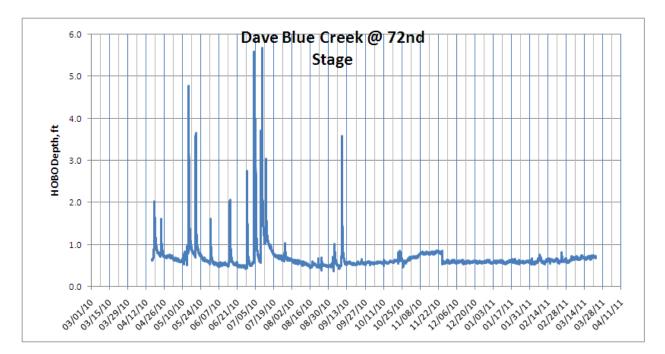


Figure E-7: Stage Record – Site S07 – Dave Blue Creek @ 72nd

Appendix F –Stage-Discharge Plots

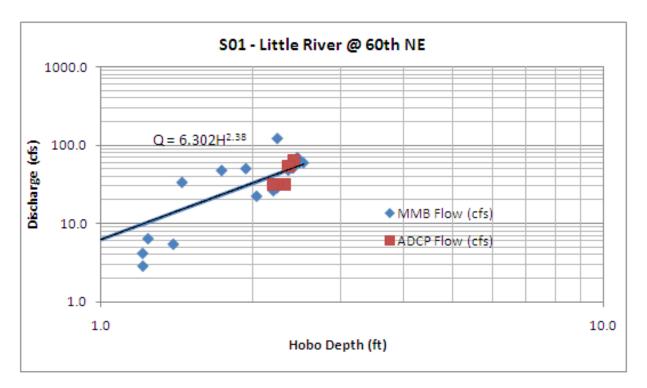


Figure F-1: Stage-Discharge Plot – S01 - Little River $@ 60^{th}$

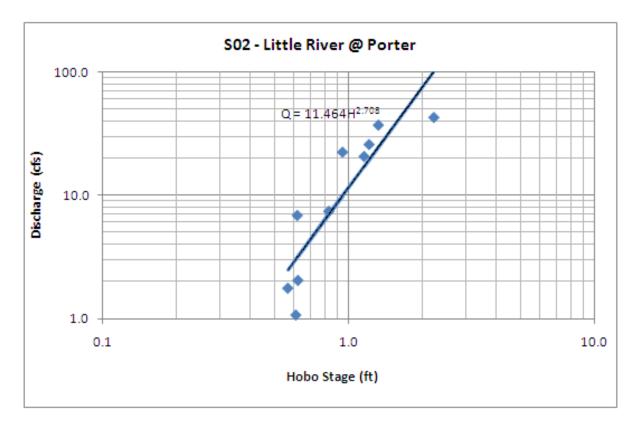


Figure F-2: Stage-Discharge Plot – S02 - Little River @ Porter



Figure F-3: Stage-Discharge Plot – S03 – Hog Creek

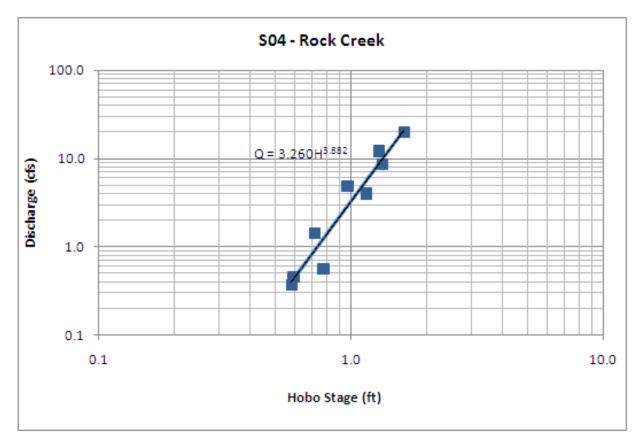


Figure F-4: Stage-Discharge Plot – S04 – Rock Creek

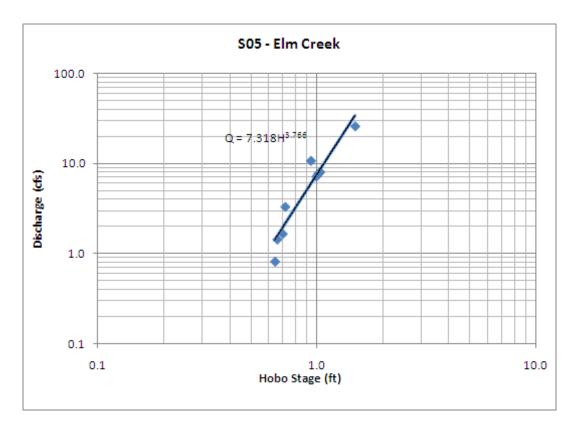


Figure F-5: Stage-Discharge Plot – S05 – Elm Creek

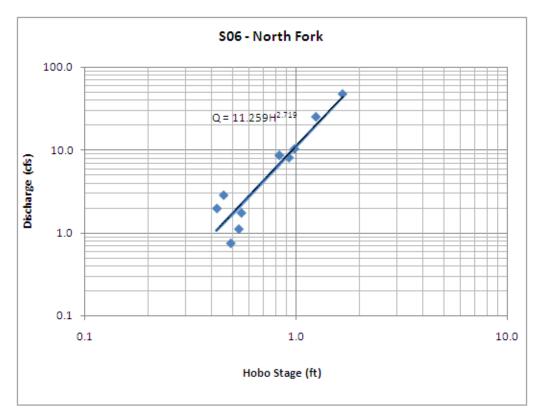


Figure F-6: Stage-Discharge Plot – S06 – North Fork

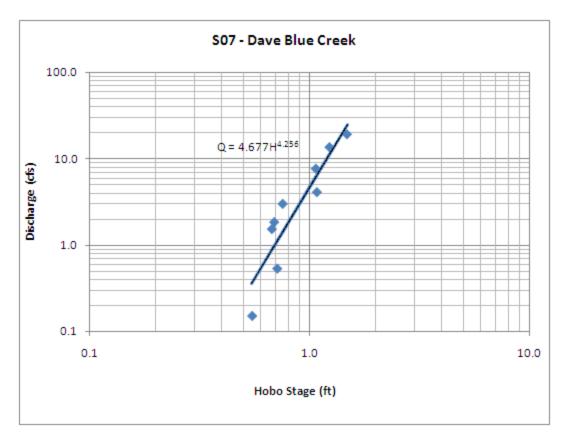


Figure F-7: Stage-Discharge Plot – S07 – Dave Blue Creek