TWO-DIMENSIONAL PLUMES IN UNIFORM GROUND-WATER FLOW E-005

JAN WAGNER

WATER RESEARCH CENTER
OKIAHOMA STATE UNIVERSITY
STILLWATER, OKLAHOMA

AUGUST, 1981

Abstract

Analytical solutions for two-dimensional plumes in uniform groundwater flow are presented for two types of contaminant transport problems. The first is a vertically-averaged solution for a line source of contamination which fully penetrates the saturated thickness of an aquifer of infinite areal extent. The second solution is a horizontally-averaged solution for a line source located at the water table of an aquifer of infinite depth.

An interactive Fortran computer code has been developed to evaluate the steady-state or transient concentration distributions for both types of two-dimensional plumes. The user is provided with options to modify the definition of a given problem and, therefore, can gain some insight into the effects of physical and chemical parameters on the extent of a contaminant plume.

TABLE OF CONTENTS

Abstract 1
Table of Contents 2
Introduction 3
Section I - Mathematical Development 4
Vertically-Averaged Solutions 7
Horizontally-Averaged Solutions 13
Superposition 16
Section II - Applications 20
Section III - Program PLUME 27
Basic Input Data 27
Edit Commands 31
References 34
Appendices
A. Description of Program PLUME 35
B. Numerical Evaluation of the Hantush Well Function 37
C. Listing of Program PLUME 40
D. Listing of Utility Function Subroutines 52
E. Example Problems 63

INTRODUCTION

Relatively simple analytical methods can of ten be used to evaluate ground-water contamination problems, depending upon the complexity of the system and the availability of field data. Analytical models can also serve as valuable tools in developing parameters for more sophisticated numerical models. Although the numerical evaluation of analytical solution to a ground-water problem may be mathematically complex, analytical models are well suited for interactive use on digital computers. Many analytical solutions to ground-water contamination problems can be coded on programmable hand-held calculators. In general, very few input parameters are required to define a given problem and numerical results can be calculated in a few seconds.

This report presents analytical solutions to two ground-water pollution problems--two-dimensional plumes in uniform ground-water flow. An interactive computer code has been developed which enables the user to modify the definition of a given problem, and thus gain some insight into the effects of various parameters on the extent of a contaminant plume.

SECTION I

MATHEMATICAL DEVELOPMENT

The differential equation describing the conservation of mass of a component in a saturated, homogeneous aquifer with uniform, steady flow in the x-direction can be written as:

The total mass of a component per unit volume of aquifer is distributed as dissolved solute in the fluid phase and adsorbed solute on the solid matrix. Let

$$
C_{s}=\text { component mass per unit mass of solid } \quad \mathrm{M} / \mathrm{M}
$$

and
$\rho_{B}=$ bulk density of the aquifer

$$
=\text { mass of solids per unit volume of the aquifer } \quad \mathrm{M} / \mathrm{L}^{3}
$$

The total component mass per unit volume of aquifer can be expressed
as

$$
\begin{aligned}
\frac{\text { Mass }}{\text { Unit Vol. }} & =\left(\frac{\text { Volume of voids }}{\text { Unit Volume of aquifer }}\right)\left(\frac{\text { Component Mass }}{\text { Volume of voids }}\right) \\
& +\left(\frac{\text { Mass of solids }}{\text { Unit volume of aquifer }}\right)\left(\frac{\text { Component Mass }}{\text { Mass of solids }}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
C_{T}=\theta C+\rho_{B} C_{S} \tag{2}
\end{equation*}
$$

and the rate of accumulation of mass in the aquifer becomes

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}=\theta \frac{\partial C}{\partial t}+\rho_{B} \frac{\partial C_{s}}{\partial t} \tag{3}
\end{equation*}
$$

In general, $C_{s}=f(C)$ and

$$
\begin{equation*}
\frac{\partial C_{s}}{\partial t}=\frac{d C_{s}}{d C} \frac{\partial C}{\partial t} \tag{4}
\end{equation*}
$$

For a linear equilibrium adsorption isotherm

$$
\begin{equation*}
\frac{d C_{s}}{d C}=K_{d} \frac{M / M}{M / L^{3}} \tag{5}
\end{equation*}
$$

where K_{d} is a distribution constant.
The change in concentration per unit volume of porous media, $\partial C_{T} / \partial t$, can be written in terms of fluid phase concentration, C, by substituting Equations 4 and 5 into Equation 3. Therefore,

$$
\frac{\partial C_{T}}{\partial t}=\theta \frac{\partial C}{\partial t}+\rho_{B} K_{d} \quad \frac{\partial C}{\partial t}
$$

or

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}=\left(\theta+\rho_{B} K_{d}\right) \frac{\partial C}{\partial t} \tag{6}
\end{equation*}
$$

The rate of generation per unit volume of porous media is also distributed between the solid and liquid phases, or

$$
\begin{aligned}
\left(\frac{\text { Rate of mass generated }}{\text { Unit volume of aquifer }}\right) & =\left(\frac{\text { Rate of mass generated }}{\text { Unit volume of fluid }}\right) \quad\binom{\text { Volume of fluid }}{\text { Volume of aquifer }} \\
& +\left(\frac{\text { Rate of mass generated }}{\text { Unit mass of solid }}\right) \quad\binom{\text { Mass of solid }}{\text { Volume of aquifer }}
\end{aligned}
$$

Now, the rate of change in total mass per unit volume of aquifer due to reaction can be written as

$$
\begin{equation*}
r_{t}=\frac{\partial C_{T}}{\partial t}=\theta \frac{\partial C}{\partial t}+\rho_{B} \frac{\partial C_{s}}{\partial t} \tag{7}
\end{equation*}
$$

The concentration on the solid, C_{s}, is related to the concentration in the liquid, C, through the linear adsorption isotherm assumed previously, and

$$
\begin{equation*}
r_{t}=\frac{\partial C_{T}}{\partial_{t}}=\left(\theta+\rho_{B} K_{d}\right) \frac{\partial C}{\partial t} \tag{8}
\end{equation*}
$$

Assuming first order decay kinetics, the rate of change in fluid concentration due to reaction can be expressed as

$$
\begin{equation*}
\frac{\partial C}{\partial t}=-\lambda C \tag{9}
\end{equation*}
$$

where λ is a rate constant ($1 / t$), and

$$
\begin{equation*}
r_{t}=\left(\theta+\rho_{B} K_{d}\right) \lambda C \tag{10}
\end{equation*}
$$

Equation 1, can now be written in terms of the fluid concentration. Substituting Equations 6 and 10 and recalling that for a homogeneous porous medium the porosity, θ, is constant, Equation 1 becomes

$$
\begin{equation*}
\left(1+\frac{\rho_{B}}{\theta} K_{d}\right) \frac{\partial C}{\partial t}+v \frac{\partial C}{\partial x}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}+D_{x} \frac{\partial^{2} C}{\partial z^{2}}-\left(1+\frac{\rho_{B}}{\theta} K_{d}\right) \lambda C \tag{11}
\end{equation*}
$$

Defining a "retardation coefficient" as

$$
\begin{equation*}
\mathrm{R}_{\mathrm{d}}=1+\frac{\rho_{\mathrm{B}}}{\theta} \mathrm{~K}_{\mathrm{d}} \tag{12}
\end{equation*}
$$

the differential equation describing the conservation of mass in the aquifer becomes

$$
\begin{equation*}
R_{d} \frac{\partial C}{\partial t}+v \frac{\partial C}{\partial x}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}+D_{z} \frac{\partial^{2} C}{\partial z^{2}}=R_{d} \lambda C \tag{13}
\end{equation*}
$$

Solutions of Equation 13 for two types of ground-water contamination problems are presented in the following paragraphs. The first is a verti-cally-averaged solution which describes a contaminant plume in the $z-y$ plane (Figure 1). The second is a horizontally-averaged solution, describing a contaminant plume in the $\mathrm{x}-\mathrm{z}$ plane (Figure 2).

Vertically-Averaged Solutions

The vertically averaged solutions apply to a homogeneous aquifer of infinite aerial extent and finite depth. The contaminant is assumed to be well mixed over the saturated thickness. The source of contamination is a vertical line source located at the origin of a coordinate system in the

Figure 2. Coordinate system for horizontally averaged solution.
$x-y$ plane. This conceptual model would apply to an injection well which fully penetrates the saturated zone.

Wilson and Miller (1978) have also applied this solution down-stream from a contaminant source at the surface of the water table. For a relatively thin saturated zone, vertical dispersion will result in mixing vertically. The concentration distribution can be considered as being twodimensional in a horizontal plane at distances downstream of the source sufficient for the concentration distribution to become uniform with depth. Mathematically, the problem is treated as a semi-infinite aquifer with a line source at the origin.

The vertically averaged formulation of Equation 13 is

$$
\begin{equation*}
R_{d} \frac{\partial C}{\partial t}+V \frac{\partial C}{\partial x}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}-R_{d} \lambda C \tag{14}
\end{equation*}
$$

The boundary conditions can be stated mathematically as follows:

$$
\begin{align*}
& \text { For } t \leq 0 \quad C=0 \quad x \geq 0 \quad|y| \geq 0 \tag{15a}\\
& \text { For } t>0 \quad C=C_{0} \quad x=0 \quad y=0 \tag{15b}\\
& C=0 \quad x=0 \quad|y|>0 \tag{15c}\\
& \frac{\partial C}{\partial x}=0 \quad x \rightarrow \infty \quad|y| \geq 0 \tag{15d}\\
& \frac{\partial C}{\partial y}=0 \quad x \geq 0 \quad|y| \rightarrow \infty \tag{15e}
\end{align*}
$$

where C_{0} is the concentration of the contaminant source.
A solution of Equation 14 with the boundary conditions defined by Equation 15 can be written as (Wilson and Miller, 1978)

$$
\begin{equation*}
C=\frac{C_{0} Q^{\prime} \operatorname{ExP}\left(\frac{V x}{2 D_{x}}\right)}{4 \pi \theta\left(D_{x} D_{y}\right)^{\frac{1}{2}}} W(U, B) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& U=\frac{\left(\frac{V x}{D_{x}}\right)^{2}+\frac{D_{x}}{D_{y}}\left(\frac{V y}{D_{x}}\right)^{2}}{\frac{4 V^{2} t}{R_{d} D_{x}}} \tag{17}\\
& B=\frac{1}{2}\left(\left(\frac{V x}{D_{x}}\right)^{2}+\frac{D_{x}}{D_{y}}\left(\frac{V y}{D_{x}}\right)^{2}\right)^{\frac{1}{2}}\left(1+\frac{4 D_{x} R_{d} \lambda}{v^{2}}\right)^{\frac{1}{2}} \tag{18}
\end{align*}
$$

and $Q^{\prime}\left(L^{3} / t / L\right)$ is the volumetric contaminant source rate per unit depth of the saturated zone.

The function $W(U, B)$ is defined as

$$
\begin{equation*}
W(U, B)=\int_{u}^{\infty} \frac{1}{\xi} \operatorname{EXP}\left(-\xi-\frac{B^{2}}{4 \xi}\right) d \xi \tag{19}
\end{equation*}
$$

where ξ is a dummy integration variable. This function is often referred to as the Hantush $(1956,1964)$ "well function."

The steady-state solution of Equation 14 and 15 can be obtained by noting as $t \rightarrow \infty, U \rightarrow 0$ and the well function (Hantush, 1956) can be expressed as

$$
\begin{equation*}
W(0, B)=2 K_{o}(B) \tag{20}
\end{equation*}
$$

At steady state the vertically averaged solution can be written as

$$
\begin{equation*}
C=\frac{C_{0} Q^{\prime} \operatorname{EXP}\left(\frac{V x}{2 D}\right)}{2 \pi \theta\left(D_{x} D_{y}\right)^{\frac{1}{2}}} K_{0}(B) \tag{21}
\end{equation*}
$$

where $K_{0}(B)$ is the modified Bessel function of the second kind of order zero.

The units of the variables in Equations 16 and 21 can be eliminated by defining the following dimensionless groups:

Modified Peclet Numbers - Convective Mass Transport

$$
\begin{array}{ll}
\mathrm{Pe}_{x}=\frac{V x}{D_{x}} & \frac{L}{t} \cdot L \cdot \frac{t}{L^{2}}=1 \\
P_{y}=\frac{V y}{D_{x}} & \tag{23}
\end{array}
$$

Damköhler Group II
$-\frac{\text { Mass decay rate }}{\text { Mass dispersion rate }}$

$$
\begin{equation*}
D_{k}=\frac{D_{x} R_{d}}{v^{2}} \quad \frac{L^{2}}{t} \cdot \frac{t^{2}}{L^{2}} \cdot \frac{1}{t}=1 \tag{24}
\end{equation*}
$$

Number of Pore Volumes Injected - Mass transport rate

$$
\begin{equation*}
I=\frac{v^{2} t}{R_{d} D_{x}} \quad \frac{L^{2}}{t^{2}} \cdot \frac{t}{1} \cdot \frac{t}{L^{2}} \tag{25}
\end{equation*}
$$

Dimensionless Source Term - Mass injection rate

$$
\begin{equation*}
r=\frac{Q^{\prime}}{\theta\left(D_{x} D^{\prime 2}\right.} \quad \quad \frac{L^{3}}{t} \frac{1}{L} \cdot \frac{t}{L^{2}}=1 \tag{26}
\end{equation*}
$$

Dimensionless Concentration

$$
\begin{equation*}
\gamma=\frac{\mathrm{C}}{\mathrm{C}_{0}} \quad \frac{\mathrm{M}}{\mathrm{~L}^{3}} \cdot \frac{\mathrm{~L}^{3}}{\mathrm{M}} \tag{27}
\end{equation*}
$$

Note that the number of pore volumes injected can be written as

$$
\begin{equation*}
I=\frac{v^{2} t}{D_{x} R_{d}}=\left(\frac{V_{L}}{D_{x}}\right)^{2} \quad\left(\frac{D_{x} t}{R_{d} L^{2}}\right) \tag{28}
\end{equation*}
$$

where L is a characteristic length defined as

$$
\begin{equation*}
L^{2}=x^{2}+\frac{D_{x}}{D_{y}} y^{2} \tag{29}
\end{equation*}
$$

The first group on the right-hand-side of Equation 28 is the Modified Peclet number

$$
P e_{x y}=\frac{V L}{D_{x}}=\left(\left(\frac{V x}{D_{x}}\right)^{2}+\frac{D_{x}}{D_{y}}\left(\frac{V y}{D_{x}}\right)^{2}\right)^{\frac{1}{2}}
$$

or

$$
\begin{equation*}
P e_{x y}=\left(P e_{x}^{2}+\beta P e_{y}^{2}\right)^{\frac{1}{2}} \tag{30}
\end{equation*}
$$

where

$$
\beta=\frac{D_{x}}{D_{y}}
$$

The second group on the right-hand-side of Equation 28 is a dimensionless time variable,

$$
\begin{equation*}
\tau=\frac{D_{x} t}{R_{d} L} \tag{3I}
\end{equation*}
$$

The transient and steady-state solutions to Equation 14 which are given by Equations 16 and 21 can be written in terms of dimensionless variables defined above. The transient solution is

$$
\begin{equation*}
\gamma=\frac{\Gamma}{4 \pi} \quad \operatorname{EXP}\left(\frac{1}{2} \mathrm{Pe}_{\mathrm{X}}\right) W(\mathrm{U}, \mathrm{~B}) \tag{32}
\end{equation*}
$$

and at steady state

$$
\begin{equation*}
\gamma=\frac{\Gamma}{2 \pi} \quad \operatorname{EXP}\left(\frac{1}{2} \mathrm{Pe}_{x}\right) K_{0}(B) \tag{33}
\end{equation*}
$$

with

$$
\begin{equation*}
U=\frac{P e_{x y^{2}}^{2}}{4 I} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{1}{2} \mathrm{Pe}_{x y}\left(1+4 \mathrm{D}_{\mathrm{k}}\right)^{\frac{1}{2}} \tag{35}
\end{equation*}
$$

The values of dimensionless concentrations evaluated using Equation 32 or Equation 33 are valid for any consistent set of units. It is also important to note non-dimensionalizing the problem reduces the twelve dimensional variables involved in Equation 16 to five dimensionless groups in Equation 32.

Horizontally-Averaged Solutions. The horizontally averaged solutions apply to aquifers of finite width and infinite length and depth. The contaminant is assumed to be well mixed over the width of the aquifer. The source of contamination is a line source located at the origin of a coordinate system in the $x-y$ plane, which represents the water table. An example of a problem which would fit this conceptual model is seepage from a canal perpendicular to the direction of ground water flow.

The solution could also be applied to aquifers with a finite depth of a saturated zone. However, the solution only applies from the source downstream to the point where dispersion spreads the contaminant to the bottom of the saturated zone.

The horizontally-averaged formulation of Equation 13 is

$$
\begin{equation*}
R_{d} \frac{\partial C}{\partial t}+V \frac{\partial C}{\partial x}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{z} \frac{\partial^{2} C}{\partial z^{2}}-R_{d} \lambda C \tag{36}
\end{equation*}
$$

with boundary conditions

$$
\begin{array}{llll}
\text { For } t \leq 0 & C & =0 & x \geq 0 \\
\text { For } t>0 & C & =C_{0} & x=0 \\
C & =0 & x=0 & z>0 \\
\frac{\partial C}{\partial x} & =0 & x>\infty & z \geq 0 \\
\frac{\partial C}{\partial z} & =0 & x \geq 0 & z \geq 0
\end{array}
$$

$$
\begin{equation*}
\frac{\partial C}{\partial z}=0 \quad x>0 \quad z+\infty \tag{37f}
\end{equation*}
$$

Equation 36 is identical in form to Equation 14 which describes the vertically-averaged solution. The only difference in boundary conditions between the two problems is that the $x-z$ plane of symmetry in the verticallyaveraged problem is replaced by a zero-flux $x-y$ plane in the horizontallyaveraged problem. Otherwise the form of the differentlal equations and boundary conditions is identical. Thus the transient solution of Equation 36 is

$$
\begin{equation*}
\mathrm{C}=\frac{\mathrm{C}_{0} Q^{\prime}}{2 \pi \theta\left(\mathrm{D}_{\mathbf{x}} \mathrm{D}_{z}\right)^{\frac{1 / 2}{2}}} \mathrm{~W}(\mathrm{U}, \mathrm{~B}) \tag{38}
\end{equation*}
$$

and at steady-state

$$
\begin{equation*}
C=\frac{C_{0} Q^{\prime}}{\pi \theta\left(D_{x} D_{z}\right)^{\frac{1}{2}}} K_{0}(B) \tag{39}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{U}=\frac{\left(\frac{V x}{D_{x}}\right)^{2}+\frac{D_{x}}{D_{z}}\left(\frac{V_{z}}{D_{x}}\right)^{2}}{\frac{4 V^{2} t}{R_{d} D_{x}}} \tag{40}\\
& \left.B=\frac{1}{2}\left(\left(\frac{V x}{D_{x}}\right)^{2}+\frac{D_{x}}{D_{z}}\left(\frac{V z}{D_{x}}\right)^{2}\right)^{\frac{1}{2}\left(1+\frac{4 D_{x} R_{d} \lambda}{2}\right.}\right)^{\frac{1}{2}} \tag{41}
\end{align*}
$$

and Q^{\prime} is the volumetric contaminant source rate per unit width of aquifer.
Equations 39 through 41 can be written in terms of dimensionless groups similar to those defined for the vertically-averaged solution. Let

$$
\begin{equation*}
\mathrm{Pe}_{z}=\frac{\mathrm{V}_{z}}{\mathrm{D}_{\mathrm{x}}} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=\frac{D_{x}}{D_{z}} \tag{43}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{Pe}_{\mathrm{xz}}=\left(\mathrm{Pe}_{\mathrm{x}}^{2}+\alpha \mathrm{Pe}_{z}^{2}\right)^{\frac{1}{2}} \tag{44}
\end{equation*}
$$

and the solutions of the transient and steady-state horizontally-averaged solutions become

$$
\begin{equation*}
\gamma=\frac{\Gamma}{2 \pi} \operatorname{ExP}\left(\frac{1_{2}}{2} e_{X}\right) W(U, B) \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{\Gamma}{\pi} \operatorname{ExP}\left(\frac{1}{2} P e_{x}\right) K_{0}(B) \tag{46}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{Pe}_{\mathrm{xz}}}{4 \mathrm{I}} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{1}{2} P e_{x z}\left(1+4 D_{k}\right)^{\frac{1}{2}} \tag{48}
\end{equation*}
$$

The similarity of the solutions of the vertically-averaged and hori-zontally-averaged problems facillitates their numerical evaluation using a common computational algorithm. For the same numerical values of the
independent variables, concentration values for the horizontally-averaged solutions are obtained by doubling the vertically-averaged solution values. An interactive computational code has been developed to calculate transient and steady-state concentrations for both types of problems. The computer program is discussed in Section III of this report.

Superposition - The differential equation describing component mass concentration in a porous medium, Equation 1, is a linear partial differential equation. The principal of superposition can be used directly to solve complex ground-water contamination problems in terms of the simplier solutions described above. Unfortunately, the scattered applications of this principle are not explained in any single reference. Some texts indicate that superposition means that any sum of solutions is also a solution. Superposition is commonly used to generate a linear no-flow boundary condition through the use of "image wells" or to simulate multiple sources and sinks, (Walton; 1962, 1970). The principle of superposition is also complicated by referring to the "Dunhamel theorem," the "Faltung integral," and/or "convolution integrals." These terms often have no apparent physical interpretation. For the purposes of this report, "superposition in space" will refer to the approximation of sources of finite area as the sum of a finite number of line sources or the generation of no-flow boundaries using image wells. "Superposition in time" will refer to the approximation of a variable source rate of contamination as the sum of a finite number of constant source rates distributed in time. Both the horizontally-averaged and vertically-averaged solutions can be used to simulate aquifers of finite width or depth, respectively, or plane sources of finite width. Applications of this type require a thorough understanding of the physical interpretation of the principal of superposition.

However, superposition in the time is relatively straight forward, and the provision to approximate a non-uniform source rate for a contaminant has been included in the computer program discussed in Section III.

Consider the variable source of contamination shown in Figure 3a. The solutions of the governing differential equation presented in this report are of the form

$$
\begin{equation*}
C(x, y, t)=c_{0} Q^{\prime} f(x, y, t)=\dot{Q}^{\prime} f(x, y, t) \tag{49}
\end{equation*}
$$

where \dot{Q} ' is the source mass rate per unit length. The principle of superposition in time can be written for any position as

$$
\begin{equation*}
c(x, y, t)=\sum_{i=1}^{n} \dot{Q}_{n}^{\prime} f\left(x, y, t_{n}\right) \tag{50}
\end{equation*}
$$

Now, the variable rate schedule shown in Figure 3a can be decomposed into a series of positive and negative mass rates as shown in Figure 3b. The concentration at a point x, y at the end of the simulation can be evaluated as

$$
\begin{aligned}
C(x, y, t)= & \dot{Q}_{1}^{\prime} f\left(x, y, t_{1}\right) \\
& +\dot{Q}_{1}^{\prime} f\left(x, y, t_{2}\right) \\
& +\dot{Q}_{2}^{\prime} f\left(x, y, t_{2}\right) \\
& -\dot{Q}_{2}^{\prime} f\left(x, y, y, t_{3}\right) \\
& +\dot{Q}_{4}^{\prime} f\left(x, y, t_{4}\right)
\end{aligned}
$$

In general terms

$$
\begin{equation*}
c(x, y, t)=\sum_{i=1}^{n}\left(\dot{Q}_{n}^{\prime}-\dot{Q}_{n-1}^{\prime}\right) f\left(x, y, t_{n}\right) \tag{52}
\end{equation*}
$$

with $\dot{Q}_{0}^{\prime}=0$

Figure 3. Decomposition of a variable source rate using superposition in time.

Note the time corresponding to a given source rate is the period beginning with the start of the given rate to the end of the simulation period the time is not the duration of a given rate.

A continuous non-uniform rate schedule may be approximated as closely as desired by increasing the number of discrete rates in the source rate schedule. In theory an infinite number of discrete rates would be required. An understanding of the physical problem and the assumptions incorporated in the mathematical model are the best guidelines for decomposing a continuous non-uniform source of contamination.

APPLICATIONS

The case history of ground-water contamination with hexavalent chromium described by Perlmutter and Lieber (1970), will be used as an example of the application of a two-dimensional plume model. The contaminant plume has been modeled numerically by Pinder (1973) and analytically by Wilson and Miller (1978). Details of the hydrologic system are described in the above references. A brief summary of the problem is presented in the following paragraphs.

The aquifer is assumed to have a saturated thickness of 33.52 m with a porosity of 0.35 . Perlmutter and Lieber (1970) estimated the average seepage velocity to be approximately $0.366 \mathrm{~m} / \mathrm{dy}$. Using Pinder's (1973) values of dispersivity, $\alpha_{x}=21.3 \mathrm{~m}$ and $\alpha_{y}=4.27 \mathrm{~m}$, the x and y dispersion coefficients are

$$
D_{x}=(21.3 \mathrm{~m})(0.366 \mathrm{~m} / \mathrm{dy})=7.70 \mathrm{~m}^{2} / \mathrm{dy}
$$

and

$$
D_{y}=(4.27 \mathrm{~m})(0.366 \mathrm{~m} / \mathrm{dy})=1.56 \mathrm{~m}^{2} / \mathrm{dy}
$$

The source of contamination consisted of three metal-plating-waste disposal ponds as shown in Figure 4. The mass rate of chromium entering the aquifer has been estimated at $23.6 \mathrm{~kg} / \mathrm{dy}$ during the nine year period from 1941 through 1949 (Perlmutter and Lieber, 1970). Chromium is believed to be a conservative contaminant, thus absorption and degradation can be neglected. The verticallyaveraged model parameters are summarized as follows:

Figure 4. Results of hexavalent chromium plume simulation at 2800 days.

Aquifer porosity	0.35
Seepage velocity	$0.366 \mathrm{~m} / \mathrm{dy}$
Retardation coefficient	1.0
x-Dispersion coefficient	$7.79 \mathrm{~m}^{2} / \mathrm{dy}$
y-Dispersion coefficient	$1.56 \mathrm{~m}^{2} / \mathrm{dy}$
Decay constant	$0.01 / \mathrm{dy}$

The contaminant source rate is assumed to be constant, and only one rate period is required. The mass rate can be converted to units of concentration times volume rate per unit depth as

for approximately nine years or 3,280 days.
The numerical results for the horizontally-averaged solution are summarized in Figure 4. The shape and general extent of the predicted plume are in fair agreement with the observed extent of contamination considering the availability of field data and the assumptions which have been made in characterizing the problem as two-dimensional uniform flow with a continuous line source.

Superposition in time will be illustrated using data for the aquifer contaminated with chromium described above. Rather than a continuous source of contamination from the disposal ponds, an "accidental spill" of high strength waste will be simulated. The contaminant source will be assumed to be an "instantaneous line source" of strength $704(\mathrm{mg} / 1)\left(\mathrm{m}^{3} / \mathrm{m}\right)$. The source rate schedule for the horizontally-averaged model is constructed as follows:

Figure 5. Results of hexavalent chromium spill simulation at 365 days.

Rate 1: 704 (mg/1) ($\left.\mathrm{m}^{3} / \mathrm{dy}\right) / \mathrm{m}$ for 365 days
Rate 2: $\quad 0(\mathrm{mg} / 1)\left(\mathrm{m}^{3} / \mathrm{dy}\right) / \mathrm{m}$ for 364 days
Other model parameters are identical to those used in the first example. The results of the simulation are sumarized in Figure 5, which shows the center of mass of the plume moving down-gradient at the seepage velocity and spreading longitudinally and transversely by diffusion.

The results of the simulation using superposition in time were compared with the concentrations calculated using

$$
\begin{equation*}
C=\frac{C_{0} Q^{\prime}}{4 \pi \theta t\left(D_{x} D_{y}\right)^{\frac{3}{2}}} \operatorname{ExP}\left(-\frac{(x-V t)^{2}}{4 D_{x} t}-\frac{y^{2}}{4 D_{y} t}-\lambda t\right) \tag{53}
\end{equation*}
$$

which is the solution of Equation 14 for an instantaneous line source of strength $C_{0} Q^{\prime}\left(m / L^{3}\right)\left(L^{3} / L\right)$. The values of concentration and errors in approximating the instantaneous source through superposition in time are presented in Table 1. Note that the finite duration of the source results is slightly higher concentrations up-gradient from the center of mass than concentrations down-gradient. For an instantaneous source the concentration distribution should be symmetrical about a y-z plane through the center of mass located at $x=V t$. A better approximation can be obtained by injecting the same total mass of contaminant over a shorter period of time; but for purposes of illustrating superposition in time, the errors in the example problem are not significant.

The two example problems presented above are intended to illustrate the application of the two-dimensional plume models developed in this report. These models are tools which can aid in the analysis of groundwater contamination problems. The user must select the best tool for the

TABLE 1

COMPARISON OF CONCENTRATIONS CALCULATED -USING SUPERPOSITION IN TIME AND AN ANALYTICAL SOLUTION FOR AN INSTANTANEOUS LINE SOURCE

MODEL PARAMETERS

Aquifer Porosity	0.35
Seepage Velocity	$0.366 \mathrm{~m} / \mathrm{dy}$
Retardation Coefficient	1.0
x-Dispersion Coefficient	$7.79 \mathrm{~m}^{2} / \mathrm{dy}$
y-Dispersion Coefficient	$1.56 \mathrm{~m}^{2} / \mathrm{dy}$
First-Order Decay Constant	$0.0 \quad 1 / \mathrm{dy}$
Source Strength	$704.0(\mathrm{mg} / 1)\left(\mathrm{m}^{3} / \mathrm{m}\right)$

Concentration at 365 days, mg/l

Superposition
(Equation 53)
\% Error
x (meters)

$\stackrel{y}{\text { (meters) }}$	x (meters)				
	73.59	103.59	$\begin{aligned} & 133.59 \\ & (=V t) \end{aligned}$	163.59	193.59
20.0	0.0919	0.1165	0.1259	0.1163	0.0916
	(. 0917)	(.1162)	(.1258)	(.1162)	(.0917)
	. 22	. 26	. 08	. 01	-. 11
10.0	0.0878	0.1115	0.1206	0.1113	0.0876
	(.0877)	(.1112)	(.1204)	(.1112)	(.0877)
	. 11	.27	. 17	. 09	-. 11
0.0	0.0771	0.0977	0.1057	0.0975	0.0768
	(.0769)	(.0975)	(.1055)	(.0975)	(.0769)
	. 26	. 21	. 19	. 0	-. 13

problem at hand, based on a sound understanding of the principles of groundwater hydrology, the physical problem, and the limitations of the mathematical model(s).

SECTION III

PROGRAM PLUME

Abstract

Program PLUME evaluates the analytical solution of the differential equation describing concentration distributions in a two-dimensional plume in uniform ground-water flow. The program has been designed for interactive use and requires input data under two modes of operation - "Basic Input Data" and "Edit."

\section*{Basic Input Data}

Basic input data are required to initiate a new problem using the PLUME program. The user is prompted for the required data through a series of input comands described below. Numeric data may be entered through the keyboard with or without decimal points and multiple data entries should be separated by a coma(s). The first basic input command is:

ENTER TITLE
?

Any valid keyboard characters can be used. The first 60 characters will be retained for further problem identification.

The second input command is used to select the vertically-averaged solution or the horizontally-averaged solution. The command is:

ENTER COORDINATE SYSTEM
XY FOR VERTICALLY-AVERAGED SOLUTION
XZ FOR HORIZONTALLY-AVERAGED SOLUTION
?

Either of the indicated responses is valid.
The next three input commands define the units for all variables used in the calculations. Any consistent set of units may be used.

ENTER UNITS FOR LENGTH (2 CHARACTERS)
?

Any valid keyboard characters can be used. The first two characters will be retained for identifying the units of the length dimensions which may be required for other input data or output listings.

ENTER UNITS FOR TIME (2 CHARACTERS)
?

Any valid keyboard characters can be used. The first two characters will be retained for identifying the units of the time dimensions which may be required for other input data or output listings.

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)
?

The first six characters of any valid keyboard entries will be retained for identifying the concentration units used for data input and output.

The remaining input commands are used to initialize all variables for a given problem. They include both aquifer and contaminant parameters. Input data errors which may interrupt the computational sequence are detected by the program and a command is issued to reenter the data for the appropriate variable.

ENTER AQUIFER POROSITY
?

Enter the volume void fraction.

ENTER SEEPAGE VELOCITY
?

The seepage, or Darcy, velocity must be entered with dimensions of L / t in the units requested. Numerical values must be greater than zero.

ENTER RETARDATION COEFFICIENT
?

The retardation coefficient includes the effects of absorption of the tracer on the solid matrix (see Section II for discussion). The numerical value must be greater than 1.0 , or equal to 1.0 if absorption is neglected.

ENTER X AND Y DISPERSION COEFFICIENTS ($\mathrm{L}^{2} / \mathrm{t}$)
?,?
Dispersion coefficients have dimensions of $\mathrm{L}^{2} / \mathrm{t}$ and must be entered in the units requested. Numerical values must be greater than zero.

ENTER DECAY CONSTANT, ($1 / \mathrm{t}$)
?

The first order decay constant has dimensions of ($1 / \mathrm{t}$) and must be entered in the units requested. The decay constant must be greater than, or equal to, zero.

The next two input commands are used to set up the source rate schedule. A nonuniform source is accommodated through superposition of a series of uniform source rates (see Section II for discussion).

ENTER NUMBER OF SOURCE RATES
?

The number of uniform source rates used to approximate a nonuniform rate schedule is entered. If a negative or zero value is entered, the steady
state concentration will be evaluated.
ENTER MASS RATE $N\left(M / L^{3}\right)\left(L^{3} / t / L\right)$ AND TTME, ($\left.t\right)$
?,?

The source mass rate is entered in units of concentration times the volumetric rate per unit depth of saturated thickness of the aquifer. Note the actual source concentration and rate are not required, but the units must be consistent. The time units must also be consistent and the time variable is the interval from the start of a new source rate to the "time of reconning."

The last two basic input commands are used to define the matrix of observation points, or coordinates at which concentration will be evaluated.

ENTER XFIRST, XLAST, DELTAX (L)
?,?,?

The input units for the coordinates must also be in the units requested. XFIRST must be a positive value. A zero entry for DELTAX will result in a Single X-coordinate observation. Results of calculations for multiple x-coordinates will be listed from XFIRST to XLAST.

ENTER YFIRST, YLAST, DELTAY (L)
?,?,?

Any of the numerical values used to define the y-coordinates of observation points may be positive or negative. If the $x-z$ coordinate system has been selected, a command to enter the z-coordinates, rather than the y-coordinates, will be issued.

ENTER ZFIRST, ZLAST, DELTAX (L)
?,?,?

Values of ZFIRST must be greater than, or equal to, zero.

Edit Commands

Once the basic input data have been entered", the problem as currently defined is listed and the program enters the "edit" mode. The edit commands are listed in Table 2 . The request for information is:

ENTER NEXI COMMAND?

One of the responses from Table 2 should be given. If the response is incorrect or improperly formulated the statement

ERROR IN LAST COMMAND -- REENTER
?
is issued. Error messages for invalid numerical data will be issued as described under the Basic Input Commands.

The request for information will be repeated until one of the responses LI, RN, NP, or DN is entered.

LI will list the problem as currently defined.
RN will initiate the calculation of concentrations and print the results.

NP will request a complete new problem definition using the "Basic Input Data" dialog.

DN will terminate the program.

Listings of the dialog and the results for the two example problems discussed in Section II are included in Appendix E.

Although many tests for valid input data and properly formulated edit commands have been coded in the program, the user is encouraged to correct

TABLE 2

- EDIT COMMANDS FOR PLUME

Comand	Variable Changed/Execution
VX	New Seepage Velocity
RD	Retardation Coefficient
DE	Decay Constant
DX	X-Dispersion Coefficient
DY	Y-Dispersion Coefficient
DZ	Z-Dispersion Coefficient
PO	Porosity
OB	X-and Y-Coordinates
XC	X-Coordinates
YC	Y-Coordinates
ZC	Z-Coordinates
RT	Source Rate Schedule
NP	New Problem
RN	Done
DN	List

"keyboard errors" before the data are transmitted. These precautions will serve to minimize the frustration of program termination as a result of fatal errors during execution of the numerical computations.

REFERENCES

Abramowitz, M- and I. A. Stegun, 1966, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U. S. Department of Commerce, 1046 pp.

Hantush, M. S. 1956. "Analysis of Data from Pumping Tests in Leaky Aquifers." Transactions, American Geophysical Union, Vol. 37, No. 6, pp. 702-714

Hantush, M. S. 1964. "Hydraulics of Wells." Advances in Hydroscience, Vol. 1, pp. 281-432.

Hantush, M. S. and C. E. Jacob, 1955. "Non-Steady Radial Flow in an Infinite Leaky Aquifer," Transactions, American Geophysical Union, Vol. 36, No. 1, pp. 95-100.

Perlmutter, N. M. and M. Lieber. 1970. "Dispersal of Plating Wastes and Sewage Contaminants in Ground Water and Surface Water, South Farmingdale-Massapequa Area, Nassau County, New York." U. S. Geological Survey Water-Supply Paper 1879-G, pp. G1-G67.

Pinder, G. F. 1973. "A Galerkin Finite Element Simulation of Groundwater Contamination on Long Island." Water Resources Research, Vo1. 9, No. 6, pp. 1657-1669.

Walton, W. C. 1962, "Selected Analytical Methods for Well and Aquifer Evaluation." Bulletin 49, Illinois State Water Survey, Urbana, Il., 81 pp .

Walton, W.C. 1970. Groundwater Resource Evaluation, McGraw-Hill, New York, NY, 664 pp.

Wilson, J. L. and P. J. Miller. 1978. "Two-Dimensional Plume in Uniform Ground-Water Flow." Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY4, pp. 503-514.

Wilson, J. L. and P. J. Miller. 1979. "Two-Dimensional Plume in Uniform Ground-Water Flow, Discussion," Journal of the Hydraulics Division, ASCE, Vol. 105, No. HY12, pp. 1567-1570.

APPENDIX A
 - Description of Program PLUME

Program PLUME has been written in an unextended Fortran computer code in an effort to make the program transportable between computer systems. The computer code consists of a main program and several function subroutines which are required to evaluate the Hantush well function. The program has been documented "internally" through the liberal use of comment statements.

The main program has been divided into three sections. A listing of the computer code is presented in Appendix C. Section I provides for the "Basic Input Data" as described in Section III of this report. The numerical evaluation of concentration at specified grid coordinates is accomplished in Section II of the main program which contains the code for the analytical solution of the governing differential equations. Section III provides for problem redefinition and control of execution under the "Edit" mode discussed in the body of this report.

Eight function subroutines are used to evaluate the Hantush well function using the numerical methods described in Appendix B. Listings of the computer codes are presented in Appendix D. FUNCTION $W(U, B)$ evaluates the Hantush well function for $B \leq 20$. For $B>20$ the term $\operatorname{EXP}\left(\mathrm{Pe}_{\mathrm{X}} / 2\right) \mathrm{W}(\mathrm{U}, \mathrm{B})$ in Equation 45 is evaluated using FUNCTION WELPRD (U,B,PEX). This procedure is used to avoid taking the direct product of very large numbers, $\operatorname{EXP}\left(\mathrm{Pe}_{\mathrm{X}} / 2\right)$, and very small numbers, $W(U, B)$, for large values of B.

FUNCTION GAUSS is a 24-point Gauss-Legendre quadrature numerical integration scheme which is used to evaluate the Hantush well function
using either Equation B-6 or Equation B-7. FUNCTION FUNCTN evaluates the integrand of Equations $B-6$ and $B-7$.

The four remaining function subroutines are used to evaluate mathematical functions using rational approximations or polynomial approximations. They are:

FUNCTION BIO (Z) Modified Bessel function of the first kind of order zero.

FUNCTION BRO (Z) Modified Bessel function of the second kind of order zero.

FUNCTION E1LOG (Z) Natural logrithm of the exponential integral.

FUNCTION ERFC (Z) Complimentary error function.
These four function subroutines are support FUNCTION $W(U, B)$ and/or FUNCTION WELPRD (U,B,PEX). If system subroutines are available for these functions they may be substituted for the function subroutines provided with Program PLUME.

APPENDIX B

NUMERICAL EVALUATION OF THE HANTUSH WELL FUNCTION

The Hantush well function can be defined as

$$
\begin{equation*}
W(U, B)=\int_{U}^{\infty} \frac{1}{\xi} \operatorname{EXP}\left(-\xi-\frac{B^{2}}{4 \xi}\right) d \xi \tag{B-1}
\end{equation*}
$$

or the reciprocal relation

$$
\begin{equation*}
W(U, B)=2 K_{0}(B)-\int_{B}^{\infty} \frac{1}{\xi} \operatorname{EXP}\left(-\xi-\frac{B^{2}}{4 \xi}\right) d \xi \tag{B-2}
\end{equation*}
$$

where ξ is a dumy integration variable (Hantush, 1964). Using the identity

$$
\begin{equation*}
\int_{a}^{\infty} f(\xi) d \xi=\int_{0}^{\infty} f(\xi) d \xi-\int_{0}^{a} f(\xi) d \xi \tag{B-3}
\end{equation*}
$$

Equation $B-1$ can be rewritten as

$$
\begin{equation*}
W(U, B)=\int_{0}^{\infty} \frac{1}{\xi} \operatorname{EXP}\left\{-\xi-\frac{B^{2}}{4 \xi}\right\} d \xi-\int_{0}^{\mathrm{u}} \frac{1}{\xi}\left(-\xi-\frac{B^{2}}{4 \xi}\right\} \mathrm{d} \xi \tag{B-4}
\end{equation*}
$$

Now

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\xi} \operatorname{EXP}\left[-\xi-\frac{B^{2}}{4 \xi}\right] d \xi=2 K_{0}(B) \tag{B-5}
\end{equation*}
$$

where K_{o} is the modified Bessel function of the second kind of order zero. Substituting Equation $B-5$ into Equation $B-4$, the well function becomes

$$
\begin{equation*}
W(U, B)=2 \mathrm{~K}_{0}(B)-\int_{0}^{\mathrm{u}} \frac{1}{\xi} \operatorname{EXP}\left(-\xi-\frac{B^{2}}{4 \xi}\right) \mathrm{d} \xi \tag{B-6}
\end{equation*}
$$

The reciprocal relation, Equation $B-2$, can also be written in terms of finite limits. Using the relationship given by Equations B-4 and B-5, the reciprocal relation can be expressed as

$$
\begin{equation*}
W(U, B)=\int_{0}^{B^{2} / 4 U} \frac{1}{\xi} \operatorname{EXP}\left(-\xi-\frac{B^{2}}{4 \xi}\right) d \xi \tag{B-7}
\end{equation*}
$$

For $0<B \leq 20$, values of $W(U, B)$ for $0<U<B / 2$ are obtained from Equation B-6 by first evaluating the value of the integrand using a 24-point Gauss-Legendre numerical integration scheme. For $B / 2 \leq U<\infty$, the reciprocal relation, Equation $B-7$, is evaluated using the same numerical integration scheme.

For $0<B \leq 0.1$, values of $W(U, B)$ are obtained from the series expansions presented by Hantush and Jacob (1955). For U ≤ 1

$$
\begin{align*}
W(U, B) & =2 K_{0}(B)-I_{0}(B) E_{1}\left(\frac{B^{2}}{4 U}\right) \tag{B-8}\\
& +\operatorname{EXP}\left(-\frac{B^{2}}{4 U}\right) \quad 0.57721566+\ln (U)+E_{1}(U)+\frac{U}{4} \frac{B^{2}}{4}\left(1-\frac{U}{9}\right)
\end{align*}
$$

and for $U>1$

$$
\begin{equation*}
W(U, B)=I_{0}(B) E_{1}(U)-\operatorname{EXP}(-U) \frac{B^{2}}{4}\left\{\frac{1}{U}-\frac{1}{36 U^{2}}\right)+\frac{B^{4}}{16}\left(\frac{1}{4 U}-\frac{1}{4 U^{2}}\right) \tag{B-9}
\end{equation*}
$$

where I_{0} is the modified Bessel function of the first kind of order zero, E is the exponential integral, and 0.57721566 is Euler's constant.

For $B>20$, the third order approximation for $W(\mathbb{O}, B)$ presented by Wilson and Miller (1979) is used to evaluate the well function. The approximation is

$$
\begin{equation*}
W(U, B)=\left(\frac{\pi}{2 B}\right)^{\frac{1}{2}} \operatorname{EXP}(-B)\left[\left(1-\frac{1}{8 B}\right) \operatorname{ERFC}(-\beta)+\frac{\beta}{4 B \pi^{\frac{1}{2}}} \operatorname{EXP}\left(-\beta^{2}\right)\right] \tag{B-10}
\end{equation*}
$$

where

$$
B=\frac{B-2 U}{(4 U)^{\frac{1}{2}}}
$$

and ERFC is the complimentary error function,
Now, for large positive values of B,

$$
\begin{equation*}
W(U, B)=Z\left(\frac{\pi}{2 B}\right)^{\frac{3}{2}} \operatorname{EXP}(-B) \quad\left(1-\frac{1}{8 B}\right) \tag{B-11}
\end{equation*}
$$

and an asymptotic expansion for $K_{0}(B)$ can be written as

$$
\begin{equation*}
K_{0}(B)=\left(\frac{\pi}{2 B}\right)^{\frac{1}{2}} \operatorname{EXP}(-B) \quad\left(1-\frac{1}{8 B}\right)+\frac{9}{2(8 B)^{2}}+\ldots \tag{B-12}
\end{equation*}
$$

Thus for $B>20$ and $\beta>7.5$ the well function is approximated as

$$
\begin{equation*}
W(U, B)-2 K_{0}(B) \tag{B-13}
\end{equation*}
$$

Note that this approximation is equivalent to the relation
$W(0, B)=2 K_{0}(B)$
Evaluation of the Hantush well function using the methods described in the previous paragraphs have been checked for both accuracy and continuity of the function between the various approximations. The GaussLegendre quadrature scheme was checked using up to 48 quadrature points. A maximum of 24 quadrature points yielded results accurate to four significant figures in the mantissa over the entire range of arguments which require numerical integration. The other approximations for $W(U, B)$ are also accurate to four significant figures in the mantissa.

APPENDIX C

Listing of Program PLUME
TWO-DIMENSIONAL PLUME IN UNIFORM GROUND-WATER FLOW JAN WAGNER SCHOOL OF CHEMICAL ENGINEERING OKLAHOMA STATE UNIVERSITY STILLWATER: OK 74078 PHONE (405) 624-5280 JULY, 1981
DIMENSION CXYT(51,51),Q(20):T(20):TITLE(30),X(51),Y(51),IC(16) INTEGER TITLE DATA IC/'DE','VX','RD','DX's'DY's'DZ's'PO','OB','XC','YC','ZC', 1'RT','NP','RN','DN','LI'/ DATA KPRO1/'XY'/, KPRO2/'XZ'/, KHARY/'Y'/, KHARZ/'Z'/ DATA NPAGE/1/

```
READ DEVICE: NI=1
WRITE DEVICE: NO=1
```

```
\(\mathrm{NI}=1\)
\(\mathrm{NO}=1\)DIRECTION HAS BEEN SET AT 50
            DIMENSION C(N,N); X(N), Y(N) -- WHERE N=MAXPTS+1
    MAXPTS = 50
    MAXIMUM NUMBER OF SOURCE RATES FOR SUPERPOSITION IN TIME
    HAS GEEN SET AT 20
        DIMENSION Q(20),T(20)
    MAXRT = 20
    READ TITLE
    1 WRITE(NO,3)
    3 FORMAT(3X,'ENTER TITLE',/' ?')
        READ(NI,5) (TITLE(I), I=1,30)
    5 \mp@code { F O R M A T ( 3 0 A 2 ) }
    SELECT VERTICALLY OR HORIZONTALLLYY AVERAGED SOLUTION
    KFLOW = 3
    WRITE(NO,7)
    7 FORMAT(3X,'ENTER COORDINATE SYSTEM',/,
        16X,'XY FOR VERTICALLY-AVERAGED SOLUTION',/,
        26X,'XZ FOR HORIZONTALLY-AVERAGED SOLUTION',/,' ?')
    8 READ(NI,9) KNTL
    9 FORMAT(AZ)
        IF(KNTL.EQ.KPRO1) KFLOW=1
        IF(KNTL.EG.KPPROZ) KFLOW=2
        GO TO (12,12,10), KFLOW
10 WRITE(NO,11)
11 FORMAT(3X,'ERROR IN PROBLEM SELECTION -- REENTER';/,' ?')
    GO TO 8
12 CONTINUE
    KHAR = KHARY
```

```
    IF(KFLOW.EQ.2) KHAR=KHARZ
C
C DEFINE UNITS
    WRITE(NO:15)
    15 FORMAT(3X,'ENTER UNITS FOR LENGTH (2 CHARACTERS)':/,' ?')
        READ(NI,25) IL
    25 FORMAT(A2)
        WRITE(NO,35)
    35 FORMAT(3X,'ENTER UNITS FOR TIME (2 CHARACTERS)',/,' ?')
    READ(NI,25) IT
    WRITE(NO,45)
    45 FORMAT(3X:'ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)',1," ?')
    READ(NI,26) IM1, IM2, IM3
    26 FORMAT(3A2)
C
C
C
C
    POROSITY
    WRITE(NO,55)
    55 FORMAT(3X,'ENTER AQUIFER POROSITY';/,' ?')
        READ(NI,56) P
```



```
    5 7 \text { IF(P.GT.D.D.AND.P.LT.1.D) GO TO 60}
    WRITE(NO,58)
    58 FORMAT(3X,'POROSITY MUST RE GREATER THAN ZERO',
    1' AND LESS THAN ONE -- REENTER',/,' ?')
        READ(NI,56) P
        GO TO 57
C
C SEEPAGE VELOCITY
        60 WRITE(NO,65) IL,IT
        65 FORMAT(3X,'ENTER SEEPAGE VELOCITY, 'AZ,'/',AZ,/,' ?')
        READ(NI,56) V
    66 IF(V.GT.0.0) GO TO 70
        WRITE(NO,67)
        67 FORMAT(3X,'SEEPAGE VELOCITY MUST BE GREATER THAN ZERO',
        1' -- REENTER',/,' ?')
            READ(NI,56) V
            GO TO 66
C
C RETARDATION COEFFICIENT
    70 WRITE(NO,75)
    75 FORMAT(3X,'ENTER RETARDATION COEFFICIENT',/,' ?')
        READ(NI,56) RD
    76 IF(RD.GE. 1.0) GO TO 80
        WRITE(NO,77)
    77 FORMAT(3X,'RETARDATION COEFFICIENT MUST RE GREATER THAN OR',
        1' EQUAL TO ONE',/,' -- REENTER',/,' ?')
        READ(NI,56) RD
        GO TO 76
C
C DISPERSION COEFFICIENTS
    80 WRITE(NO,85) KHAR,IL,IT
    85 FORMAT(3X,'ENTER X AND ',A1,' DISPERSION COEFFICIENTS, SQ ',AZ,
```

```
    1'/',AZ,/,' ?,7')
    86 FORMAT(2F10.0)
    READ(NI,8G) DX;DY
    87 IF(DX.GT.D.D) GO TO 89
    WRITE(NO,88)
    88 FORMAT(3X;'X DISPERSION COEFFICIENT MUST BE GREATER THAN ZERO';
    1' -- REENTER',/,' ?')
    READ(NI;56) DX
    GO TO 87
    89 IF(DY.GT. 0.@) GO TO 92
    90 WRITE(NO,91) KHAR
    91 FORMAT(3X,A1;' DISPERSION COEFFICIENT MUST EE GREATER THAN ZERO',
    1' -- REENTER',/,' ?')
    READ(NI,56) DY
        GO TO 89
C
C FIRST-ORDER DECAY CONSTANT
    92 WRITE(NO,95) IT
    95 FORMAT(3X;'ENTER DECAY CONSTANT; 1/':A2;/,' ?')
        READ(NI,56) DECAY
C
C SOURCE RATE SCHEDULE
    Q(1)=0.0
    T(1)=0.0
    WRITE(NO,105) MAXRT
105 FORMAT(3X;'ENTER THE NUMBER OF SOURCE RATES (MAXIMUM @F',I4;')',/,
    16X; '\emptyset FOR STEADY-STATE SOLUTION',/,' ?')
100 READ(NI;106) N
106 FORMAT(I4)
    IF(N.LE.MAXRT) GO TO 110
    WRITE(NO,107) N,MAXRT
107 FORMAT(3X;I3;' SOURCE RATES EXCEED MAXIMUM OF', I4;' -- REENTER',/,
    1* ?')
        GO TO 100
110 CONTINUE
    IF(N.LE.0) GO TO 121
    MT =N + 1
    DO 120 I=1;N
        M=I + I
        WRITE(NO,115) I;IM1;IM2,IM3;IL;IT;IL,IT
115 FORMAT (3X,'ENTER MASS RATE ',I2,' (',3A2,')(CU ',A2,'/',
    1 A2,'/',A2;') AND TIME, (',AZ,')',',', ?,?')
        READ(NI,116) Q(M),T(M)
116 FORMAT(2F10.0)
117 IF(T(M).GT.D.D) GO TO 119
        WRITE (NO;11B)
118 FORMAT ( }3X\mathrm{ ',TIME MUST EE GREATER THAN ZERO -- REENTER',/,' ?')
        READ(NI;56) T(M)
        GO TO 117
    119 CONTINUE
    120 CONTINUE
    GO TO 124
121 WRITE(NO;122) IM1;IM2,IM3,IL,IT,IL
122 FORMAT(3X,'ENTER STEADY-STATE MASS FATE, (',3AZ,')(CU,'AZ',
```

```
        I'/',AZ;'/';AZ;')',/:' ?')
        READ(NI,56) Q(1)
        MT = 1
    124 CONTINUE
C
C COORDINATES OF THE ORSERVATION POINTS
        WRITE(NO,125) IL
    125 FORMAT (3X,'ENTER XFIRST; XLAST; DELTAX (',A2,')', %,' ?,?,?')
    READ(NI, 126) XF,XL,DELX
    126 FORMAT(3F10.D)
    DELX = ABS(DELX)
    127 IF(XF.GT.D.D.AND.DELX.LE.1.DE-DG) GO TO 132
        IF(XF.GT.Q.D) GO TO 130
        WRITE(NO:128)
    128 FORMAT (3X; XFIRST MUST RE GREATER THAN ZERO -- REENTER',/' ?')
        READ(NI,56) XF
        GO TO 127
    130 IF(XL.GT.|.0) GO TO 133
    WRITE(NO,131)
    131 FORMAT ( }3\textrm{X};\mp@subsup{}{}{\prime}\mathrm{ 'XLAST MUST RE GREATER THAN ZERO -- REENTER',/,' ?')
        READ(NI,56) XL
        GO TO 130
    132 XL = XF
    133 CONTINUE
        IF(KFLOW.EQ.2) GO TO 136
        WRITE(NO;135) IL
    135 FORMAT(3X,'ENTER YFIRST, YLAST; DELTAY (';AZ;')',/;' ?,?,?')
        READ(NI, 126) YF,YL,DELY
        DELY = ABS(DELY)
        GO TO 143
    136 WRITE(NO,137) IL
    137 FORMAT(3X,'ENTER ZFIRST; ZLAST, DELTAZ (',A2;')',/,' ?; ?,?')
        READ(NI,126) YF,YL,DELY
        DELY = ABS(DELY)
    138 IF(YF.GE.D.D.AND.DELY.LE.1.OE-DG) GO TO 142
    IF(YF.GE.D.D) GO TO 140
    WRITE (NO,139)
    139 FORMAT (3X;'ZFIRST MUST NOT BE LESS THAN ZERO -- REENTER',/,' ?')
        READ (NI;56) YF
        GO TO 138
    140 IF(YL.GT.0.D) GO TO 143
        WRITE(NO;141)
    141 FORMAT(3X;'ZLAST MUST RE GREATER THAN ZERO -- REENTER',/'' ?')
        READ(NI;56) YL
        GO TO 140
    142 YL = YF
    143 CONTINUE
C
C LIST PROBLLEM DEFINITION
    WRITE(NO,147) NPAGE
147 FORMAT(1H1,2X;'PLUME I',
    1/3X,'PAGE ',13///)
        NPAGE = NPAGE + 1
        WRITE(NO,145) (TITLE(I); I=1,30),IL,IT,V;IL,IT,DX,k゙HAR,IL,IT,DY,P
```

```
145 FORMAT(3X,30A2://,
    18X,'SEEPAGE VELOCITY, (',A2,'/',A2,') ',25X,F10.4,/,
    28X,'X DISPERSION COEFFICIENT (',A2,'**2/',A2,') ',13X,F10.4,/,
    38X,A1,' DISPERSION COEFFICIENT (',A2,'**2/',A2,') ',13X,F10.4,/,
    58X,'POROSITY ->,42X,F10.4)
        WRITE(NO,146) RD,IT,DECAY
146 FORMAT(//,8X,'RETARDATION COEFFICIENT',28X,F10.4,/,
    18X,'FIRST ORDER DECAY CONSTANT (1/';A2;')';18X;F10.4)
        IF(MT.GT.1) GO TO 160
        WRITE(NO,155) IM1sIM2,IM3,IL,IT,IL,Q(1)
155 FORMAT(//, 8X,'STEADY-STATE SOURCE RATE (',3A2,')(CU ',A2,'/',
    1A2,'/':A2;') ',F12.4)
        GO TO 171
160 WRITE(NO,165) IM1,IM2,IM3,IL,IT,IL;IT
165 FORMAT{//,8X,'SOURCE RATE SCHEDULE',/,
    123X;'Q(',3A2,')(CU ',A2,'/',A2,'/',AZ',) T(',A2,',',/1)
    DO 170 I=1,N
        M = I + 1
        WRITE(NO,166) I,Q(M),T(M)
166 FORMAT(17X,I2,10X,F10.2,6X,F1D.2)
170 CONTINUE
171 WRITE(NO,175) IL,XF,XL,DELX,KHAR,YF,KHAR,YL;KHAR;DELY
175 FORMAT(//,8X,'OBSERVATION POINTS (';A2,')',/,
    117X,'XFIRST =',F10.2,3X,'XLAST =',F10.2,3X,'DELX =',F10.4;/,
    217X,A1,'FIRST =',F10.2,3X,A1,'LAST =',F10.2,3X,'DEL',A1,' =',
    1F10.4)
180 CONTINUE
```

```
***** SECTION II -- NUMERICAL EVALUATION OF CONCENTRATION AT
```

***** SECTION II -- NUMERICAL EVALUATION OF CONCENTRATION AT
SPECIFIED GRID COORDINATES
SPECIFIED GRID COORDINATES
X-COORDINATES
X-COORDINATES
GO TO 400
GO TO 400
190 IX = 1
190 IX = 1
X(IX) = XF
X(IX) = XF
IF(DELX.LE.1.DE-D6) GO TO 220
IF(DELX.LE.1.DE-D6) GO TO 220
DIF = XL - XF
DIF = XL - XF
IF(AES(DIF).LE.1.0E-06) GO TO 220
IF(AES(DIF).LE.1.0E-06) GO TO 220
DEL = DELX
DEL = DELX
IF(DIF.LE.D.0) DEL=-DELX
IF(DIF.LE.D.0) DEL=-DELX
NPTS = ABS(DIF/DEL)
NPTS = ABS(DIF/DEL)
REM = DIF - DEL*FLOAT(NPTS)
REM = DIF - DEL*FLOAT(NPTS)
NPTS = NPTS + 1
NPTS = NPTS + 1
IF(NPTS.LE.MAXPTS) GO TO 195
IF(NPTS.LE.MAXPTS) GO TO 195
WRITE(NO, 193) NPTS,MAXPTS
WRITE(NO, 193) NPTS,MAXPTS
193 FORMAT(3X,I3,' X-ORSERVATION POINTS EXCEEDS MAXIMUM OF',I4;
193 FORMAT(3X,I3,' X-ORSERVATION POINTS EXCEEDS MAXIMUM OF',I4;
1/,3X,'USE COMMAND XC TO CHANGE COORDINATES')
1/,3X,'USE COMMAND XC TO CHANGE COORDINATES')
GO TO 400
GO TO 400
195 CONTINUE
195 CONTINUE
DO 200 IX =2,NPTS
DO 200 IX =2,NPTS
X(IX) = X(IX-1) + DEL

```
        X(IX) = X(IX-1) + DEL
```

C

```
    200 CONTINUE
    IX = NPTS
    IF(ABS(REM).LT.1.0E-06) GO TO 220
    IX = IX + I
    X(IX)= XL
    220 CONTINUE
C
C Y-COORDINATES
    JY = 1
    Y(JY) = YF
    IF(DELY.LE.1.0E-06) GO TO 240
    DIF = YL - YF
    IF(ABS(DIF).LE.1.DE-D6) GO TO 240
    DEL = DELY
    IF(DIF.LE.D.D) DEL=-DELY
    NPTS = ABS(DIF/DEL)
    REM = DIF - DEL*FLOAT(NPTS)
    NPTS = NPTS + 1
    IF(NPTS.LE.MAXPTS) GO TO 225
    WRITE(NO,223) NPTS,MAXPTS
    223 FORMAT(3X,I3,' Y- OR Z-GRSERVATION POINTS EXCEEDS MAXIMUM OF',I4,
    1/.3X,'USE COMMAND YC OR ZC TO CHANGE COORDINATES')
    GO TO 400
    225 CONTINUE
    DO 230 JY=2,NPTS
        Y(JY) = Y(JY-1) + DEL
    230 CONTINUE
        JY = NPTS
        IF(ARS(REM).LT.1.DE-D6) GO TO 240
        JY = JY + 1
        Y(JY) = YL
    240 CONTINUE
C
    DAMK = DX*DECAY*RD/(V**2)
    BETA = DX/DY
    CON1 = 1.0/(12.566371*P*((DX*DY)**D.5))
    CON2 = 1.0 + 4.0*DAMK
C
245
    DO 300 I=1,IX
        PEX = V*X(I)/DX
        DO 30D J=1,JY
            PEY = V*Y(J)/DX
            PEXY = (PEX**Z + BETA*(PEY**Z ))**0.5
            IF(MT.GT.1) GO TO 245
            B = 0.5*PEXY*(CON2**0.5)
            C=2.0*CON1*Q(1)*EXP(PEX/2.0 + ALOG(BKD(E.)))
            GO TO 260
            C = 0.0
            DO 250 K=2,MT
            PINJ = V*V*T(K)/(DX*RD)
            TAU = PINJ/(PEXY**Z)
            S=Q(K)-Q(K-1)
            U=0.25/TAU
            B = 0.5*PEXY*(CON2**0.5)
```

```
            IF (B.GT.Z0.0) GO TO 247
            WF = W(U,B)
            SUMLOG = PEX/2. D + ALOG(WF)
            TERM = EXP{SUMLOG)
            GO FO 249
                    FOR LARGE VALUES OF B USE THE THIRD ORDER APPROXIMATION
                    OF WILSON AND MILLER (1979) JOUR. HYDRAULICS DIV., ASCE,
                    VOL 105, NO HY1Z; P 1565.
                    NOTE: THE TERM EXP(PEX/2) IS INCLUDED IN THE NUMERICAL
                APPROXIMATION FOR W(U,B) TO AVOID COMPUTATIONAL DIFFICULTIES
                IN TAKING THE PRODUCT EXP(PEX/2)*W(U,B)
                    WF = WELPRD(U,B,PEX)
                TERM = WF
                    IF(WF.LE.1.0E-32) TERM=0.0
                    C = C + CON1*S*TERM
                    CONTINUE
    260 CONTINUE
            CXYT(I,J) = C
            IF(KFLOW.EQ.2) CXYT(I;J)=2.0*CXYT(I;J)
300 CONTINUE
C
C
    PRINT CONCENTRATION DISTRIBUTION
    IF(MT.EQ.1) GO TO 306
    WRITE(NO;147) NPAGE
    NPAGE = NPAGE + 1
    WRITE(NO;305) T(2):IT,IM1;IM2;IM3;IL
305 FORMAT (13X;'CONCENTRATION DISTRIBUTION AT, F10.2,
    11X,A2;'* (',3AZ;') ',//,'*'s/s'* * X('sAZ;''')
    GO TO 309
306 WRITE(NO;147) NPAGE
    NPAGE = NPAGE + 1
    WRITE(NO,307) IM1;IM2;IM3;IL
307 FORMAT (13X; 'CONCENTRATION DISTRIBUTION AT STEADY STATE',
    1'(',3AZ,') 's//,' *',/',' * X(',A2,')')
309 CONTINUE
    LIM1 = 1
    LIM2 = 7
310 IF(LIM2.GE.IX) LIM2=IX
    WRITE(NO,315) (X(L),L=LIM1,LIM2)
315 FORMAT(" *',4X;7F10.2)
    WRITE(NO,325) KHAR,IL
325 FORMAT(1X,A1;'(',A2;') *',/,9X;'*')
    DO 350 J=1;JY
    WRITE(NO;335) Y(J),(CXYT(L,J):L=LIM1,LIM2)
335 FORMAT(2X,FB.2,7F10.4)
350 CONTINUE
    IF(LIM2.EG.IX) GO TO 400
    LIMI = LIM1 + 7
    LIM2 = LIM2 + 7
    IF(MT.EQ.1) GO TO 36D
    WRITE(NO;147) NPAGE
    NPAGE = NPAGE + 1
    WRITE(NO,355) T(2);IT,IM1,IM2;IM3,IL
```

```
    355 FORMAT(7X,'CONCENTRATION DISTRIEUTION AT ',F1D.2,
    11X,A2,' (',3A2,') (CONTINUED)',//,' *',/,', * X(',A2,')')
        GO TO 370
    360 WRITE(NO,147) NPAGE
        NPAGE = NPAGE + 1
        WRITE(NO,365) IM1, IM2, IM3, IL
    365 FORMAT(7X,'CONCENTRATION DISTRIBUTION AT STEADY STATE',
    1' (',3A2,') (CONTINUED)',//,' *',/,' * X(',A2,')')
    370 CONTINUE
        GO TO 310
    400 CONTINUE
C
c
C ***** SECTION III -- PROBLEM REDEFINITION AND CONTROL OF EXECUTION
C
C
        KNTL = D
            WRITE(NO,405)
    405 FORMAT(//,3X,'ENTER NEXT COMMAND',/,3X; ' ?')
    410 READ(NI,415) NEXT
    415 FORMAT(A2,F1D.D)
C
            DO 420 I=1:16
        IF(NEXT.EQ.IC(I)) GO TO 430
    420 CONTINUE
        WRITE(NO,425)
    425 FORMAT(3X,'ERROR IN LAST COMMAND -- REENTER',/,3X,' ?')
        GO TO 410
    430 GO TO (500,510,520,530,540,540,550,560,570,580,580,590,1,
        1190,700,143),I
C
C NEW DECAY CONSTANT
    500 WRITE(NO,95) IT
    READ(NI:56) DECAY
    GO TO 400
C
c NEW SEEPAGE VELOCITY
    510 WRITE(NO;65) IL,IT
    READ(NI,56) V
    515 IF(V.GT.0.0) GO TO 400
        WRITE(NO,67)
        READ (NI,56) V
        GO TO 515
C
C NEW RETARDATION COEFFICIENT
    520 WRITE(NO,75)
    READ(NI;56) RD
    525 IF(RD.GE.1.0) GO TO 400
        WRITE(NO,77)
        READ(NI,56) RD
        GO TO 525
C
C NEW X DISPERSION COEFFICIENT
    530 WRITE(NO,531) IL,IT
```

```
    531 FORMAT(3X,'ENTER X DISPERSION COEFFICIENT, SQ ',A2,
        1'/',A2,/,' ?')
        READ(NI,56) DX
    535 IF(DX.GT.0.0) GO TO 400
        WRITE(NO,88)
        READ(NI,56) DX
        GO TO }53
C
C NEW Y OR Z DISPERSION COEFFICIENT
    540 WRITE(NO,541) KHAR,IL,IT
    541 FORMAT(3X;'ENTER ',A1,' DISPERSION COEFFICIENT, SQ ',AZ,
        1'/',A2,/,' ?')
        READ(NI,56) DY
    545 IF(DY.GT.0.0) GO TO 400
        WRITE(NO,91) KHAR
        READ (NI,56) DY
        GO TO 545
C
C NEW POROSITY
    550 WRITE(NO,55)
        READ(NI;56) P
    555 IF(P.GT.D.D.AND.P.LT.1.0) GO TO 400
        WRITE(NO,58)
        READ(NI,56) P
        GO TO 555
C
C NEW SET OF X AND Y OBSERVATIONS
    560 KNTL = 1
C
C NEW SET OF X OBSERVATIONS
    570 WRITE(NO,125) IL
        READ(NI,126) XF,XL,DELX
        DELX = ABS(DELX)
    572 IF(XF.GT.D.D.AND.DELX.LE.1.DE-D6) GO TO 574
        IF(XF.GT.D.0) GO TO 573
        WRITE(NO,128)
        READ(NI,56) XF
        GO TO 572
    573 IF(XL.GT.0.0) GO TO 575
        WRITE(NO,131)
        READ(NI,56) XL
        GO TO 573
    574 XL = XF
    575 CONTINUE
        IF(KNTL.GT.0) GO TO 580
        GO TO 400
C
C NEW SET OF Y OR Z OBSERVATIONS
    580 IF(KFLOW.EQ.2) GO TO 581
        WRITE(NO,135) IL
        READ(NI,126) YF,YL,DELY
        DELY = ARS(DELY)
        GO TO 400
    581 WRITE(NO,137) IL
```

```
    READ(NI,126) YF,YL,DELY
    DELY = ABS(DELY)
    582 IF(YF.GE.0.0.AND.DELY.LE.1.0E-06) GO TO 584
        IF(YF.GE.D.D) GO TO 583
        WRITE(NO,1397
        READ(NI,56) YF
        GO TO 582
    583 IF(YL.GT.0.0) GO TO 585
        WRITE(NO,141)
        READ(NI,56) YL
        GO TO 583
    584 YL = YF
    585 GO TO 400
C
C NEW SOURCE RATE SCHEDULE
    590 WRITE(NO,595) N
    595 FORMAT(3X;I3,' SOURCE RATES IN CURRENT SCHEDULE -- ',
        1'ENTER RATE TO BE CHANGED',/,3X;
        2'(ENTER Q TO REDEFINE ENTIRE RATE SCHEDULE)',
        3/,3X,' ?')
            READ(NI,596) NEW
    596 FORMAT(I2)
            IF(NEW.LE.D) GO TO 600
            MEW = NEW + 1
            WRITE(NO,597) NEW,IMI;IM2,IM3,IL,IT,IL,T(MEW):IT
    597 FORMAT(3X,'ENTER NEW MASS RATE',I3,' (',3AZ,')(CU ',AZ,'/',
        1AZ,'/',AZ,') FOR LAST',F1D.2,' ',AZ,/,3X,' ?')
            READ(NI,598) Q(MEW)
    59B FORMAT(FID.0)
            GO TO 400
C
C REDEFINE ENTIRE RATE SCHEDULE
    600 WRITE(NO:105) MAXRT
    605 READ(NI,106) N
    IF(N.LE.MAXRT) GO TO 610
    WRITE(NO,107) N,MAXRT
    GO TO 605
    G10 CONTINUE
    IF(N.LE.D) GO TO 630
    MT = N + 1
    DO 620 I=1,N
        M=I + 1
        WRITE(NO,115) I,IM1,IM2,IM3,IL,IT,IL,IT
        READ(NI,116) Q(M),T(M)
    617 IF(T(M).GT.D.D) GO TO 619
        WRITE(NO,118)
        READ(NI;56) T(M)
        GO TO 617
    619 CONTINUE
    620 CONTINUE
    GO TO 400
    630 WRITE(NO,122) IM1,IM2,IM3,IL,IT,IL
    READ(NI,56) Q(1)
    MT = 1
```

GO TO 400
700 STOP
END STOP END

APPENDIX D
LISTING OF UTILITY FUNCTION SUBROUTINES

FUNCTION W(U,B)
C EVALUATION OF THE HANTUSH WELL FUNCTION
C THIS VERSION HANDLES ARGUMENTS OVER THE ENTIRE RANGE REAL*B A1,AZ,FUNCTN,GAUSS, DZ
EXTERNAL FUNGTN
COMMON BF
$\mathrm{BF}=\mathrm{B}$
IF(B.GT.D.1) GO TO 200
IF(U.GT.1.0) GO TO 100

C TRANSACTIONS AMERICAN GEOPHYSICAL UNION,
$100 \mathrm{BIDLOG}=\mathrm{ALOG}(R I D(B))$
TERM1 $=$ EXP(BIDLOG + EILOG(U))
$S U M=(B * R / 4 . \theta) *(1.0 / U-1 . D /(36.0 * U * U))$
$1+((B * B / 4.0) * * 2) *(1 . \nabla /(4.0 * U)-1.0 /(4.0 * U * U))$
SUMLOG $=$ ALOG(SUM)
TERM2 $=$ EXP (SUMLOG $-U)$
$W=$ TERMI - TERMZ
RETURN
C
c
200 CONTINUE
FOR B < D. 1 USE APRROXIMATIONS PRESENTED BY
HANTUSH, M.S. AND C.E. JACOE (1955)
VOL 36, NO. 1 PP. $95-100$.
IF(U.LE.1.DE-10) GO TO 50
EQUATION 12, FOR U < 1.0
$\mathrm{CON}=\mathrm{B} * \mathrm{~B} /(4.0 * \mathrm{U})$
TERM1 $=2.0 * B K O(B)$
BIDLOG $=$ ALOG(RID(B))
TERM2 $=\operatorname{EXP}(B I D L O G+E 1 L O G(C O N))$
$E I U=\operatorname{EXP}(E 1 L O G(U))$
$S U M=0.57721566+A L O G(U)+E 1 U+(U * B * B / 16.0) *(1.0-U / 9.0)$
SUMLOG $=$ ALOG(SUM)
TERM3 $=$ EXP(SUMLOG - CON)
ω = TERM1 - TERM $2+$ TERM3
RETURN
$50 W=2.0 * B K 0(B)$
RETURN
RECIPROCAL RELATION, EQUATION 17, FOR U >1.0
FOR $0.1<\mathrm{E}<20.0$ USE NUMERICAL INTEGRATION
FOR $0.1<E<20 . \theta$ USE NUMERICAL INTEGRATION
FOR $U<B / 2, W(U, B)=2 K D(B)-\operatorname{INT}(\theta--U)$ FUNCTION
FOR U $>B / 2 W(U, B)=\operatorname{INT}(0--B * * 2 / 4 U)$ FUNCTION

```
A1 = 0.0
A2 = U
B2 = B/2.0D00
IF(U.GE.B2) A2=B2*B2/U
DZ = GAUSS(A1:A2,FUNCTN)
Z = DZ
BKDB = 2.0*BKD(B)
W = BKOB - Z
IF(U.GE.B2) W=Z
RETURN
END
```

FUNCTION FUNCTN(Z)
C INTEGRAND OF HANTUSH WELL FUNCTION REAL*B DB; $Z, A R G, F U N C T N$
COMMON BF
$\mathrm{DB}=\mathrm{BF}$
$\mathrm{ARG}=\mathrm{DLOG}(Z)+Z+\mathrm{DB} * \mathrm{DB} /(4.0 \mathrm{DD日*} \mathrm{Z})$
FUNCTN $=$ DEXP(-ARG)
RETURN
END

FUNCTION GAUSS(A,B,FUNCTN)

C
C NUMERICAL INTEGRATION BY 24 POINT GAUSS-LEGENDRE QUADRATURE C ZEROS AND WEIGHTING FACTORS ARE FROM TABLE 25.4; p916, OF C ABRAMOWITZ AND STENGUN(1966)

C REAL*B A,B,C,D,FUNCTN,GAUSS,SUM, W, Z DIMENSION Z(12),W(12)
C

DATA Z/0.064056892862065,0.191118867473616,0.315042679696163,
$10.433793507626045 ; 0.545421471388839,0.648093651936975$,
$20.740124191578554,0.820001985973902,0.886415527004401$,
$30.938274552002732,0.974728555971309,0.995187219997021 /$
DATA W/D.127938195346752,0.125837456346828,0.121670472927803, $10.115505668053725,0.107444270115965,0.097618652104113$, $20.086190161531953,0.073346481411080,0.059298584915436$, $30.044277438917419,0.028531388628933,0.012341229799987 /$
C
c
C.....SET UP INITIAL PARAMETERS
$C=(B-A) / 2.0 D 0 \square$
$D=(B+A) / 2.0 D 00$
C
C.....ACCUMULATE THE SUM IN THE 24-POINT FORMULA SUM $=0.0$ DO $5 \mathrm{~J}=1,12$

IF(Z(J).EQ.D.Ø) SUM $=$ SUM + W(J)*FUNCTN(D)
$\operatorname{IF}(Z(J) . N E .(\square . \square) S U M=S U M+W(J) *(F U N C T N(Z(J) * C+D)$
1
5 CONTINUE
C
C.....MAKE INTERVAL CORRECTION AND RETURN GAUSS = C*SUM RETURN
END

FUNCTION WELPRD (U,B,PEX)

C
C
RETURN
NO $=1$
RETURN
20 CONTINUE
continue
RETURN
WRITE DEVICE: NO=1
PAR $=(B-2.0 * U) /((4.0 * U) * * 0.5)$
IF (ABS (PAR).GT.7.5) GO TO 50
TERM1 $=(1.0-1.0 /(8.0 * B)) * E R F C(-P A R)$
TERM2 $=($ PAR $/(7.0898154 * B)) / E X P(P A R * * 2)$
$W=((1.5707963 / B) * * D .5) * E X P(-8) *($ TERM1+TERM2 $)$
WELPRD $=\operatorname{EXP}(P E X / 2) * W(U, B)$
$=((1.5707963 / 8) * * 0.5) * E X P(P E X / 2-R) *(T E R M 1+T E R M Z)$
SUMLOG $=$ ALOG(TERM1 + TERM2)
WELOG $=0.5 *(0.45158271-\operatorname{ALOG}(B))+(P E X / 2.0-B)+$ SUMLOG
IF (WELOG.LT.-72. (0) GO TO 20
WELPRD $=\operatorname{EXP}(W E L O G)$
WELPRD $=1.0 E-32$
IF (PAR.LT.D.D) GO TO 100
FOR $B>20$ AND PAR>7.5 $W(U, B)=2 K 0(B)$
$\omega=2.0 * \mathrm{R} K D\left(\mathrm{R}_{1}\right)$
WELOG $=$ PEX $/ 2.0+\operatorname{ALOG}(W)$
WELPRD $=\operatorname{EXP}($ WELOG $)$
FOR PARく-7.5 AN ASYMPTOTIC EXPANSION FOR ERFC(-PAR) IS UTILIZED
SEE SECTION 7.1 OF ABRAMOWITZ AND STEGUN (1966)
COEFLG $=$ PEX/2.0-R - PAR*PAR - ALOG(-PAR) - 0.5*ALOG(2.0*E)
$1+\operatorname{ALOG}(1.0-0.1250 / B)$
IF (COEFLG.LT.-72. 日) GO TO 200
$Z=-P A R$
$F Z=2.0000 * Z * Z$
SUM $=1.0 \mathrm{DOD}$
TERMO $=1.0 \mathrm{DOD}$
DO $120 \quad I=2,50$
$D I=I$
TERMI $=-$ TERMO*(2.0DOD*DI-3.ODDO) $/ F Z$
IF(DABS(TERMI).GT.DABS(TERMO)) GO TO 150
SUM $=$ SUM + TERMI
TEST $=$ TERMI/SUM
IF (ABS (TEST).LT. 1. DE-16) GO TO 150
TERMO $=$ TERMI
120 CONTINUE
WRITE (NO, 500)
500 FORMAT $6 \times$, $^{\prime * * *}$ WARNING -- ASYMPTOTIC APPROXIMATION FOR ERFC IN', $/$,
1 6X," FUNCTION WELPRD DID NOT CONVERGE WITH,, 1 ,

```
2 6x,'
    150 SUMLOG = DLOG(SUM)
    WELOG = COEFLG + SUMLOG
    WELPPRD = EXP(WELOG)
    RETURN
    200 CONTINUE
C FOR LARGE NEGATIVE VALUES OF PAR, ERFC(-PAR) -> D
    WELPRD = 1.0E-32
    RETURN
    END
```

```
    FUNCTION BIO(Z)
    EVALUATION OF THE NATURAL LOG OF A MODIFIED BESSEL
    FUNCTION OF THE FIRST KIND OF ORDER ZERO
    POLYNOMIAL APPROXIMATIONS ARE USED FOR ID(Z)
    SEE SECTION 9.B OF ABRAMOWITZ AND STEGUN (1966)
    DIMENSION A(9)
    DATA A/0.9189385,4.32105045,6.09540829,6.45308739,4.6926023,
    13.88357842,3.63608323,4.10583047,5.540702353/
    NO = 1
    IF(Z.LE.0.0) GO TO 200
    T = Z/3.75
    IF(Z.GT.3.75) GO TO 100
    T2 = T*T
    T4 = T2*T2
    T6 = T2*T4
    T8 = T2*TG
    T10 = T2*T8
    T12 = T2*T10
    BID = 1.0 + 3.5156229*T2 + 3.0899424*T4 + 1.2067492*T6
    1+0.2659732*T8 + 0.0360768*T10+0.0045813*T12
    RETURN
100 CONTINUE
    SUM = 0.D
    DO 150 I=1,9
    SIGN = (-1.0)**(I+1)
    IF(I.EQ.2) SIGN=1.0
    ARG = -1.D*A(I) - D.5*ALOG(Z) - FLOAT(I-1)*ALOG(T)
    SUM = SUM + SIGN*EXP(ARG)
150 CONTINUE
    BIDLOG = ALOG(SUM) + Z
    EID = EXP(EIDLOG)
    RETURN
200 CONTINUE
    IF(Z.LT.D.0) GO TO 300
    R.ID = 1.D
    RETURN
300 WRITE(NO,305) Z
305 FORMAT(6X;'ARGUEMENT OF RESSEL FUNCTION ID(Z) IS NEGATIVE',/,
    16X,'Z = ',E12.6,' -- PROGRAM TERMINATED')
    STOP
    END
```

```
            FUNCTION BKD(Z)
C EVALUATION OF MODIFIED RESSEL FUNTION OF SECOND KIND
C OF ORDER ZERO
C POLYNOMIAL APPROXIMATIONS ARE USED FOR KD(Z)
C SEE SECTION 9.8 OF ABRAMOWITZ AND STEGUN (1966)
    NO = 1
    IF(Z.LE.0.0) GO TO 200
    T = Z/2.D
    T2 = T*T
    T4 = T2*T2
    T6 =T2*T4
    T8 = T2*T6
    T10 = T2*T8
    T12 = T2*T10
    IF(Z.GT.2.0) GO TO 100
    BKD = -1.0*ALOG(T)*BI0(Z) - 0.57721566
    1 +0.42278420*T2 + 0.23069756*T4 + 0.03488590*T6
    2 + 0.00262698*T8 + 0.00010750*T10+ 0.0740E-04*T12
    RETURN
100 CONTINUE
    SUM = (1.25331414-0.07832358/T + 0.02189568/T2
    1-0.01062446/(T*T2) + 0.00587872/T4
    2 - 0.00251540/(T*T4) + 0.00053208/T6)
    BKOLOG = ALOG(SUM) - Z - 0.5*ALOG(Z)
    BKD = EXP(BKOLOG)
    RETURN
200 CONTINUE
    WRITE(NO,205) Z
205 FORMAT(6X,'ARGUEMENT OF RESSEL FUNCTION KD(Z) IS LESS THAN',
    1' OR EQUAL TO ZERO',/,6X,'Z = ',E12.6,' -- PROGRAM TERMINATED')
    STOP
    END
```

```
        FUNCTION ERFC(Z)
    C RATIONAL APPROXIMATION OF THE COMPLIMENTARY ERROR FUNCTION
    C SEE SECTION 7.1 OF ABRAMOWITZ AND STEGUN (1966)
        IF(ABS(Z).GT.7.5) GO TO 3D
C THE FOLLOWING IDENTITIES ARE USED TO HANDLE NEGATIVE ARGUMENTS
C ERFC( Z) = 1-ERF(Z)
            ERFC(-Z)=-ERFC(Z)=1 + ERF(Z)
        X = Z
C NEGATIVE ARGUMENTS
        IF (Z.LT.D.D) X = -Z
        ERFC = 1.0/((1.0 + 0.070523*X + 0.042282*(X**2)
        1 + 0.009270*(X**3) + 0.000152*(X**4)
        2 + 0.000276*(X**5) + 0.000043*(X**6))**16)
        NOTE: 2-ERF(X) = ERFC(-X) = ERFC(Z) FOR Z<0
        IF (Z.LT.D.0) ERFC = 2.0 - ERFC
        RETURN
C
C
    FOR 2>7.5; ERFC(Z)<2.32E-22 AND IS SET TO D
30 ERFC = 0.0
    RETURN
    END
```

	FUNCTION EILOG(Z)
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	EVALUATION OF THE NATURAL LOG OF THE EXPONENTIAL INTEGRAL
	POLYNOMIAL APPROXIMATIONS ARE USED FOR Ei ${ }^{\text {(Z) }}$
	SEE SECTION 5.1 OF ABRAMOWITZ AND STEGUN (1966)
	NO $=1$
	IF(Z.LE.D.0) GO TO 200
	Z2 $=2 * 2$
	$23=2 * 22$
	IF(Z.GT.1.0) GO TO 100
C	ARGUEMENTS LESS THAN UNITY
	$E 1=-0.57721566+0.99999193 * Z-0.24991055 * 22$
	$1+0.05519968 * 23-0.00976004 * 22 * 22+0.00107857 * 22 * 23$
	$2-\mathrm{ALOG}(\mathrm{Z})$
	EILOG $=$ ALOG(E1)
	RETURN
100	CONTINUE
C	ARGUEMENTS GREATER THAN UNITY
	E1LOG $=$ ALOG $22 * 22+8.5733287401 * 23+18.0590169730 * 22$
	$1+8.6347608925 * Z+0.2677737343$
	$2-A L O G(Z 2 * 22+9.5733223454 * 23+25.6329561486 * 22$
	$3+21.0996530827 * Z+3.9584969228$
	$4-\operatorname{ALOG}(\mathrm{Z})-\mathrm{Z}$
	E1 $=$ EXP(EILOG)
	RETURN
200	WRITE(NO, 205) Z
205	FORMAT (6X;'ARGUEMENT OF EXPONENTIAL INTEGRAL IS LESS THAN'
	1' OR EQUAL TO ZERO', $/, 6 \mathrm{X}, \mathrm{\prime} \mathrm{Z}=$ ',E12.6,3X,' -- PROGRAM',
	2' TERMINATED')
	STOP
	END

APPENDIX E
 EXAMPLE PROBLEMS

Abstract

The two example problems presented in the following pages are discussed in Section II of this report. The first demonstrates the application of Program PLUME to a continuous source of contamination. The second example approximates an instantaneous source using the principal of superposition in time as discussed in Section I.


```
    ENTER TITLE
?HEXAVALENT CHROMIUM PLUME
    ENTER COORDINATE SYSTEM
        XY FOR VERTICALLY-AVERAGED SOLUTION
        XZ FOR HORIZONTALLY-AVERAGED SOLUTION
?XY
    ENTER UNITS FOR LENGTH (2 CHARACTERS)
? M
    ENTER UNITS FOR TIME (2 CHARACTERS)
?DY
    ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)
?MG/L
    ENTER AQUIFER POROSITY
?0.35
    ENTER SEEPAGE VELOCITY, M/DY
?0.366
    ENTER RETARDATION COEFFICIENT
?1.0
    ENTER X AND Y DISPERSION COEFFICIENTS, SQ M/DY
?,77.79,1.56
    ENTER DECAY CONSTANT, 1/DY
?0.0
    ENTER THE NUMBER OF SOURCE RATES (MAXIMUM |F 20)
        \square FOR STEADY-STATE SOLUTION
71
    ENTER MASS RATE 1 (MG/L )(CU M/DY/ M) AND TIME; (DY)
?,?704.:2800.
    ENTER XFIRST; XLAST, DELTAX ( M)
?:?,?200.,1200.,200.
    ENTER YFIRST: YLAST, DELTAY ( M)
?,?,?150.,-150.,50.
```

```
PLUME &
```

```
HEXAVALENT CHROMIUM PLUME
SEEPAGE VELOCITY, ( M/DY)
X DISPERSION COEFFICIENT ( M**2/DY)
    .3660
7.7900
Y DISPERSION COEFFICIENT ( M**2/DY)
1.5600
POROSITY
    . 3500
RETARDATION COEFFICIENT
1.0000
FIRST ORDER DECAY CONSTANT (1/DY)
0.0000
SOURCE RATE SCHEDULE
    Q(MG/L )(CU M/DY/ M) T(DY)
1 704.00 2800.00
```

```
OBSERUATION POINTS ( M)
```

OBSERUATION POINTS (M)
XFIRST = 200.00 XLAST = 1200.00
XFIRST = 200.00 XLAST = 1200.00
YFIRST = 150.00 YLAST = -150.00 DELY = 50.0000
YFIRST = 150.00 YLAST = -150.00 DELY = 50.0000
DELX = 200.0000

```
    DELX = 200.0000
```

ENTER NEXT COMMAND
?RN

PAGE 3

$\left.\underset{*}{*} \quad X^{(} \quad M\right)$	103.59	118.59	133.59	148.59	163.59
Y(M) *					
20.00*	. 0977	. 1036	. 1057	. 1035	. 0975
10.00	. 1115	. 1183	. 1206	. 1181	. 1113
0.00	. 1165	. 1235	. 1259	. 1234	.1163

[^0]

```
    ENTER TITLE
?ACCIDENTAL HEXAVALENT CHROMIUM SPILL
    ENTER COORDINATE SYSTEM
        XY FOR VERTI CALLY-AVERAGED SOLUTION
        XZ FOR HORIZONTALLY-AVERAGED SOLUTION
?XY
    ENTER UNITS FOR LENGTH (2 CHARACTERS)
? M
    ENTER UNITS FOR TIME (2 CHARACTERS)
?DY
    ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)
?MG/L
    ENTER AQUIFER POROSITY
?0. 35
    ENTER SEEPAGE VELOCITY: M/DY
?0.366
    ENTER RETARDATION COEFFICIENT
?1.0
    ENTER X AND Y DISPERSION COEFFICIENTS; 5Q M/DY
7,77.79,1.56
    ENTER DECAY CONSTANT, 1/DY
70.0
    ENTER THE NUMBER OF SOURCE RATES (MAXIMUM 0F 20)
        0 FOR STEADY-STATE SOLUTION
?2
ENTER MASS RATE 1 (MG/L ) (CU M/DY/ M) AND TIMEs (DY) ?,?704.3365.
ENTER MASS RATE 2 (MG/L ) (CU M/DY/ M) AND TIME, (DY) ?,? 0.3364.
ENTER XFIRST; XLAST, DELTAX ( M)
7, 7, ?73.59,193.59,30.
ENTER YFIRST; YLAST, DELTAY (M)
?,?,?20.,0.,10.
```

PLUME I PAGE 1

ACCIDENTAL HEXAVALENT CHROMIUM SPILL

```
SEEPAGE VELOCITY, ( M/DY) . 3660
X DISPERSION GOEFFICIENT ( M**Z/DY)
Y DISPERSION COEFFICIENT ( M**2/DY)
7.7900
1.5600
POROSITY . 3500
RETARDATION COEFFICIENT 1.0000
FIRST ORDER DECAY CONSTANT (1/DY) 0.0000
```

SOURCE RATE SCHEDULE
Q(MG/L $)(C U . M / D Y / M) T(D Y) ~$
$1 \quad 704.00 \quad 365.00$

```
OBSERVATION POINTS ( M)
    XFIRST = 73.59 XLAST = 193.59 DELX = 30.0000
    YFIRST = 20.00 YLAST = 0.00 DELY = 10.0000
```

ENTER NEXT COMMAND
? RN
plume I
PAEE 2

1

CONCENTRATION DISTRIBUTION AT
365.00 DY (MG/L)
*

$* X(M)$.				
$Y(M) *$	73.59	103.59	133.59	163.59	193.59
20.00					
10.00	.0771	.0977	.1057	.0975	.0768
0.00	.0919	.1115	.1206	.1113	.0876
	.1165	.1259	.1163	.0916	

ENTER NEXT COMMAND

? XC
ENTER XFIRST, XLAST, DELTAX (M)
?,?,?103.59,163.59,15.

ENTER NEXT COMMAND
?RN

[^0]: ENTER NEXT COMMAND ?DN
 STOP

