
FINAL REPORT

DEVELOPMENT OF CHEMICAL MEASUREMENTS USING MICROELECTRODES

Principal Investigator:

Arland H. Johannes
School of Chemical Engineering

Oklahoma State University
Stillwater, OK 74078-0537

For the Period
July 1, 1986 - June 30, 1987

Submitted to:

University Center for Water Research
Oklahoma State University

July, 1987

Chapter

TABLE OF CONTENTS

Page

I.. INTRODUCTION.. 1.

II. LITERATURE REVIEW.............................. j

[<Iicroelectrodes. . . • • . . . • . • • • . . • 3
Past Studies Using Microelectrodes and
lts Applications.......................... oj

III. CONSTRUCTION OF MICROELECTRODES................ 9

IV. COMPUTERIZED MEASUREMENT SySTEM.....•....•..•... 13

Real Time Definition...................... L3
Real Time vs Batch Signal Processing...... L4
Structure of Real Time System............. 15

Ari thmetic Unit....................... 15
Control Unit.......................... 15
Memory Unit........................... 16
Input/Output Interface................ L6

Selection and Justification of Computer
Language. • • • L6

J. INTERFACING FOR DATA ACQUISITION:
SELECTION AND JUSTIFICATION.................... 19

Analog/Digital Converters•...........
Digital/Digital Converter•............
RS-232 Sel'ial Port•....•
IEEE-4BB Parallel Port .

20
20
21

'JI. EXPERIMENTAL SySTEM............................ 25

VII. OPERATION OF THE SySTEM........................ 29

Equipment Used............................ 29
Main Control Loop......................... .l 0

Command Register................. . . • . 32
Status Register.. 33
Data-In Register..................... 36

v

Data-Out Register.................... 37
Inner Control Loop........................ 39

Polarographic Oxygen Measurement..... 39
Characteristics of Oxygen Electrodes. 42
Calibration. 43

Laboratory Microprobing................... 44

VIII. OVERVIEW OF THE MICROPOSITIONERS PROGRAM....... 49
Set Digital Port for Output............... ~O

Write Digital Output Immed~ate............ ~l

IX. CONCLUSIONS AND RECOMMENDATIONS................ ~3

X. SUGGESTED APPLICATIONS......................... ~5

A SELECTED BIBLIOGRAPHY............................... ~7

APPENDIXES. ~ 9

APPENDIX A - IEEE 488 CONTROLLER DRIVERS......... tiO

APPENDIX B - SINGLE OPERATION COMMANDS........... b3

APPENDIX C - MICROPROBE MAINTENANCE.............. 64

APPENDIX D THE DIFFUSION EQUATIONS . 65

APPENDIX E - LISTING OF PROGRAMS................. 68

vi

Figure

LIST OF FIGURES

Page

1. The Oxygen Microelectrode...................... 11

2. Three Stages in the Preparation of the
11icroelectrodes. 12

3. The Experimental system........................ 27

4. Screw Terminal for AID Converter............... 31

~. Command Register Bit Functions................. 33

6. Command and Legal Modifiers.................... 34

7. Status Register Bit Functions.................. 35

8. Register Functions and Addresses............... 38

9. Characteristic Curve........................... 40

10. Standard Curve................................. 41

11. Flow Chamber................................... 45

12. Microprobe Measurement of Dissolved Oxygen
Concentration................................ 47

vi-i

CHAPTER I

INTRODUCTION

Measurement of chemical concentration in extremely thin

biological films (membranes, slimes, etc.) is difficult and

current methods are crude. One of the difficulties for

direct investigations of these slimes is their thinness,

which is on the order of microns. Also, the thickness of

che boundary layer covering these slimes is found to be

excremely thin even at high Reynolds number.

A delicate balance exists in biological systems between

che biomass, required nutrients and oxygen concentrations.

New biochemical and biomass applications require precise

measurements of chemical concentrations on a microscale.

Microelectrodes are highly desirable in these areas of

applications since their extremely small tip size (0.5-5

microns) does not damage the cells in the bio-mass. Such

minuce amounts of biomass are required for sampling that it

does not alter the state of the system. The other

advancages of these microprobes include; freedom from

effects due to flow, stirring or mechanical pressure. The

microprobe is also capable of measuring very small

concentrations. Past investigations involved the use of

chese microelectrodes to measure mass transfer coefficients

1

~n biological slimes. Different types of microelectrodes.

such as. pH. carbon-dioxide. ammonia. sodium and potassium

microelectrodes have recently become commercially available.

rhe main disadvantage of micro-electrodes is the extreme

fragility due to the small tip size (generally 0.5 to 5

microns). Proper handling and careful storage of the probe

are essential for extended probe life. Most microprobes are

oroken due to imprecise positioning in the sample.

The single greatest weakness of all the past studies

utilizing microelectrodes has been, not knowing where

~he tip is with respect to the reference point. film surface

and the underlying support surface. These studies were

oased on a very limited number of measurements and did not

measure concentrations as a function of position in the

slime due to extreme difficulty of repositioning ~he

electrode for each measurement.

The objective of the present research work is to solve

~his problem by designing and building a real-t~me compu~er

con~rolled micropositioning system. The system was

controlled by a Texas Instrument professional microcomputer

using sta~e of the art micropositioners. This system has

oeen built and tested. The programs are designed in C and

Basic languages. The following contains a deta~led

description of the system, how it was developed and built,

~ts important features and recommendations for future work.

2

CHAPTER II

LITERATURE REVIEW

Microelectrodes

The use of microelectrodes is steadily finding

lncreasing areas of application in biological and medical

research (1) and several areas of chemical engineering, such

as study of mass transfer through gas-liquid interface.

These devices measure the chemical activity instead of

concentration of ionic species. This is important since

ciological phenomena are functions of ionic activity, and in

a biological system there are significant ion-complexing and

lon-association phenomena (2). This measurement is

accomplished simply and quickly with few interferences from

other species. There is also the unique potential for

making measurements in living system in-vivo under

representative conditions. If the tip diameter is

sufficiently small, entry into a cell causes negligible

lnjury thus the activity should closely approximate that of

the undisturbed system.

The first ion selective electrode, a pH electrode,

lnvented by Cremer in 1906 was a solid state unit based on

antimony. In the 1920s glass electrodes filled with an

3

electrolyte for measuring conductivity were in common use.

However these electrodes needed a high-input-impedance

amplifier. In 1953, Dowben and Rose (3) invented a metal

tilled microelectrode that satisfied the need for an

electrode of low impedance. A glass "wetting" metal, an

alloy of gallium and indium, was drawn lnto a glass

microcapillary. This microelectrode was sturdier than

saline filled electrodes of comparable size. Based on this

concept, Whalen et al. (4) developed the first oxygen

microelectrode in 1967.

Different types of microelectrodes are now available

trom private and commercial sources. The polarographic type

microelectrodes, which are described in the literature (3),

are currently made by Nair (4) of the Cleveland Research

lnstitute. Many modifications can be made in the probe,

primarily dealing with the tip design and length of the

recess.

Past Studies Using Microelectrodes And

Its Applications

rhe microprobe is used in physiologlc research for

measuring intracellular oxygen (p02'. If the diameter of

che tip is sufficiently small, this can be done without

damaging the cell, or interfering with the blood supply.

rhus the activity measured closely approximates an

undisturbed system. In-vivo measurement of pO~ in brain,

neart, and skeletal muscle have shown that p02 normally

4

fluctuates with time and the cell P02 is lower than that of

the venous outflow (5). The oxygen microelectrode was also

adapted as a hypodermic needle p02 electrode (6). It is

advantageous in many situations to use a stainless steel

needle as the anode in the system, rather than having a

separate anode and a cathode. However, the needle causes

tissue damage due to its large tip size. Another adaptation

of the oxygen micro electrode has been as a part of flow

through p02 sensor which is easy to use and has excellent

~ong term stability and eliminates clotting problems (7).

A membrane-covered, platinum, polarographic

microelectrode has been used for an amperometric assay of

dissolved oxygen in marine sediments (8). The oxygen level

of marine sediments may be a limiting factor for the Benthic

community. This type of information allows a more complete

characterization of the Benthic community. Oxygen profiles

of the sediment were recorded during a light-dark cycle.

These profiles were used to est~mate the rate of oxygen

production and consumption, and to calculate the apparent

diffusion coefficients for oxygen in the sediment. In

general, the depth of oxygen penetration was limited to 1 ­

~.5 mm. The depth of oxygen production was related to the

rate at which oxygen is consumed in the sediment (9).

Oxygen transport into the deeper layer (5-10cmJ was mainly a

function of macrofaunal activity such as by burrowing

animals(ie., clams, flounders, etc).

Microbial slimes are found in natural waters affecting

5

private, recreational, municipal and potable water use.

Fixed film reactors utilize microblal slimes for biologlcal

waste treatment of municipal and industrial waste.

Microbial slime growth is often undesirable and has adverse

effects on systems, such as, industrial cooling towers or

water distribution systems. Therefore, a better

understanding of the mass transfer of oxygen into the slime

system can lead to improved design and control of microbial

systems.

The oxygen probe was first applied to environmental

engineering applications in 1968 when Whalen et al. (10)

measured dissolved oxygen profiles in laboratory grown

slimes. Additional work was performed with slimes to

determine the respiration rate and diffusivity of oxygen

Ill, 12). oxygen profiles for slimes under natural stream

conditions as well as profiles for trickling filter slimes

were determined (13, 14, 15). Oxygen profiles were produced

oy changing the illumination of the sllmes. thereby

examining the effect of photosynthesis on the oxygen

production.

rhe microprobe is also used to characterize oxygen

transfer into activated sludge flow (16) and into mycelial

oellets (17). A study was also done to test the feasibility

of using the microprobe as an assaying tool for trace

quantities of toxic chemicals (18). The chemicals used for

this study were phenol, potassium cyanide and copper

sulphate. It was indicated by the results that the

6

respiratory and the photosynthetic functions of Chlorella

vulgaris (green algae) were not discernably effected by

~race concentrations of these toxic chemical during short

~erm exposure of these subs~ances. However, chronic effects

of long term exposure to trace concentrations was not

studied.

The survey of literature clearly indicates that:

1. The techniques used in the past are no~ sophistica~ed

enough for measuring slime concen~ra~ions at very low

dep~hs. Whalen et al. (10) tried to locate the slime

surface and the underlying base within a distance of two

microns from the base by a trial and error procedure.

since the resolution of the movement of the probe was

much h~gher (25 microns).

~. Previous studies involved simulating a system and then

proposing a mathema~ical model to suit the system. No

real-time measurements were made. Precision was

generally poor. According to Bungay and Harold (19)

greater accuracy can be obtained by specifying small

error tolerances and by taking more layers and closer

slices of slimes which is only possible through a

computer controlled system.

J. There is a need for a more sophisticated computer

controlled system to make accurate real-time

measurements. Bicher and Knisley (20) measured brain

~issue reoxygenation time manually with a

micromanipulator (in 10 microns steps) using a

7

ultramicro oxygen electrode. The type of accuracy

needed in such measurements which is in the order of 1 ­

2 microns can be obtained through a computer controlled

system.

8

CHAPTER III

CONSTRUCTION OF MICROELECTROOES

The type of microelectrode shown in Figure I is made

oy filling a glass capillary tube with Wood's metal and

pulling it in a pipette puller.

About 5g of wood's metal, with a melting range of 73 ­

75 0 C, is melted on a hot plate and mixed with 0.3 -0.5g of

precipitated gold powder. An initial heating of 3000 C forms

an alloy. This alloy remains bright and exposed to air for

several days, and requires aqua regia to dissolve it. Yet,

lt adheres to glass as well as or better than, the wood's

metal by itself. There are three stages involved in

preparation of the microelectrodes. These are illustrated

ln Figure 2. In stage one, a glass capillary tube (0.9 rnm

00 - 0.4 rnm IO) about 4 inches long is filled by suction to

~bout half its length with the molten alloy. The suction is

applied by using the syringe fitted with vinyl tubing which

fits snugly over the capillary tube. In stage two, the

glass capillary tube is placed in a pipette puller with the

tOp edge of the metal at the top of the heating element.

The glass capillary is pulled out to a tip of I -2 microns.

Usually, the metal does not extend all the way to the tip.

In stage three, the base end of the capillary is heated, and

9

chen a wire (usually iridium 0.2 rom 00, crimped in a Burndy

contact (Burndy corp., Norwalk, ConnecticutJ. is inserted

~nto the metal alloy. The tip is warmed again over the hot

plate to force the metal towards the tip, resulting in an

electrode having a recess of 10-30 microns at the tip. The

electrode is placed in a gold plating solution for several

minutes and the metal in the recess is electroplated with a

Layer of gold, usin9 0.1 to 0.5 volts. For an electrode of

2 to 3 microns, the plating time is 30 to 45 seconds. The

plating solucion is removed by allowing the electrode to

stand in distilled wacer for several hours, then for two

nours in 95% ethanol. Finally, the eleccrode tip is placed

~n collod~on for 5-10 minutes. Collodion improves the

performance of recessed oxygen electrodes.

The advantages of using such microelectrodes are listed

oelow:

~. They have a rapid response time.

2. Similar calibration curves and current-voltage placeau

relationships are obtained in different media.

3. They show no effect of stirring. This is attributed to

a scagnant layer, a few microns thick, around the

electrode tip. Since the electrodes (cathodes) are small

chey cannot see beyond this stagnant layer.

4. They show little ageing or poisoning by the microbial

system.

10

Figure 1. The Oxygen Microe1ectrode

11

THDim \'l'1 f!t!('l IN' Dutm1DAIf!ON OF 1JIU"tllaw;; t,)1AIJW u (I~lUWUI· UlIl

MK!OElliTRODE

12

•

SI'AGE 1

Sl'AGE 2

STAGE 3

l~

......-
Source: Dowben., R. M. and J. E. Rose

"A Metal-Filled Microelectrod~,"
Science (1953).

Figure 2. Three Stages in the Prep­
aration of Microelectrodes.

CHAPTER IV

COMPUTERIZED MEASUREMENT SYSTEM

A computerized measurement system can collect

lnformation and process it efficiently with the least effort

on the part of the operator. Careful planning is the key to

ge~ maximum utilization ou~ of a computerized measurement

system. First, the following must be determined:

1. How often to sample the data signal and with what

resolution.

2. Choose what computations the computer will perform on­

line,

3. Decide what information to process in real-time and

what measurements to save for later processing.

Real Time Definition

The term applies to the use of a computer in conjuction

with some external "process". The object of this

lnterconnection is to obtain information from the process by

monitoring its operation through measurement of important

variables. It is also used to operate in some desired

fashion and to control the way in which it operates based on

~he information previously acquired. For the computer to

accomplish these objectives, its operations have to be

13

carefully sequenced in time. This is called "Real-Time".

It implies that the computer has the ability to respond to

stimuli from the process in a timely fashion, i.e.,

sufficiently fast to accommodate the needs of the process.

For example, if some emergency conditions arise in the

orocess and is signalled to the computer, the computer must

oe capable of reacting to the process requirements fast

enough to handle.the emergency. The idea of real-time

response requires careful attention in the selection of the

computer and in designing the total real-time system.

A common feature of the computer system involves the

physical means of connecting the process to the computer.

The measurement equipment used to connect the physical

process to a computer is called a "computer Interface".

Every real-time system is a unique creation. Hence

attention needs to be paid to the structure of the computer

system, to the interface, and to the programming. The other

term used commonly in place of "Real-Time" computing is "on­

Line" computing.

~eal Time vs Batch Signal Processing

Any result used for feedback during a measurement

session must be calculated in real-time. These results

might be used in experimental control or perhaps provide a

visual display as the data is being collected.

Alternatively if the data is not needed for feedback, it

must be saved for later analysis.

14

l~

In real-time the data processing that occurs, reduces

the information content in signal and thus precludes some

type of later analysis. Saving raw data for batch

orocessing can therefore allow greater flexibility, and can

possibly save rewriting a real-time data collection program,

whenever a new type of data analysis is desired.

The second major advantage of batch processing is the

ability to perform computations that require more time than

available in real-time.

The advantages of real-time data processing are also

two-fold. First, the amount of data that needs to be

printed or saved on mass storage devices is greatly reduced.

The second advantage is that it does not have to be done

Later.

Normally, any measurement situation with more than

1,000,000 data values per hour must be considered for real­

time computing.

Structure of Real Time Systems

Any digital computer is composed of 4 sub units:

L. Arithmetic unit: It contains all the hardware necessary

~o carry out arithmetic and logic commands. All the

components in the computer are constantly under the

supervision of the control units.

2. Control units: This part of the computer is

responsible for reading a program from the memory,

~nterpreting it and causing appropriate action to take

16

place.

J. Memory unit: This is used for the storage of the data

and the computer program itself. Normally the control

unit causes a sequence of program statements stored in a

consecutive memory to be executed.

4. Input/Output Interface: The I/O interface is

necessary for the computer to communicate with all of

~ts peripheral equipment. The interface generally

consists of set of bi-directional data lines and control

lines, usually referred to as buses, and the logic

necessary to detect and respond to external "events".

These events usually take the form of a request for some

kind of action on the part of the computer which than

would have to interrupt its normal processing. The

ability to respond to the external "interrupt" is a

requirement for the computer. It is this capability

that allows the real-time computer to keep track of

time, independent of its normal operations, and to watch

multiple processes, each with a different set of

commands which must be serviced by the computer. As

with the other three computer units, the I/O interface

operations are coordinated by the control unit.

selection And Justification of

Computer Language

fORTRAN and BASIC are two major types of high level

computer languages. FORTRAN is a computer based language,

meaning that a FORTRAN source program must be translated

into a series of steps involving the computer itself before

execution can take place. These steps are:

l. The FORTRAN program must be compiled, i.e., read into

the computer where the comp~ler converts each high level

statement into a correct sequence of assembly language

statement,

2. The assembly language program is then converted to

machine language in the computer using the machine

assembler, and

3. The machine language program is loaded and executed

under the supervision of the operating system.

BASIC, by contrast, usually is an interpreter based

language. Compiler versions of BASIC also exist. This means

that the sequence of statements constituting a BASIC program

~s read into the computer along with the BASIC interpreter

program and the operating system. The interpreter treats

the basic program source statements as a set of data. In

executing the program, it proceeds to look at each

statement, interpret it as to specific functions, and call

subroutines to carry out the functions. Hence a BASIC

program does not become a executing program. Each time a

statement is executed, it must be interpreted as if it were

the first time. The operating characteristics of a high

~evel language depend significantly on whether it is

compiler or interpreter based. BASIC language programs run

17

much slower than the FORTRAN because of the extra time

required to interpret. On the other hand the basic program

can be modified on line, simply by typing in any desired

changes and rerunning the program; whereas the FORTRAN

9rogram must have the changes edited in, then recompiled,

reassembled, and reloaded before rerunning. BASIC has

advantages for situations where the programs are developed

continuously. FORTRAN has advantages where a fixed program

once developed will be used for long periods of time.

In general, both programming languages require more

memory for execution than does an equivalent program written

~n assembly language. Assembly language requires four times

~ess memory than the programs generated by FORTRAN compiler,

and will also execute faster. Inspite of such advantages of

assembly language, high level languages are preferred

oecause they simplify the task of programing, and make

Drograming documentation and restructuring easier.

In the present work two high level languages are used ­

C and BASIC. Though C does not generate code as fast or

memory efficient as assembly language, it is more elegant

and powerful than other high level languages like FORTRAN or

PASCAL. Another advantage of using C language is, it has

90werful Input/Output functions which make real-time

computing small and maneauverable.

18

CHAPTER V

INTERFACING FOR DATA ACQUISITION:

SELECTION AND JUSTIFICATION

Generally the data may be acquired using either the

main frame computer, minicomputer or microcomputer. The

experiences that the people had in the past using

minicomputers and mainframe were generally very

discouraging. The basic reasons why microcomputers are

~mportant for data acquisition are as follows:

1. Minicomputers and Mainframes must be shared by more than

one person. But in data acquisition it is crucial to

have the computer's attention when the data is ready.

2. The main frame is not located in the laboratory. Thus

in data acquisition contexts, there is a communication

cottle neck created by the data transmission.

3. There is no common standard for interfacing laboratory

~nstruments on large computers.

Interfacing for data acquisit~on may be achieved in two

ways:

i. Using Analog to Digital converters.

2. Using Digital/Digital converters.

The important features and limitations of each are

discussed briefly.

19

Analog/Digital Converters

The least expensive way to automate a laboratory is

with an analog to digital converter, wh~ch converts analog

signals to digital signals and vice versa. However, it has

the following limitations:

1. An A/D converter samples only one voltage source at a

~ime. AiD converter maybe acceptable, but often the

~ime lag is sufficient to make the data hopelessly

~mprecise.

2. A/D converters are slow (the maximum sampling rate on

most "high speed" A/D is 100 kHz). This means that we

cannot track a transient of greater than approximately

20 kHz. But the scientific data acquisition requires a~

least a few megahertz.

3. In A/D converters the boards are expensive. The

linearity is not very good. A 12 bit board may have a

resolution of only 7 or 8 bits.

4. The most important is that the AiD converters are

very susceptible to noise in the laboratory. This may

not give the level of noise immun~ty required in a

laboratory environment.

Digital/Digital Converters

A D/D converter can communicate directly with a

computer because both are digital devices. The digital to

analog convertion step is not required in this type of

20

21

communication. This makes the DID converter faster than the

AiD converter.

The speed of data transfer is important because it

determines how quickly the instrument can repeat an

analysis.

DID convertors are available in two types: 1) Serial

Port. which transfers information one bit at a time. and 2)

Parallel Port. which transfers one word at a time.

RS-232 Serial Port

The most common serial port is an RS-232C interface.

Its disadvantages are as follows.

1. It is not a standard interface.

2. There are two ends to an RS-232 interface: The data

terminal equipment end and the data communication end.

Often the two instruments hooked together are configured

as DTEs (data terminal equipments).

3. The handshaking provided is on the level of whole

messages only. The interface does not verify that the

data has been received before proceeding.

4. It is very noisy.

~. It can connect only two devices together.

o. RS-232 is slow since it sends only one bit at a

time.

1. For multiple data sources, more than one RS-232C port

1S required on the computer making it very difficult to

write the software.

IEEE-488 Parallel Port

L. The IEEE-488 is a byte serial, bit parallel that

overcomes the problems of the interface outlines above.

L. The interface is incredibly resistant to

~nterferences.

J. It provides excellent noisy immunity.

4. A very important feature of IEEE-488 is that the

~nterface has a bus-structure, and up to 15 devices can

De interfaced at a time using the same board. This

structure simplifies the process control and allows true

simultaneous data acquisition.

~. The interface is as fast as the microcomputer. Data

can be transferred up to one million bytes per second

(using special tri state drivers on the lines) and

without any special care will support transmission rates

of about 2S0-300K bytes per second using direct memory

access (DMA).

o. The interface is standard and is widely available.

All IEEE-488 instruments are plug compatible.

7. The primary limitation on the standard is that it

cannot exceed 20 meters in cable length without

expensive repeaters. And given long cabling slows

transmission rates and is more susceptible to noise.

In the present work a 4 meter cable is used.

Perhaps the greatest advantage of the IEEE-488

~nterface is that it is a standard interface. The use of

22

23

IEEE-488 began as a general purpose interface bus (GPIB) of

~he Hewlett Packard Corp. In 1975, the IEEE adopted the

GPIB as its standard. Some minor modifications were made to

~he standard in 1978. But IEEE-488 still goes by the name

of GPIB on HP products. Devices on the interface may

perform three types of functions.

1. They may be talkers i.e., they may transmit data to

other devices on the interface. There can be only one

active talker at a given time.

2. Alternatively, a device may be a listener. It may

receive data and instructions. There may be more than

one active listener at a time.

3. Finally, a device may do nothing but standby. At

different times may assume any of the above func~ions.

The interface has two modes of operations - Command and

Data. Command mode is for process control. In the Data

mode, data is ~ransferred from talker to listener(s).

The interface has 24 lines, out of which 8 lines are

ground lines. The other 16 lines are divided into three

groups. 8 bi-directional data lines, 3 data byte control

Lines (hand shake lines), and 5 general interface lines.

The three line handshake protocol functions as

follows:

when the information is transferred over ~he bus the

listeners must be ready to receive the data. If they are

not they signal NRFD (not ready for data) by pulling the

NRFD line low ("low" is defined as true by the IEEE-488

24

standard). The NRFD line has an open collector design, so

~hat if one listener is not ready, the line is kept low.

when all the listeners are ready, the NRFD block goes high.

If the talker is ready to transmit data, it sets the DAY

Idata valid) line low. The ~ransmission of the DAY triggers

~he reset~ing of the NRFD line, and the listeners pick up

~he last byte of data. When each listener receives the

data, it releases NDAC (not data accepted) line, which is

also an open collector. When all listeners have received

~he data ~he NDAC line goes high, causing the reset of the

DAY line, which in turn triggers ~he resetting of the NDAC

line. This information is repeated for each byte in

~ransmission.

The description of the IEEE controller drivers, in bo~h

C and Basic languages, is provided in Appendix A. A program

~o tes~ ~hese IEEE drivers provided by Ziatech corpora~ion.

~s located in Appendix E along with the listing of other

programs.

CHAPTER VI

EXPERIMENTAL SYSTEM

Polarographic measurement of dissolved gases,

especially of oxygen is most frequently done in the field of

medicine and physiology. Micro sized electrodes with tip

diameters of 1 - 25mm are used for measuring oxygen

concentration in blood and tissues. Micro organisms are

generally found attached to solid surfaces in bodies of

water and in other natural environments. The critical role

of these micro organisms, is the removal and degradation of

organic materials in water and waste water systems. This

sparked a national concern for water pollution and water

pollution control. Fortunately, the introduction of

electronics in chemical engineering has opened promising

avenues of research to provide a greater insight into the

study of microbial systems.

A system using microelectrodes has been developed and

designed to effectively make chemical measurements.

Figure 3 illustrates the diagram of the system which is

divided into two control loops-the main control loop and the

lnner loop. The main control loop consists of a Texas

Instrument Professional microcomputer designed to function

ln real-tlme with Oriel Corporation stepper motor

25

controllers. In turn, these controllers are used in

conjunction with the micromanipulators for x, y and z

directions micropositioning. The circular motion of the

stepper motor drives is then translated into the precision

linear motion with the help of translators. Also included

~n this main loop are the AID converter and IEEE-488

~nterface.

The inner loop contains a microelectrode, an auto

ranging picoammeter, a constant voltage source, and a

voltmeter. The main control loop and the inner loop are

interfaced in real-time through the IEEE-488 interface and

the AID converter.

The key to the system is that micromanipulators and

controllers can under computer control be positioned within

1 micron. Position changes using this system can be

operated in half and full step mode, corresponding to 1 or 2

microns per step. Maximum speed under full step operation

~s 500 steps per second i.e., 1000 microns per second. A

ten pin collector located on the rear of the controller

module allows for external control by the computer. Two

remote control inputs drive the motor in either the forward

or backward direction one single step per 5 volts

TTL (transistor transistor logic) pulse received. Two

additional inputs from the computer drive the motor in the

forward or reverse direction at the speed control for the

length of time the TTL (transistor transistor logic) signal

~s applied. Two out pins indicate motion in the forward or

26

Figure 3. The Experimental Systec

27

reverse direction by a +5volt (TTL) pulse per step.

At this point it is necessary to explain why a

stepper motor is used for precise pos~tioning instead of a

conventional motor. The stepper motor is a device which

~ranslates electrical pulses into mechanical movements. The

shaft rotates through a specific angular rotation for each

9ulse, and this is repeated precisely with each succeeding

pulse. The result of this precise, fixed and repeatable

movement is the ability to accurately position the probe. A

conventional motor has a free running shaft, while the

stepper motor does not. The stepper motor shaft rotation

~s in fixed repeatable, known increments. The shaft

rotation for this particular stepper motor for each complete

step is 15 degrees.

computer operation is accomplished by applying TTL

l.ogic"O" and "1" using the Data Translation's AID conver~er

model 2805. The digital IiO lines on this converter are

used for this purpose. The digital inpu~/output (also

called digital I/O, or Dio) permits the Texas Instruments

Professional computer to be used with stepper motor drives

con~rollers which accept and supply parallel digital data.

Barallel da~a requires a separate electrical connection for

each bit.

28

CHAPTER VII

OPERATION OF THE SYSTEM

EQUIPMENT USED

Texas Instrument Professional computer.

Kiethly's Auto-ranging Picoammeter. Model 485

Kiethly's IEEE-488 Interface. Model 4853

Oriel corporation's Micropositioners. Model 18503

Oriel Corporation'S Stepper Motor Controllers.

Model 18548

Data Translation's AID Converter. Model DT 285

Data Translation's Screw Terminal Panel. Model DT 707

Ziatech's IEEE-488 Interface Card. Model ZT 1446

Ziatech's Controller Device Drivers. Model C and BASIC

~anguages Software

Diamond Electro-tech Incorporated's Oxygen

Microelectrodes. Model 723(P02'

Reference Electrodes Ag/AgCl.

Plexiglass Chamber.

As mentioned before, the system consists of two loops:

~) A main loop run by the TI professional computer and 2)

An inner loop to carry out the actual measurements. Each is

discussed in detail.

29

MAIN CONTROL LOOP

The DT 2805 of the Data Translation is a complete

single board data acquisition system for personal

computers (IBM and compatible systems). This board has

an on board microprocessor with a power supply. The Data

Translation board is capable of performing :

1. A/D conversion.

2. D/A conversion.

3. Digital I/O transfers.

It consists of 16 channels of 12 bit A/D conversion,

and two channels of D/A conversion. It also consists of

16 lines of digital I/O. This feature of digital I/O is

split into two 8-line digital I/O ports which can be

used separately to read or write 8-bit transfers, or

simultaneously a 16-bit transfer.

All the channels for analog co digieal and digital to

analog conversion are easily accessible through a screw

eerminal shown in Figure 4. The terminal board also shows

all ehe digital I/O lines used for I/O signals from ehe

compueer to ehe seepper. They are divided as port 0 and

pore 1. each pore consisting of 8 lines of digital I/O.

The board is also capable of performing the following:

i. Reporting errors in the operation of the board while

running the micropositioners.

L. Setting the period of the on board clock.

3. Stopping board operations in process and thus,

30

31 .

Figure 4. Screw Terminal for AID Converter

32

stopping the stepper motors.

4. Resetting some of the board's programmable

oarameters.

~. Performing simple tests on the board such as clearing up

che set bits.

There are basically four registers which control all

che functions on the DT 2805 board. All these registers are

6-bit registers.

1. Command Register (write only).

2. Status Regiscer (read only).

3. Data-In Register (write only).

4. Data-Out Register (read only).

1. Command Register: This is located at the base address +

L of the DT 2805 board. Base address is the lowest I/O

address at which the board can be accessed over the TI

~rofessional computer bus i.e., it is computer's I/O

space where the board will be addressed. Among the 8­

Dits of the command register, the first four bits of 0-3

(lower byte) are called operation code bits. There are

sixteen pre-defined functions on the board. These

operation code bits are used to spec~fy what functions

che board should perform. This can be understood a

little better with the help of Figure 5.

The upper four bits are called command modifiers.

Depending on the first 4 bits the operation can be

performed in DMA (Direct Memory Access) mode, continuous

mode, and with an external trigger or external clock.

33

- ~--~

OPCODE

External
Clock

Continuous

MODIFIERS

F i ~ure 5. Command Register Bit Funct i,·,,-

The motors can run in different modes depending on

which command modifier bit is set low or high(low or high

~s indicated by a 0 or 1). Figure 6 shows as to which

command modifier can be used with which command. In

Figure 6, "X" is a legal modifier. "0" is a illegal

modifier. This bit-value must always be a "0". For

~nstance. if the binary code "0010" is used in the OPCODE

bits of the Command Register, the DT 2805 series board

will "Read the Error Register".

2. Status Register: This is Read only register located at

the base address + 1 of the board. It contains status

byte from the board. Using the register bits as Status

Flags, the current status of the board is reflected by

wdicating:

34

~---~---------_.

LEGAL MODIFIERS I
COMMAND E~t Ext Cont DMA OPCODE

Trig elk i (Binary):
------------------ ------- -------1-----------

RESET a a a a 0000

CLEAR ERROR o o a a 0001

READ ERROR REG. o o o a 0010

SET INTERNAL
CLOCK PERIOD a a a a 0011

STOP a o a a 1111

TEST x a a o 1011

SET DIG. PORT
FOR INPUT x a a a 0100

SET DIG. PORT
FOR OUTPUT x a a a 0101

READ DIG. INPUT
IMMEDIATE x a a a 0110

a 1000

X 1010

a 0111

a 1001

a 1100

a 1101

x i ll~O
I----------------- ---

x

a

a

a

a

x

a

a

a

a

x

x

x

x

a

WRITE DIG. OUT-
o ?l:T I~·rr·IED11\TE

IWRITE DIAI IMMEDIATE

I SET DIA

I PARAMI:TERS

IWRITE niA

I
READ AID

. IMMEDIATE

I
: SET .\/DI PARAMETERS a a a

I READ AID X X X

Figure 6. Command and Legal Modifiers

1) If an error has occurred,

li) Whether a command is completed or not,

lii) Whether the last byte written to the DT 2805 board

was written to the Data-In Register or to the Command

Register,

lV) Whether a write to the Data-In Register can occur, and

v) Whether a read from the Data-Out Register can

occur.

The Status Register bit functions are indicated below in

iigure 7.

-----r===-I===I-==-I===-[==-[==-[-==J-===~-------l
~--~- -~- -~- ~- -~ -~- ~- _~__J I

I \ j I I I
---v--- Ready I

Not Used Data Out IComposite I

Error Ready
Command

Data In
Full

Figure 7. Status Register Bit Functions

Bit 0 is a Data-Out ready bit. when is set, it

lndicates that new AID data, digital data, or error register

lnformation is present in the Data-Out regiSter and has not

35

36

oeen read. Bits are set to 1 if they are 0 and setting

themselves to 0 if they are 1. After the Data-Out Register

1S read, bit 0 clears automatically. The Data-Out ready bit

always needs to be checked before reading the Data-Out

Register.

Bit 1, a Data-In full bit, when set, indicates that D/A

aata, digital output data, or a command parameter is present

1n the Data-In register, or that a command byte is present

1n the command register, and has not been read by the

ooards internal circuitry.

Bit 2, a Ready bit, when set, indicates that the board

has completed the previous command, and is ready to begln

execution of the next command. When clear, bit 0 indicates

that the board is busy executing a command. Writing to the

command register while bit 2 is clear will result in a

command overwrite error.

Bit 3, a command bit, when set indicates that the last

oyte written to the DT board was written to the command

register. When clear it indicates that the last byte was

written to the Data-In register.

Bit 4, 5, 6 are not used.

Bit 7 is a composite error bit, when set this indicates

that an error has occurred on the board. The error bit

remains set until cleared by a reset or clear error command.

3. Data-In Register: This is a write only register located

at the base address of the board. It receives data

written from the TI professional personal computer to the

Doard to perform a DIA conversion. or a digital output

operation. The Data-In register also receives command

oarameters as a part of the operating sequence of a

number of commands.

4. Data-Out Register: This is a read only register located

at the board's base address. It contains data which is

read from the DT 2805 board by the TI professional

computer as a result of an AID conversion. or a digital

finally. when a command is written from the personal

computer to the board • its execution is divided into three

sequential events.

~. The set period. during which the various subsystems

of the boards are prepared to perform the command.

2. The issuing of an internal software trigger. which

starts the operating sequence opted from the list in

Figure 6. In this case digital I/O commands are used.

~. The actual performance of the command. In this board

the operations can be either single operation commands

or block commands. All the commands in this board are

single operation commands except for Read AID and Wr~te

D/A (digital to analog) which are block commands.

~ingle operation commands accomplish a s~ngle event when

they run. and block commands accomplish multiple events

when they run. Single operation commands are listed in

Appendix B.

The above register functions and addresses are

37

~ndicated in Figure 8.

Now with a clear understanding of all the aspects

~nvolved in real-time control of micropositioners. Chapter

VIII will highlight the sequential steps involved in writing

38

~he program for the process. As mentioned earlier. only the

aigital I/O lines. shown in Figure 4 are used to control

REGISTER NAME

Data-In

Data-Out

Command

Status

REGISTER FUNCTION REGISTER ADDRESS

Receives data, command Base (Write)
parameters from the
TI professional
computer

Contains data, error Base (Read)
information from the
board

Receives command byte Base + 1 (Write)
from the TI PC

Contains status byte Base + 1 (Read)
from the board

Figure 8. Register Functions and Addresses

~he stepper motors. There are basically four commands for

~he digital I/O.

~. Set digital port for input.

2. Set digital port for output.

J. Read digital input immediate.

4. Write digital output immediate.

Only 'Set Digital Port for Output' and 'Write Digital

Output Immediate' are used.

Inner Control Loop

Polarographic Oxygen Measurement

oxygen microelectrodes are the most commonly used, and

since it is monolayer electrode, it requires the use of an

external reference electrode. Two electrodes are polar~zed

with a potential of slightly less than 1.0 volt in a

electrolytic solution containing dissolved oxygen. Current

flows as a result of the reduction of oxygen at the

cathodic (negatively polarized) surface. At the cathode the

reaction is expressed as :

At the other electrode(Ag/AgCl, reference electrode), the

reaction is,

4Ag + 4Cl- ---) 4AgCl + 4e-

Theoretically, the voltage-current relationship for a

polarographic oxygen is represented by the characteristic

curve shown in Figure 9. In the region below approximately

-0.5 volt, there is a reasonabiy linear voltage-current

39

eo...
50"<II... 40...

::l
U 30

20

10

0 00.2 -0.4 -o.e -0.8 -1.0

Voltage

Figure 9. Characteristic Curve

relationship. As the polarization voltage ~s increased

beyond -0.5 volt, the current tends to reach a plateau where

changes in voltage have little effect on current. In this

plateau region, the current is limited by the rate at which

oxygen diffuses to the cathode. As the voltage is increased

above -1.0 volt, the current increases again with the

voltage, due to reduction of other elements in addition to

oxygen.

The electrode is best operated with polarization

voltage set to the mid-point of the plateau region, in which

case the current is diffusion limited. In a diffusion

limited condition, virtually all of the oxygen molecules

which reach the cathode are immediately reduced, resulting

40

~n a zero oxygen concentration at the cathode surface, and a

current which is limited by the rate at which oxygen can

diffuse to this zero concentration region. The diffusion

rate is a function of the oxygen diffusion coefficient of

the substance (membrane and media) surrounding the cathode

and the dissolved oxygen concentration. This, in turn, is

proportional to the oxygen partial pressure. For constant

cemperature, current flow through the electrode is directly

oroportional to the part~al pressure of oxygen.

A plot of the relationship between the current and the

partial pressure of oxygen (at a fixed polarization voltage)

~s called the standard curve. This is shown in figure(lO).

The curve is linear and it does not intersect the origin,

out rather, indicates a small current at the zero partial

eo
50

~ 40
~
~w 30w
~

~ 20

10

a 5 10 15 20

Figure 10. Standard Curve

pressure. This is the residual current and results from the

factors such as electrical leakage through insulating

materials in the system and reduction of oxygen which is

absorbed into the electrode material.

Characteristics of Oxygen Electrodes

Since the electrode is very small, it is d~fficult to

maintain identical characteristics from one electrode to

another. For micro-sized electrodes, the characteristics

are sometimes less than ideal. Wide variety of applications

of these electrodes makes it difficult to optimize the

system for a particular application. However a proper

understanding of the electrode characteristics is important

ror accurate oxygen measurements. The slope of the plateau

~n the characteristics curve varies from electrode to

electrode. It generally covers a span of 0.1 to 0.4 volt in

width, with the mid-point occurring anywhere between 0.5 and

0.95 volt. A plateau is generally defined as the region of

che characceristics curve which has the minimum slope and

operat~on of the electrode is at a voltage occurring near

che mid-point of this region. Since oxygen electrodes

runction well when polarized with a potential of 0.75 volts,

lt is not necessary to produce a characteristics curve. The

electrode is stabilized at the operating voltage (normally

u.75J at a temperature at which measurements are made for

at least two hours. It is important to take extreme care in

nandling the electrodes. Electrodes maintenance techniques

42

are located in Appendix c.

Calibration

The probes are soaked in saline solution or in

distilled water before use. It is also possible to store

the probes in the saline solution. Storage techniques are

nighlighted by Cully (19).

Calibration is carried out at the same temperature as

the measurement media. A reference electrode is used in the

calibration media as well as in measurement media. Since

oxygen partial pressure and current have a linear

relationship, a two-point calibration suffices. However, a

three-point calibration should be done to ensure the

linearity.

The first step in probe calibration is to warm up the

oicoammeter for 20 minutes. It is also necessary to

calibrate the probe in saline solution and not in distilled

water since distilled water contains very few ions, and it

aoes not conduct electricity well. The calibration is done

using 21% oxygen (ambient room air) and 0% oxygen (100%

nitrogen) to produce two calibration points. This is done

oy bUbbling higher level oxygen gas through the saline

solution containing the electrode for a period of 15

minutes. This will allow the solution to equilibrate with

the gas. Next step is to bubble 100% nitrogen until the

solution is saturated. This displaces the oxygen gas. The

picoammeter still displays a small residual current called

43

"dark current". This small current is subtracted

electronically at the amplifier later.

The reference electrode and microprobe are now placed

1nto the aerated saline solution and a voltage slowly turned

to 0.75 volts. A probe working properly will display a

reading of 10-10 amps - 10-12 amps on the picoammmeter. It

1S important not to remove the reference electrode from the

solution before the microprobe. This may send a sudden surge

of current through the probe, separating the gold layer from

the woods metal, thus ruining the probe. Regardless of the

calibration methods chosen, electrodes do drift. So, it is

lmportant to do additional calibration checks during the

experiment.

Electrodes should also be transferred as quickly as

possible from the calibration media to the measurement

media. If there are any temperature changes while

transferring, it will take several minutes to restabilize.

Polarization is temporarily stopped when electrode is

removed from the solution.

Laboratory Microprobing

After the calibration is done, the microprobe is

carefully lowered in the flow chamber, shown in Figure 11

until the electrical contact is made with the slime. This

can be viewed on the picoammeter. The probe is moved up and

down in cycles to confirm this location.

44

Figure 11. Flow Chamber

45

46

The flow chamber is made out of plexiglass.

Slimes (Algal layers) are grown on concentrated agar surface

ln the flow chamber, since this kind of surface minimizes

the chance of microprobe breakage. Nutrient broth or Algal­

gro concentrate is used to grow the algae. Since this is a

continuous media, it is necessary to maintain a low velocity

of the flowing media to reduce the shear on the algae

surface, and efficiently utilize the nutrient within the

medium. The chamber is raised slightly at the inlet end to

reduce pooling of the liquid and to maintain flow across the

surface.

The microprobe and silver/silver chloride reference

are connected to a voltage source, picoammeter and

micropositioners, which in turn are connected to the TI

personal computer for data acquisition and control. This is

lllustrated in Figure 3. As in the calibration stage, a

voltage of 0.75 volts is applied across the microelectrode

and the reference electrode. At this stage, the molecular

oxygen breaks into ions which move in the electrical field

created. A picoammeter used in conjunction with the

microcomputer records the changes in the current. Oxygen

activity is linear with the current flow. The mlcroprobe is

positioned with a micromanipulator which allows 3-axis

movement with a precision of 1 micron. The positioners have

a limit switch which enables them to stop after a maximum

movement of 3cm. This very important function of the

manipulators is incorporated in the computer program. It

47

orevents the microprobe to reach the bottom of the studying

media and thus. avoid its breakage.

The Ag/Agcl reference electrode is approximately 7cm in

.Length. It is very important that the microelectrode set be

well shielded and grounded to minimize any electrical

~nterference. Co-axial low noise cable ~s used and is taped

down to minimize vibrations that create stray signals .

•

7

6

2...
"..-o 3
o

~
~ 2a

o '---::!:::---::~_I__.L-'='...l..-_
200 100 0 -100 -200

\"IQuID l1'HERF'ACE SLIME

Depth (Microns)

Source: Whalen et aI, "Microelectrode
Determination of Oxygen Profiles
in Microbial Systems", Environm­
ental Science and Technology (1969)

Figure 12. Microprobe Measurements of
Dissolved Oxygen Concent­
rations.

48

A typical profile of oxygen concentration with respect

co the distance in the slime using air saturaced substrate

~s shown in Figure 12. This study done by Bungay, Sanders

and Whalen (10) involved lowering of the probe at 25 microns

~ncrements at 30 second interval each. Such studies

aemonscrate the applicability of microelectrodes in direct

aetermination of oxygen concentration, and also the oxygen

and nutrient diffusivity coeffecients for che microbial

system. Mass transfer cosiderations are provided in

~ppendix D.

CHAPTER VIII

OVERVIEW OF THE MICROPOSITIONERS PROGRAM

The program is written both in C and BASIC languages.

The program is listed in Appendix E.

The micropositioners are run and controlled by writing

command bytes to the boards Command Register, and by

writing data bytes and command parameters bytes to the

coards Data-In Register.

The following points are important for programing the

board.

Before each read or write of the Command or Data

Registers, the Status Register must be checked. The Status

Register can be read at any time.

Before starting a command, the Status Register must

~ndicate that the board is ready for a new command and a

check must be made to see that the Ready bit. bit 2 of the

Status Register, is set.

Data must not at any time be written to the Data-In

Register unless the Data-In full bit is clear, indicating

that the board is ready for data input. The Stop command is

a special case, and can be written to the Command Register

any time, without checking the Status Register and

~egardless of the state of the board.

49

Valid data cannot be read from the Data-Out Register

unless the data out ready bit is set. The board will not

return to the ready state if data remains in the Data-Out

Register.

Thus considering all the points mentioned above, the

actual program is written in two parts. The first part sets

up the digital ports for output, and the second part writes

digital output immediate commands to the board. Each part

~nvolves a sequence of operation. These operating sequences

are detailed below:

SET DIGITAL PORT FOR OUTPUT

1. Check Status Register and write command to Command

Register.

L. Check Status Register and write Digital Port Select to

Data-In Register.

3. If no external trigger, the board issues a software

trigger.

4. If external trigger:

A. Wait at least 1 ms.

B. Issue external trigger.

~. If Digital Port Select equals 0 or 1:

~. DIO Port 0 or 1 is set to provide digital outputs.

6. If digital Port Select equals 2:

A. DIO ports 0 and 1 are set to provide digital

outputs.

50

7. Perform a WRITE DIGITAL OUTPUT IMMEDIATE operating

sequence, specifying a data byte value of 0 to clear the

newly enabled output port.

WRITE DIGITAL OUTPUT IMMEDIATE

1. Check Status Register and perform a SET DIGITAL PORT FOR

OUTPUT command to set the port or ports used for output.

L. Check Status Register and write command to Command

Register.

3. Check Status Register and write Digital Port Select

to the Data-In Register.

~. Check Status Register and data for DID port 0 or 1 to

Data-In Register.

~. If Digital Port Select equals 2:

A. Write data for DID port 1 to Data-In Register.

6. If no external trigger, the board issues a software

trigger.

i. If external trigger:

A. Wait at least 1 ms.

B. Issue external trigger.

8. If Digital Port Select equals 0 or 1:

A. Check Status Register and write data to Data-In

Register.

~. If Digital Port Select equals 2:

A. Check Status Register and write data for Port 0 to

Data-In register.

51

B. Check Status Register and write data for Port 1 to

Data-In Register.

52

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

1. A real-time computer controlled positioning system

nas been designed and built, using the state of the art

micropositioners. The system controlled by Texas

Instrument's professional computer has been tested and works

satisfactorily with respect to the micro movement of the

probe.

2. A software package has been developed in C and BASIC

languages. The package is easy to use and may be

conveniently combined with other available packages to expand

che current capabilities of the system.

3. C language is sophisticated as well as convenient in

daca acquisition and control aspects of the system. Basic's

Input/Output functions have proved to be very useful.

RECOMMENDATIONS

1. The developed computer package, when used, prompcs

che user to provide an external trigger to move the position

of the microprobes. This trigger may be provided through

another software package. Such a feature is desirable to

53

make micropositioning of the probe a function of the trend

analysis of the measurements. For instance, the position of

~he microprobe can be made a function of the oxygen

concentration with time. This would be the basis for

automatic feedback to control the amount of oxygen supplied

to a biological or a chemical system.

2. All the equipment used in building the system is

designed for IBM personal computers only. However, they are

controlled by a TI personal computer, which is not completely

compatible with parts designed for IBM machines. This was

accomplished by emulating the TI computer to work like an IBM

computer. Most software packages available in the market are

IBM compatible and may not work even if TI is emulated as an

IBM machine. Consequently, controlling the whole system with

an IBM computer would be more advantageous in the long run.

j. If an IBM computer is eventually installed in place

of the TI, care should be taken to ensure that I/O addresses

of the measuring and the sensing systems do not interfere

with the I/O mapping of the IBM personal computer.

54

CHAPTER X

SUGGESTED APPLICATIONS

i. For delicate and accurate positioning of any sensing

device for a particular measurement.

~. Study of the fundamental mechanism of the growth of

micro-organisms. This will better define the kinetics of

growth and metabolism of slime organisms in water bodies and

waste water systems.

~. Study of corrosion mechanisms and develop~ng rapid

methods for identifying microbiologically innfluenced

corrosion. On-line detec~ion and trend analysis of the

microbiological and chemical systems will help.

4. Measureing the effect of fouling in Heat

Exchangers.

~. Measureing the cell activity as a function of their

~mmediate environment.

o. Precise measurements of the in~erfacial mass

cransfer can be made with ultra microprobes. This

~nformation would be valuable in improving equipment design

and performance.

i. Considerable insight into mass tranfer to and within

microbial slime films can be obtained from steady state and

trom dynamic measurements of dissolved oxygen.

ss

o. The dynamic method presented here, for measuring

oxygen transfer coefficients, has a potential to provide more

consistent results.

~. This technique adds one more dimension to the study

of turbulent mass transfer in addition to conventional

methods such as hot film or wire anemometry. interferometry,

and holography.

LO. This technique can also be applied to investigate

the surface region of the liquid. which has been difficult so

far.

il. Many different models can be checked in this way

and, above all, an interfacial mass transfer mechanism can be

elucidated which can be directly used in improving the

performance of existing two-phase contactors or designing new

mass transfer devices.

~2. Unsteady state measurements are real difficult to

make and a real time operation has a potential to make point

concentration measurements in real time.

S6

~ SELECTED BIBLIOGRAPHY

1. Khuri, R. N. Ion-Selective electrodes in biomedical
research In: Ion-Selective electrodes, R. A.
Durst (editor) National Bureau of Standards Special
Publication 314 November (1969).

2. Kim, N. K. and D. W. Stone. Organic Chemicals and
Drinking Water. New York State Department of Health
I undated) .

J. Dowben, R. M. and J. E. Rose. A Metal Filled
Microelectrode. Science 118: 22-24 (1953).

4. Whalen, w. J., J. Riley and P. Nair. A Microelectrode
for Measuring Intracellular pO;. Journal Applied
Physiology, 23, 798 (1967). - .

~. whalen, W. J., P. Nair and R. A. Ganfield. Measurements
of Oxygen Tension in Tissues with a Micro Oxygen
Electrode, Microvascular Research 5: 254-262 (1973).

6. Berman, H. and M. Herbert (editors). Ion-Selective
Microelectrode, Proceeding of a Workshop on Ion
Selective Microelectrodes, Plenum Press, New York
(1974).

7. Spande, J. I., W. J. Whalen and D. Buerk. Flow Through
002 Sensor, JEPT, vol. 7, No.1: 4-9 (1980).

ti. Revsbech, N., J. Sorensen, T. Blackburn and J. Lomholt.
Distribution of Oxygen in Marine Sediments Measured
with Microelectrodes, Limnology and Oceanography
25(3): 403-411 (1980).

9. Revsbech, N., B. Jorgensen and T. Blackburn. Oxygen in
the Sea Bottom Measured with a Microelectrode,
SClence 207: 1355-1356 (1980).

10. Whalen, W. J., H. R. Bungay III and W. M. Sanders III.
~licroelectrode Determination of Oxygen Profiles in
Microbial Slime Systems, Environmental Science and
Technology 3: 1297 (1969).

11. Bungay III, H. R., W. J. Whalen and W. M. Sanders III.
Microprobe Techniques for determining Diffusivities
and Respiration Rates in Microbial Slime Systems,

57

Biotechnology and Bioengineering 11: 765 (1965).

12. Bungay III, H. R., W. M. Sanders III and W. J. Whalen.
Oxygen Transfer at the Microscopic level. 160th
National A.C.S Meeting, Division of Microbial
Chemistry and Technology, Chicago (1970).

~3. Chen, Y. S. Microelectrode Studies of Oxygen Transfer
ln Microbial Slime, PH. D Thesis, R.P.I. (1979).

14. Chen, Y. S. and H. R. Bungay. Microelectrode Studies of
Oxygen Transfer in Trickling Filter Slimes
Manuscript for American Chemical Society Meeting,
washington, D.C.- (1979).

15. Bungay III, H. R. and Y. S. Chen. Oxygen Transfer in
Photosynthetic Slimes. Manuscript for American
Chemical Society National Meeting, Miami (1978).

16. Drislane, A. M. and H. R. Bungay. Microelectrode
Measurements of Oxygen Profiles in Activated Sludge
Floes, not published yet (1982).

17. Huang, M. Y. and H. R. Bungay III. Microprobe
Measurement of Oxygen Concentration in Mycelail
Pellets. Biotechnology and Bioengineering 15: 1183
(1973).

~8. Cully, D. T. Masters Thesis Work, R.P.I. New York,
(1982).

19. Bungay III, H. R. and D. M. Harold, Jr .. Simulation of
oxygen Transfer in Microbial Slimes. Biotechnology
and Bioengineering. 13: 569(1971).

20. Bicher, H. I. and M. H. Kinsley. Brain Tissue
Reoxygenation Time, Demonstrated With a New
Ultramicro Oxygen Electrode. ~ournal of Applied
Physiology 28: 387(1970).

58

APPENDIXES

APPENDIX A

IEEE 488 CONTROLLER DRIVERS

IEEE 488 controller drivers and files contained in

Ziatech's disk for ZT 1444 GPIB and multifunction I/O board

are listed as follows. Also a program called XXTEST.exe

Lnterac~ively gives control of the bus to the computer. All

~he function modules listed below are incorpora~ed in ~his

program.

ZT 1444 GPIB Basic and C Language Drivers

Driver Name

oustat

cmd

aevclr

doc

eoi

Lnit

l.ocl

l.okout

ppo11

1?Pold

ppollu

Function

Get bus status.

Send command.

Device clear.

Get software revision.

supress EOI output.

Initialize ~he bus.

set local s~ate.

Lock ou~ s~ate.

Perform a parallel poll.

Parallel poll disable.

Parallel poll unconfigure.

60

recvdm

recvst

remote

senddm

sendst

setaddr

setpri

setsec

spoIl

srqsta

term

timedy

crig

xfer

example

alarm

~nstat

.wadc

readc

readl

synch

systic

Receive data with DMA.

Receive data.

Remote the bus.

Send data with DMA.

Send data.

Sec I/O port address.

Select primary port.

Select secondary port.

Serial poll.

Get SRQ status.

Set terminating char.

Set timeout delay.

Execute trigger.

Transfer between devices.

Example program.

Set alarm.

Get clock status.

Load counter.

Read counter.

Read latch.

Synchronize.

::iystem tic.

61

fhe Following highlights the installed IEEE

coard's capabilities.

IEEE bus is a listener, talker and controller.

Can control upto 15 other IEEE-488 compatible

devices.

Each controller occupies one Input/Output slot in the

TI PC.

Fully compatible with IEEE-488 1978 standards.

DMA channel user selectable.

Eight Input/Output port addresses.

Interrupt enabling and disabling.

System controller enabling and disabling.

No jumper changes need be made when used.

The board has been installed with the following

Input/Output address dip switch configuration.

1 2 3 4 5 6 7 8 i 2 3 4 5 6 7 8

SWI I * ~ ~ * * SW2 A * * * *I
~ x * * * x ,

I,,

62

APPENDIX B

SINGLE OPERATION COMMANDS

1. Reset.

t.. Clear Error.

3. Read Error Register.

4. Set Internal Clock.

:). Stop.

b. Test.

i . Set Digital Port for Input.

tl • Set digital port for Output.

:i • Read digital Input Inunediate.

10. Write Digital Output Inunediate.

11- Write DIA Inunediate.

12. Set DIA Parameters.

13. Read AID Immediate.

14. Set AID Parameters.

63

APPENDIX C

~IICROPROBE MAINTENANCE

A. Storage: Microelec~rodes should either be stored in

saline solution or in a dust free container. Care

should be taken to see that the tips are not touching

any surface. Contact with any surface can result in

microprobe breakage.

B. Cleaning: 723 oxygen microelectrodes can not be used

lndefinitely without some biomass build-up or

contamination in the tip. The probe can be used a

number of times if proper care is taken. After use, the

tip of the electrode is submerged in de-ionized water

tor 15-30 minutes. Following this, there are three more

steps for cleaning the probes.

i. Put a drop of water on a kimwipe.

2. Hold the wet spot of the tissue folded between the thumb

and the index finger.

3. Pull the electrode through these fingers, being very

careful not to snap the tip by bending the probe.

Fragility of the Probes

The main disadvantage of using the microprobe is the

tragility of the instrument. Extreme care is necessary in

64

nandling the electrodes. as mechanical contact with

materials can easily break the tip. When bUbbling gases

chrough test solutions to calibrate the electrode. it is

advantageous to make certain that the tip is not directly in

che flow of bUbbles. as this can create breakage. Other

ractors that can cause breakage are,

continuous use over extended periods of time

sneezing or sudden movement of the probe in hand

shipping hazards

probing too far in the test medium and hitting the hard

Dottom surface.

6S

APPENDIX 0

THE DIFFUSION EQUATIONS

The diffusion equations are presented here.

Consider an element of slime parallel to the slime-medium

~nterface. The mass transfer equations for the system can

oe written for rectangular coordinates as follows,

oe oe oe oe
ot + Ux ox + Uy oy + Uz OZ = D [

2c e
W

2
o e
6?"]+1;"-1'

neglecting the influence of velocity terms, Equation (0-1)

becomes,

oe
Ot = D

2
o e
6'?"

2

+Doy"

2
+ 0 e

6? J + R (D-2)

where, R = rate of generation.

But in the present system, oxygen is consumed in the system.

nence R is negative (-R) •

oe 02 e 2 2
= D [+~ o e

ot ox" + --' J - R (D- 3)oj"'" oz"

Neglecting the diffusion in Y and Z directions.

Equation (0-3) can be written as.

(D-4)

Since inside film is in steady state,

66

ae
- = 0at

cherefore.

2

o [6 e"6"XL] = R

(0-5)

(0- 6)

67

Now diffusivity D, can be assumed to be constant.

Then. partial equation becomes total differential equation

and Equation (D-6l becomes.

d 2 e R
(l";7 = 0 (0-7)

Integrating Equation (D-7)

de
dx

= (0- 8)

where K = constant of integration.

Now D can be found by plotting dc/dx versus X. It will

De a straight line as suggested by Equation (D-81. Hence,

~he slope of the straight line will be R/D. Knowing R. the

rate of oxygen uptake, D can be found from the slope.

rhe local mass transfer coefficient can be obtained

irom the following equat~on,

(0- 9)

where C~ is the concentration at the interface and Cb is

the bulk concentration.

APPENDIX E

LISTING OF PROGRAMS

SET DIO FOR OUTPUT

I I Define constants and variables: Definitions are used to specify

10

20
30
40
50
60
70
80
90
100
110

120
130
140
150
160
170
180
190
200
210
220
230

240

250
260
270
280
290

300
310
320

330
340
350
360
370

380

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"

"

"

A Program to set 010 for output.

This is a program to run the micropositioners. As this program
sets the oro for output, it needs to be run before the
WRITE DIGITAL PORT IMMEDIATE program which follows.

this program is written in BASIC language. It can be used
to move the micropositioners with a precision of 1 micron in
any of the three directions--X, Y or Z. Each single step
corresponds to 1 micron.

The program assumes that there is a Data Translation's
2801 series board installed at the Base address of &HZEC.
A different Base address can be chosen, but since this is a
location in the It professional computerls 1/0 space where the
board is addressed, care should be taken to see that this address
does not interfere with the I/O mapping of the II computer.

The user is asked whether 010 port 0, 010 port 1 or 010
port 2 is to be written (note that port 2 is a way to specify
both port 1 and port 0).

Programming principles are commented preceding each step.
This serves the purpose of documentation for any further changes

CLS : PRINT
PRINT" A PROGRAM TO SET DIO FOR OUTPUT
PRINTt

' -------------------------------

PRINT" THIS PROGRAM ASSUMES TIlAT A DT 2801 SERIES BOARD IS INSTALLED.

PRINT" ---

PRINT" Please make sure to run this program before you run the
PRINT" WRITE DIGITAL OUTPUT IMMEDIATE PROGRAM.
PRINT : PRINT

68

69

"

..

"

"

Please respond with 0, 1 or 2 only.1t

Please respond with t¥1 or IN' only."

Are you sure you want to set 010 Port " j OIOPORTj
for OUTPt.rr"; YS
ny" OR YS lIy ll THEN GaTO 900

"Nfl OR ¥S "nil !HEN GOTO 1740

PRINT : PRINT "
GOTO 760

PRINT It

INPUT II

IF YS =
IF VS

PRINT

PRINT PRINT"
GaTO 820

t t the addresses of the Caamand Register, the Status Register, the
'I Data_In Register and the Data-Out Register. Lines 510 530
It define Hex values which when used lJith a 'WAIT" coamand,
I I indicate whether a particular bit in the Status Register is set or
I I cleared. estop is defined as the Hex value F. This is the Command
I I byte value for stop. Similarly, other Hex values are used to define

"
DEFINT A-Z
BASE. ADDRESS &112EC
COMl1AND. REGISTER BASE. ADDRESS + 1
STATIlS.REGISTER BASE. ADDRESS + 1
DATA. REGISTER BASE. ADDRESS
COHHAND.WAIT &114
WRITE. WAIT &112
READ.WAIT &115

"
CCLEAR &Ill
CERROR = &112
CSOUT = &115
eSTOP = &I!F
D."! •TRIGGER &1180
MENUS uEPOO.BASII

"

INPtIT II Set 010 Port 0,1 or 2 for OtITPUTIt;DIOPORT
IF DIOPORT >= 0 AND DIOPORT =< 2 TIlEN GOIa 820

STATIlS = INP(STATIlS.REGISTER)
IF NOI«STATIlS AND &1170) = 0) TIlEN GOTO 1650

OUT COHMAND.REGISTER, CSTOP
TEMP = INP(DATA.REGISTER)
WAIT STATIlS. REGISTER, COHMt\ND. WAIT
OUT COMMAND.REGISTER. CCLEAR

I I Check for legal Status Register.

"

"

I I Stop and c lear the onSOI.

"

"

"

"

..

390
400

410
420
430
440

450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

780
790
800
810
820
830
840
850
860
870
880
890
900
910

70

I I _
" Write SET DIGITAL PORT FOR OUIPUI WIn! TRIG command.
"

Wait for EXTERNAL TRIGGER.

WRITE. WAIT. WRITE. WAIT

DIOPORT

WRITE. WAIT, WRITE. WAIT

DIOPORT

SET 010 FOR OtrrPUT Operation Completelt

WAIT STATUS. REGISTER, COMMAND. WAIT

OUI COMMAND. REGISTER , CSOUI + EXT. TRIGGER

Write DIGITAL PORT SELECT byte.

WAIT STATUS.REGISTER,

OUI DATA. REGISTER,

PRINT : PRINT" Waiting for EXTERNAL TRIGGER."

WAIT STATUS. REGISTER, COMMAND. WAIT

PRINT II E>.'"'IERNAL TRIGGER Received."

PRINT : GOIO 1290

Write SET DIGITAL PORT FOR OUIPUT command.

Write DIGITAL PORT SELECT byte.

WAIT STATUS. REGISTER, r.<Jl1MAND. WAIT

OUI COMMAND. REGISTER, CSOUI

WAIT STATUS. REGISTER,

OUI DATA. REGISTER,

Check for ERROR.

WAIT STATUS.REGISTER. COMMAND. WAIT

STATUS = INP(STATUS.REGISTER)

IF (STATUS AND &H80) TIIEN GOTO 1400

PRINT
PRINT II

GOIO 1740

PRINT

PRINT "FATAL BOARD ERROR"

Fatal board error.

INPUT " Wait for External Trigger (Y/N)";YS

IF YS "Y" OR YS "y" TIIEN GOTO 970

IF Y$ liN" OR Y$ = "nil ntEN GOTO 1170
PRINT PRINT It Please respond with 'Y' or 'N'.II
GOTO 900

920

930

940

950

960

970

980

990
1000 I I

10lO

1020
1030 t I

1040 'I
1050 I I

1060 I I

1070

1080
1090 t I

1100 I I

1110 I I

1120 I I

1130

1140

1150

1160

1170 "
1180 II

1190 t I

1200 I I

1210

1220
1230 It

1240 I I

1250 I I

1260 I I

1270

1280
1290 I I

1300 I I

1310 I I

1320 I I

1330

1340

1350
1360 II

1370

1380

1390

1400 "
1410 I I

1420 I I

1430

1440

71

1450

1460

1470

1480

1490

1500
1510 I I

1520 I'
1530 I I

1540 11

PRINT "STATUS REGISTER VALUE IS ";IIEXS (STATUS) ;" IlEXIDECIMAL"

PRINT : BEEP : BEEP : GOSUB 1510

PRINT "ERROR REGISTER VALUES ARE:"

PRINT " BYTE 1 - ";IIEXS (ERRORl) ;" IlEXIDECIHAL"

PRINT" BYTE Z - ";IIEXS(ERRORZ);" IlEXIDECIMAL"

PRINT GOTO 1740

Read the Error Register.

PRINT : PRINT

OUT COI1I1AND.REGISTER, CSTOP : TEl1P = INP(DATA.REGISTER)

Illegal Status Register.

WAIT STATUS. REGISTER, COI1I1AND. WAIT

OUT COI1I1AND.REGISTER, CERROR

Please respond with ty' or 'N'."

Please respond with IV' or 'N'."

Run program again (Y/N)";Y$
"Y" OR Y$ = "yll TIiEN RUN

liNn OR YS = "nil nr.EN GOTO 1820

Return to MENU (Y/Nllt;Y$
"Y" OR Y$ "y" TIiEN RUN MENUS
uN" OR Y$ = "nil TIIEN GOTO 1890

WAIT STATUS. REGISTER , READ.WAIT

ERRORI = INP(DATA.REGISTER)

WAIT STATUS. REGISTER, READ. WAIT

ERRORZ = INP(DATA.REGISTER)

RETURN

PRINT

PRINT "FATAL ERROR - IILEGAL STATUS REGISTER VALUE"

PRINT "STATUS REGISTER VALUE IS ";IIEXS(STATUS);" IlEXIDECIMAL"

BEEP : BEEP

PRINT PRINT"

GOTO 18Z0

END

INPUT "
IF Y$

IF Y$

PRINT PRINT"

GOTO 1750

INPUT "
IF Y$

IF Y$

1550
1560 II

1570

1580

1590 'I

1600

1610

16Z0

1630

1640
1650 I I

1660 I I

1670 I'
1680 t t

1690

1700

1710

17Z0
1730 I I

1740
1750 T 1

1760

1770

1780
1790 I I

1800

1810

1820 "

1830

1840

1850
1860 I I

1870

1880

1890

"

"

10
20
30
~O

50
60

70
80
90
100
110

120
130

140

150
160

170
180
190
200
210

220

230
240

250
260
270
280
290

300
310
320
330
340
350
360

370
380
390
400
410
420
430

440

WRITE DIGITAL OUTPUT IMMEDIATE

" WRITE DIGITAL OUTPUT IMMEDIATE program
I I • _

Initial documentation of this program is same as that for
II the SET 010 for OUTPUT program. same definitions are used.
I I After setting the 010 port for output, this program is run to
,t actually move the micropositioners with a precision of 1 micron.

The program prompts for the number of steps to be moved in the desired
II direction. Delay is the time between each step. The smaller this
" number is, the faster the positioners move. Please make note that
I t a very short delay can cause the stepper motors to skip a couple
II steps and lose the precision. the recommended delay for the
I I compiler version of the program is 85.

"
CLS
PRINT

PRINT "THIS PROGRAM MOVES THE MICROPOSITIONERS WITH THE PRECISION
PRINT n OF ONE MICRON.
PRINT " ----------.--­
PRINT " --
PRINT "BEFORE YOU RUN THIS PROGRAM PLEASE MAKE SURE TO SET
PRINT " THE DIGITAL PORT FOR OUTPUT
PRINT 11- __ - -- - - _

PRINT

"
DEFINT A-Z
BASE. ADDRESS = &H2EC
COMMAND. REGISTER BASE. ADDRESS + 1
STAnIS.REGISTER = BASE. ADDRESS + 1

DATA. REGI STER BASE. ADDRESS
COMMAND. ;;ArT = &H4
WRITE. WAIT &H2
READ. WAIT &H5

"
CCLEAR &Hl
CERROR = &H2
CDlOOUT = &H7
CSTOP = &!IF
EXT. TRIGGER = &H80
MENUS = lI[POO.BAS"

"
" Check for legal Status Register.

" ------------------------------
"

STAnIS = INP(STAnIS.REGISTER)

72

73

IF NOT«STATUS AND &H70) = 0) T!IEll GOTO 2850

INPUT It Write 010 Port 0,1 or 211 jDIOPORT

IF DIOPORT)= 0 AND DIOPORT =< 2 T!IEll GOTO 720

T!IEll GOTO 870

to 010 Port It;

Please respond with 0, 1 or 2 only. II

Please use legal value. 1I

Legal ~ta values are in decimal, 0 through ";

TIIEN PRINT "255. 11

TIiEN PRINT "65535."
Data value to write

o T!IEll GOTO 960
= 1 THEN GOTO 1050

2 T!IEll GOTO 1140

< 2
2

t write value to I/O port

IF DIOPORT
IF DIOPORT
IF DIOPORT

PRINT : PRINT "
GOTO 720

IF DATA.VALUEI < 0 T!IEll GOTO 870
IF (DATA.VALUEI) 255 AND DIOPORT < 2)
IF DATA.VALUEI) 65535! THEN GOTO 870
GOTC 900

PRINT

PRINT "

IF DIOPORT

IF DIOPORT
PRINT II

PRINT DIOPORT;
INPUT DATA.VALUEI
DATA.VALUEI = INT(DATA.VALUElj

PRINT : PRINT "
GOTC 660

450
460 II

470 " Stop and clear the DT2801.
480 I I

490 OUT COHHAND.REGISTER, CSTOP

500 TEMP = INP(DATA.REGISTER)

510 WAIT STATUS. REGISTER, COHHAND.WAIT

520 OUT COHMAND.REGISTER, CCLEAR

530 DIOPORT = 0
540 DIO.DATAO 255
550 GOSUB 1610
560 I I

570 I , ----------

580" START THE MAIN PROGRAM
590 I , .---------

600 INPUT " # of steps It ,NUMSTEPS
610 INPUT "delay ",IDELAY
620 INPtrI tl faward or reverse II , FRV$
630 IF FRV$ = "F" OR FRV$ = "f" T!IEll GOSUB 3100
640 IF FRV$ = "R" OR FRV$= "r" T!IEll GOSUB 3220
650 GOTC 580
660 It

670
680

690 "
700
710
720 I I

730
740
750 1 I

760
770

780
790
800
810
820 II

830
840
850
860
870 I I

880
890
900 11

910 II Decide which port values to print out for user check.
920 I I

930
940
950
960 II

970 I I Print out data value, port O.

74

Check these values with user.

Print out data value, port 2.

Print out data value, port 1.

Ask user to make external trigger decision.

Please respond with ''l' or 'N I only."

tlyt! THEN GOTO 1450

"nil THEN GOTO 2930

Are these the correct values to write to II j
port It j DIOPORT;" (Y/N)lI j

"ylt OR YS
"N" OR 'i$

Wait for External Trigger (Y/N)";Y$
"Y" OR Y$ = "y" TIIEN GOTO 1540

PRINT -: DIO.DATAI = DATA. VALUE'
DIO.DATAO = DATA. VALUE' : GOSUB 2080
PRINT" Port 1 value = ";DIO.OATA1 j lt Decimal, "j
PRINT HEX$(DIO.DATAl);" Hexidecimal, ";
PRINT BINARYl$;" Binary."
PRINT : GOTO 1330

PRINT It Port 0 value = ujOIO.OATAOj" Decimal, It;
PRINT HEX$(DIO.DATAO);" Hexidecimal, ";
PRINT BINARYO$;" Binary."

PRINT II Port 1 value = "jDIO.DATAl;" Decimal, t1;
PRINT HEX$(DIO.DATAl);" Hexidecimal, ";
PRINT BINARYl$;" Binary."

DIO.DATA2' = DIO.DATAI * 25& + DIO.DATAO
PRINT II Port 2 value = njDIO.DATAZ'j" Decimal, "j
PRINT HF.:o<S(DIO.OAIA21)jn Hex, " j
PRINT BINARYl$;U - ";BINARYOSj" Binary."

PRINT: DIO.DATAI = INT(DATA.VALUE'/25&)
DIO.DATAO = DATA. VALUE' - DIO.DATAI * 25&
GOSUB 2020 GOSUB 2080

PRINT 11

PRINT "digital
INPUT Y$

PRINT PRINT"
GOTO 900

IF Y$
IF Y$

PRINT
INPUT "
IF Y$

PRINT
DIO.DATAO = DATA. VALUE' : GOSUB 2020
PRINT II Port 0 value = u jDIO ..OATAO;" Decimal, u j

PRINT HEX$(DIO.DATAO);" Hexidecimal, ";
PRINT BINARYOS;" Binary."
PRINT : GOTO 1330

980 1 I

990
1000
1010
1020
1030
1040
1050 I I

1060 I I

1070 It

1080
1090
1100
1110
1120
1130
1140 "

1150 "
1160 I I

1170
1180
1190
lZ00 It

1210
1220
1230
1Z40 II

1250
12&0
1270
1280 I I

1290
1300
1310
1320
1330 I I

1340 11

1350 It

13&0
1370
1380
1390 11

1400
1410
1420 I'

1430
1440
1450 t,

1460 "
1470 I I

1480
1490
1500

I , • _

I 1 • _
I H H E D I ATE

THEN GOTO 1540

Please respond with ty' or 'N',"

THEN GOTe 1920

our PUT

WRITE. WAIT, WRITE. WAIT

DIOPORT

WRITE. WAIT, WRITE. WAIT

DIO.DATAO

"nit

FOR

WRITE DIGITAL INPUT Operation Complete"

"Nil OR vSIF YS

PRINT PRINT II Waiting for EJITERNAL TRIGGER. 11

WAIT STATUS.REGISTER, READ.WAIT

PRINT II EXTERNAL TRIGGER Received. II : PRINT

Decode DID value, port O.

Write WRITE DIGITAL OUTPUT IMMEDIATE.

IF YS = "yu OR Y$ = "yU TIiEN COMMAND = EXT. TRIGGER
IF V$ = "Nil OR V$ = lin" TIiEN COMMAND = 0

Set up cOllllWld for EXTERNAL TRIGGER.

Check for ERROR.

Wait for EXTERNAL TRIGGER.

Write DIGITAL PORT SELECT byte.

Write the first data byte.

IF YS = "N" OR YS

PRINT : PRINT "

GOTO 1490

WAIT STATUS.REGISTER, COMMAND. WAIT

STATUS = INP(STATUS.REGISTER)

IF (STATUS AND &1180) THEN GOTe 2590

IF NOT(DIOPORT =2) THEN GOTO 1840

WAIT STATUS. REGISTER , WRITE. WAIT, WRITE. WAIT

OUT DATA. REGISTER, DIO.DATA1

PRINT
PRINT II

GOTe 2930

WAIT STATUS. REGISTER , COHHAND.WAIT

OUT COMHAIlD.REGISTER, cDlOOUT + COHHAND

WAIT STATUS.REGISTER,

OUT DATA. REGISTER ,

"ROUTINE

WAIT STATUS.REGISTER,

OUT DATA. REGISTER,

RETURN : END

"------------------------- ROUTINE ENDS------------------------
II If Port 2, write second data byte.

1510

1520

1530
1540 I I

1550 I I

1560 I I

1570 I I

1580

1590

1600

1610

1620
1630 I I

1640 t t

1650

1660
1670 II

1680 I I

1690 t I

1700

1710
1720 It

1730 I I

1740 I I

1750

1760

1770

1780

1790
1800 I I

1810

1820

1830
1840 I.

1850 I I

1860 I I

1870
1880 II

1890

1900

1910
1920 I I

1930 I I

1940 I I

1950

1960

1970
1980 t I

1990

2000

2010
2020 II

2030 I I

2040 I I

2050

2060
2070
2080 I I

2090 I I

2100 I I

2110
2120
2130
2140 II

2150 I I

2160 I I

2170 II

2180
2190

2200
2210
2220 I I

2230
2240
2250
2260
2270 I I

2280
2290
2300
2310
2320 II

2330
2340
2350

2360
2370 I I

2380
2390
2400
2410
2420 I I

2430
2440
2450
2460
2470 I I

2480
2490

2500
2510
2520 II

2530
2540

2550
2560

!lEADERS : " 010 PORT 0, BIT "
TEST : DIO.DATAO GOSUB 2140

BINARYOS : BINARYS : RETURN

Decode 010 value, port 1

!lEADERS : " DIO PORT I, BIT "
TEST : DIO.DATAI GOSUB 2140

BINARYlS : BINARYS : RETURN

Decode set and clear bits of TEST.

IF (TEST AND &Ill) TIIEN PRINT !lEADERS;"0 SET",
IF (TEST AND &Ill) : 0 TIIEN PRINT !lEADERS; "0 CLEAR",
IF (TEST AND &Ill) TIIEN BINARYS : "1"

IF (TEST AND &Ill) : 0 TIIEN BINARYS : "0"

IF (TEST AND &112) TIIEN PRINT !lEADERS;"1 SET"
IF (TEST AND &112) : 0 TIIEN PRINT !lEADERS;"l CLEAR"
IF (TEST AND &112) TIIEN BINARYS : "1" + BINARYS
IF (TEST AND &112) : 0 TIIEN BINARYS : "0" + BINARYS

IF (TEST AND &114) TIIEN PRINT !lEADERS; "2 SET",
IF (TEST AND &114) : 0 TIIEN PRINT !lEADERS;"2 CLEAR",

IF (TEST AND &114) TIIEN BINARYS : "1" + BINARYS
IF (TEST AND &114) : 0 TIIEN BINARYS : "0" + BINARYS

IF (TEST AND &118) TIIEN PRINT !lEADERS;"3 SET"
IF (TEST AND &liB) : 0 TIIEN PRINT !lEADERS;"3 CLEAR"
IF (TEST AND &liB) TIIEN BINARYS : "1" + BINARYS

IF (TEST AND &118) : 0 TIIEN BINARYS : "0" + BINARYS

IF (TEST AND &1110) TIIEN PRINT !lEADERS;"4 SET",
IF (TEST AND &1110) : 0 TIIEN PRINT !lEADERS;"4 CLEAR",
IF (TEST AND &1110) TIIEN BINARYS : "1" + BINARYS
IF (TEST AND &1110) : 0 TIIEN BINARYS : "0" + BINARYS

IF (TEST AND &1120) TIIEN PRINT !lEADERS;"5 SET"
IF (TEST AND &1120) : 0 TIIEN PRINT !lEADERS;"5 CLEAR"

IF (TEST AND &1120) TIIEN BINARYS : "1" + BINARYS
IF (TEST AND &1120) : 0 TIIEN BINARYS : "0" + BINARYS

IF (TEST AND &1140) TIIEN PRINT !lEADERS;"6 SET",
IF (TEST AND &1140) : 0 TIIEN PRINT !lEADERS;"6 CLEAR",

IF (TEST AND &1140) TIIEN BINARYS : "1" + BINARYS
IF (TEST AND &1140) : 0 TIIEN BINARYS : "0" + BINARYS

IF (TEST AND &1180) TIIEN PRINT !lEADERS;"7 SET"
IF (TEST AND &1180) : 0 TIIEN PRINT !lEADERS; "7 CLEAR"
IF (TEST AND &1180) TIIEN BINARYS : "1" + BINARYS

IF (TEST AND &1180) : 0 TIIEN BINARYS : "0" + BINARY$

76

77

OUT COMMAND. REGISTER , esIOP : TEMP = INP(DAIA.REGISTER)

WAIT SIATIlS. REGISTER, COMMAND. WAIT

OUT COMMAND. REGISTER, CERROR

PRINT

PRINT "FAIAL ERROR - ILLEGAL SIATIlS REGISTER VALUE"

PRINT "STATIlS REGISTER VALUE IS ";HEXS(SIATIlS);" HEXIDECIIIAL"

BEEP: BEEP

PRINT

PRINT "FAIAL BOARD ERROR"

PRINT "SIATIlS REGISTER VALUE IS ";HEXS(SIATIlS);" HEXIDECIMAL"

PRINT : BEEP : BEEP : GOSUB 2700

PRINT "ERROR REGISTER VALUES ARE:"

PRINT " BYTE 1 - ";HEXS (ERROR1) ;" HEXIDECIIIAL"

PRINT" BYTE 2 - ";HEXS(ERROR2);" HEXIDECIIIAL"

PRINT GOIO 2930

3010

(Y/N)",YS

Please respondith 'y' or 'N'.1t

Please respond with '¥I or 'N'."

program again
"y" tHEN RUN
lin II TIiEN GOTO

RWl
"y" OR y$

"N" OR Y$

Return to MENU (Y/N)";YS
llyn OR YS nyu TIiEN RUN MENUS
"N" OR ¥$ = "n" TIIEN GOIa 3080

PRINT : PRINT

PRINT : REl'URN

Read the Error Register.

WAIT STATIlS. REGISTER, READ. WAIT

ERROR1 = INP(DAIA.REGISTER)

WAIT STATIlS. REGISTER, READ. WAIT

ERROR2 = INP(DAIA.REGISTER)

REl'URN

Illegal Status Register.

Fatal board error.

INPtrr It

IF YS
IF YS

INPtrr "
IF "is
IF YS

PRINT PRINT"

GOIO 2940

PRINT PRINT"

GOIO 3010

END

2570 "
2580
2590 I I

2600 I I

2610 I I

2620

2630

2640

2650

2660

2670

2680

2690
2700 II

2710 "

2720 "
2730 "
2740
2750 II

2760

2770

2780 "
2790

2800

2810
2820

2830
2840 I'
2850 t,

2860 "
2870 "
2880

2890

2900

2910

2920 "
2930

2940 "
2950

2960

2970

2980 "
2990

3000

3010 "
3020

3030

3040
3050 II

3060

3070

3080

3090 ,,-- _

3100 .. R 0 UTI N E FOR FOR WAR 0 H 0 V E HEN T
3110 I , ------------

3120 FOR I = 1 TO NUMSrEPS

3130 DIO.DATAO = 21
3140 GOSUB 1610
3150 GOSUB 3340

3160 DIO.DATAO = 255
3170 GOSUB 1610
3180 GOSUB 3340

3190 NEXT I
3200 RETURN : END

3210 ,---
3220 .. R 0 UTI N E FOR B A C K WAR 0 H 0 V E HEN T

3230 ,---
3240 FOR I = 1 TO NUMSrEPS
3250 DIO.DATAC = 42
3260 GOSUB 1610
3270 GOSUB 3340

3280 DIO.DATAO = 255
3290 GOSUB 1610
3300 GOSUB 3340

3310 NEXT I
3320 RETURN : END

3330 ,---
3340 " R 0 UTI N E FOR 0 E LAY

3350 ,---
3360 FOR J = 1 TO IDELAY
3370 X = X+l : X = X-I
3380 NEXT J

3390 RETURN : END

78

A PROGRAM TO TEST TIlE lEEE-4g8 DRIVERS

I'"
This program is used to test the Lattice c IEEE 488
drivers for the Ziatech ZT 1488 board. Each driver can
be tested by inputing the statement to be tested. Any
other required inputs are prompted for. to exit type
"end". In this version this program has been modified to change
arg (orm for term and strlen from pointer to value.

To verify operation of each of the routines a ZT 488
analyzer or IEEE 488 instrument is used.

*1
i" FOR WRITING ANY MODULES TO "LISTEN", "TALK" OR CONTROL

TIlE lEE-488 BUS, IT IS BETTER TO BUY THE ZT 488 LOGIC
ANLYZER • This is required to debug the program. 1:/

#include "stdio.hlt

linclude Itctype.h"

79

#define NREG 25
#-define N 8097

1* number of chars in time string *1
1* size of data buffers *1

#define GETS(str) gets(str)
Idefine GEtt(i) scanf(l'%d lt

, &i);getchar()

'define GETH(j) scanf(''%x ll
, &j);getchar ()

define LF '\012' / line feed terminator string ~i

idefine LINE_MODE 30
'define COL_MODE 1
;def ine TRUE I
#define FALSE 0

extern ercode; ;~': set by 488 " I
extern rcvlen; I" likewise .,: i

extern primaryadr; I" GPIB IIO addresss :': I

extern clk.a.dr; I~': Clock IIO address "/
extern secondaryadr; I" zSBX I/O address ,', I
extern year; I~': clock year *1
extern delayconst; /~': const for software delay *1

char devlst[80] = (OJ;
int line = (l) ; I~': default is column mode ~':I

int b_len;
int files = FALSE; .~ flag for files cODJnand :': !,n
char ans[3!;

80

int buffer[Nj; 1* space for both types of buffers *1
char devdata[N];
int il = {3000}; 1* initial timeout value 3 seconds*!
int i2; 1* temp location *1
int iO = {OJ; jk location containing a zero *1
int di5180 = (a}; 1* 5180 flag set false *1
int found;

main (k, argv) int k; char *argv[];
(
char
char
int

command[80] ;
tim[NREG] ;
i;

1* Now initialize various parameters within the
Note, the 1/0 addresses can be changed.

driver.
'1: I

year = OX3538; 1* ascii code for '85 1 */
delayconst = 42; 1* canst for IBM 4.7 MHz clock */
clkadr = Ox240; 1* clock I/O address */
primaryadr = Ox210; 1* GPIB 1/0 address *1
secondaryadr = OX220; 1* zSBX 1/0 address */

1* If primaryadr or clkadr are changed form the defaults
then place a call to setaddr here. This will change
the factory default 1/0 addresses. *1

timedy(il); 1* set initial time delay in case of init error */

*1
init on entry *1

w/corrmands
perform an

i = 1; /* for ioit
ioit(i); /* always
if(ercode == 5) (
printf("\nTime out occurred during initialization. Turn on a.device");
exit(l); /* exit the program *1

} ;
timedy(iO); 1* restore time delay to forever *1
term(LF); /* and set line feed as default terminator *1
printf("\nFirst test routine must be 'devlst' to set a device address ll);

printf(f1\n 1help' ...·i11 provide a brief list of available cOll'll\Cl11ds.\nll);

do (
printf (11\ n enter routine to test - ");
do (
GETS (corrmand);
} while (strlen(command) == 0);
strlower(command); 1* everything lower case */
decodel (~omnand);
if (found == 0) (

decode2 (command);
}

} whi Ie (strcmp (coltlllaJld, "end" ! = 0);
} I~': main ~': l

decodel (command) char *command;

int datalen;

found = 1;

if (strcmp(conmand, "help") == 0) {

printf(ll\n\t\t\tColJlDaIlds are:");
printf("\nlEEE-488 Routines. It

);

printf(lI\n\tdevlst\tset device address");
printf(t1\n\tinit\tinitialize (done automatically at start)lI)j

printf("\n\tline\tset recvst output to line or col IDOdelt)j

print!(n\n\ tsendst \ tsend string to device II);

printf(lI\n\trecvst\tretrieve data from device");
printf("\n\tremote\tenable remote progranming");

printf("\n\tdevclr\tclear device l1
);

printf("\n\tlocl\tset device to local");
printf("\n\tspoll\tperform serial poll (after srqsta)")j

printf("\n\ttimedy\tsets timeout delay per handshake");

printf("\n\tsenddm\t\send string to device using dmal1
);

printf("\n\trecvdm\tretrieve data from device using dmalt
);

printf("\n\tsendbn\tsend binary data to device U);

printf("\n\tsnddbn\tsE:nd binary data to device using dma");
printf(lI\n\tterm\tchange default string terminator characterll

);

printf("\n\t.setpri\tuse primary (default) IBM i/o port address(0210h)");
printf("\n\tsetsec\tuse secondary ZT 1488 IBM i/o port address (0220h)");
printf("\n\tsrqsta\treturns current srq status");

printf(tt\n\tlokout\tlocal lock outll);

printf("\n\ teei \ tsuppress eoi");
printf(II\"\ tbustat\ tget bus status");

printf("\n\tfiles\tpermits storage of data in a disk file ll);

printf(lI\n\tppoll \treturn parallel poll status tl
);

printf(l'\n\tppollu\tWlconfigure for parallel pollll);
printf("\n\tppolle\tenable parallel poll");
printf{"\n\tppolld\tdisable parallel poll");

printf(lt\n\ttrig\tgroup execute triggerll
);

printf("\n\tsetaddr\tchange I/O addresses lt);
printf(ll\n\tdoc\tget version numberlt);

printf(lt\n\tcmd\toutput IEEE 488 conmand");

printf("\n\txfer\ttransfer bet.....een devices ll
);

printf("\nReal Time Clock Routines 'ZT 1488'.");
printf(lI\n\t.alarm\tset clock alarm");
printf (It \ n \ t loadl \ tload c lock latches");
printf("\n\treadl\tread clock latches");

rrintf(lt\n\tloadc\tload clock counterslt);

printf (11\n \ treadc \ tread clock countersn);

print!("\n\ tsystic\tset periodic tics ll);

printf(1t\n\tinstat\tget status\n");

return;
} ;

,,1

if (strcmp(connand, "devlst") 0) {
getlist(devlst);
return;

} ;

if (strlen(devlst) == 0) {
printf(lI\nDevice list must be set up before any other coamand.");

return;

};

82

strcmpif
{
int tj

command, "init" o)

printf ("\ninit data _ ");

GETI(e);
init (t);

}

eolse if (strcmp (coamand, " sendst") 0)

{
getdata(devdata);
sendst(devIst, devdata);
puts (devist j;

puts (devdata);
}

else if (strcmp (command, ttsendbn") == 0)
{

getdata(devdata)j

b_len = strlen(devdatal;
printf("\nbuffer length is %d. 00 youish to change it (yin)? II);

GETS! ans);

if (tolower(ans[Oj) == 'y') {
printf("\nEnter new length - ");
GETI (b_len);

}
sendbn(devIst, devdata, b_len)j

puts (devist);

puts (devdata);
}

else if (strcmp (command. lIrecvstl') 0)

int i
int actualen

printf("\ninput nWllber of bytes _ It);

GETI (datalen);

setstr (devdata, dataIen < N ? datalen : N)j

recvst (devIst, devdata);
printf (lI\nnumber bytes requested = %<1\011 , datalen);

printf ("number byt.es untransmitted %d\nlt
, rcvIen);

actualen = datalen - rcvIen;
printf (t1 number bytes received = %<1\n", actuaIen);

prntdata(devdat.a,actuaIen,line);

}

else if (strcmp (conrnand, " cmd") == 0)

{
getdata (devdata);
emd (devdata);
}

else if (st.rcmp (command, "xferll 0)

{
xfer (devlst);

}

else if (strcmp (coamand, "srqstal!) -- 0)

{
int stat;

srqsta
printf
}

&stat);
"\nstatus %x\n", stat);

strcmp (command, "remote")else if
{
remote (devist);
}

o)

else if (strcmp (command 9 "Iocll!) 0)

{
locI (devist);
}

else if (strcmp (command, "lokout ll) 0)

(
lokout() ;
}

else if strcmp (command, "devcIr l1) o)

devclr (devlst);
}

else if (strcmp (corrrnand, "trig") 0)

{
trig (devIst);
}

else if (strcmp (conmand, "doc") -- 0)

{
char verI35];

setstr (ver, 35);
doc (ver);

printf ("%5 \ n", ver);

}

34

else if
{

strcmp (cOlJll'laI1d, " eo i") a)

int t;

print! ("\nenter 1 for EOI, 0 to supress EOI - ");

GETl (t };

eoi (Cit);

else if (strcmp (conwnand, "bustat") 0)

(
int tj

bustat(Olt);
priotf ("\0 status
}

%x\n", t);

else if (strcmp (conmand, Ilterm") == a
(
printi("\n Enter terminating character - ");
ans[O] getche();
ans[l] = II;

ans[Z] = 0;
iZ = term (ans[O]);
printf(lI\nprevious terminating character was %02x (hex)lI, i2);

}

else if (strcmp (command, IItimedy" 0)

(
int msecsj

printf("\nmilliseconds timeout - II);

GET! (msecs);

i2 = timedy (msecs);
printf("\nprevious value of timeout was %d millisec. '1 , i2);

else if (strcmp (command, " ppo l111
) 0)

{

int response;

ppoll (&response):
printf (Urrall response %x\nll ,response);
}

else
{
found
}

o·,

if (ercode != 0)
{
printf ("\nerror code for %5 is %d \n", corranand, ercode);

}

} I" decodel *1

decode2 (command) char *command;
{

int datalen;

found = 1;

if (strcmp (command, "ppo lldU
) 0)

{
ppolld (devlst);
}

else if (strcmp (cou:mand, "ppO lle lt
) 0)

{
int conf;

printf ("\nconfiguration data - ");
GETI (conf);
ppolle (devlst,canf)j
)

else if (strcmp (corrmand, "ppo llult) 0)

{
ppollu ();
}

else if (strcmp (corrmand? "spall") -- 0)

int status[36]j
char device[9]
int i;
int n =- 10 j

for (i = 0; i < 36j i++)

status{i] = 0; ;* zero status array */
setstr (device, 8);
spoIl (devlst, &status[IJ, device);

I"
* don't bother displaying first srq if none were detected
,', I

if(device[O] == '9' && device!ll == '9')

else
prioti (U\nfirst device responding with SRQ is %s\nll , device);

printf(lI\ndev#\thex\toctal\n")j
for (i=1; i < OJ i++)

printH"\n%d\t%x\t%o", i, status[i), status[i])j

}

else if (strcmp (cOlIlNUld, Itsetpri") == 0)

{
setpri ();
}

else if (strcmp (cOlllDand, " setsec ll) == 0)

{
setsec ();

}

else if (strcmp (command, IIsetaddr lt) 0)

{
int t;

printi ("\ncurrent GPIB I/O address is %x (hex), neW' hex value - II, primaryadr);

GEIH(t);
primaryadr = tj

printi (11\0 current clock I/O address is %x (hex), new hex value - ", clkadr)j

GEIH(t);
clkadr tj

setaddr ()j

)

else if (strcmp (command, " senddm") := 0)

getdata (devdata)j
senddm (devlst,devdata)j
puts (devIst);

puts (devdata);

)

else if (strcmp (connand, " snddbn ll
) 0)

getdata(devdata)j

b_len = strlen(devdata);
printf("\nbuffer length is %d. Do you wish to change it (yin)? ");
GETS(ans);
if (tolower(ans[O) == 'y') (
printf(tt\nEnter new length - ");
GETI (b_len);

}

snddbn(devlst, devdata, b_len);
puts (devlst);

86

87

puts (devdata)j

)

else if (strcmp (command, "recvdm") == (I)

datalen) ;
rcvlen) ;

%d\nll
,

%d\n" ,

= ~.,(j\nll J actualen);

1* normal data output *1

temp pointer ~':II"

int i ,j;
int actualen;
union {
char rdgc[Z];
int rdgi;

} fix;
char ;':idx;

int 1:idi;

printi ("\ninput number of data bytes _ 11);

GETl (datalen)
setstr (buffer, datalen < N ? datalen : N)j

recvdm (devIst, buffer);
printE (f1\nnumber bytes requested =

printE ("number bytes untransmitted
actualen = datalen - rcvlenj
printf ("number bytes received
prntdata(buffer,actualen,line)j
)

else if (strclDp (command, "loade n) == 0)

{
char string[~~GJ;

getdate (string);
loadc (string);
}

else if (strcmp (conmand, 1I1oadl") 0)

(
char string[~~EG);

getdate (string);
load! (string);

}

else if (strcmp (cOlTIMnd, lIreadc ll) 0)

{

char tim{ NREG J ;

setstr (tim, NREG-l);
readc (tim);
pdate (tim);
}

else if (strcmp (cozmnand, Ilreadl") 0)
{
char tim[NREG];

setstr (tim, NREG-l);
readl tim);

pdate tim)j
}

e 15e if (strcmp (cOlIlDaIld, Il synch ll 0)

{
synch (};
}

else if (strcmp (coemand, "systic") 0)

{
int stat;

print.f ("\nperiodic value _ II);

GETI (stat);
systic (stat);

}

else if (strcmp (command, t1a iarmlt
) 0)

{
char tim[NREG];

setstr (tim, NREG-l);
getdate (tim);

alarm (tim };
}

else if (strcmp (command, tlinstat") 0)

{
int stat;

88

instat (&stat);
printf ("\nstatus
}

%02x (hex)", stat);

else if (strcmp (cOlmlaJld, " end l1
) 0)

else if (strcmp(command, Uline") == 0) {

printf("\n recvst data may be output in either a horizontai line (best");
printf(l'\n for ascii data) or in column format in octal, hex and ascii");
printf("\n (better for binarv or mixed ascii/binary data)II);

printf("\n Enter 'I' to output data in line form, else Ie' for column _ ");

ans [OJ = getche(};
line = «tolower(ans[OJ) == 'I'} ? LINE_MODE: COL_MODE);

}

else if (strcmp(command, "files") == 0)

printf("\n Turn data file recording flag ON or OFF - ");

gets(ans);
strlo...·er(ans);
files = «strcrnp(ans,"on")
}

else

0) 1 TRUE FALSE);

39

, ,

•

{
puts ("illegal corranand\n\n");

}

if (ercode != 0)

printf (It\nerror code for ""GS is %<1\0", connand, ercode);

}

Ii, decode2 i'l

getlist (dl) char *dl;
(
printf("\nEnter device list It);

GITS (dl);
strcat (dl, II II);

} 1'-' getlist */

getdata dl) char *dl;
{
printf ("\nenter data string II);

GITS (dl);
} I" getdata "'I

setstr (string, n) char *string; int OJ

int i;

for (i = 0; i < n; i ++)
~~string++ =

~':string = 0;
} i~': setstr -::/

getdate (dl) char *dl;
{

iot len;

printf (lI\nlnput time and date: \n");
if «len = strlen (dl» < (NREG - 1»

{
printf (n\nstring must be longer then %d chars \ nil , len);
}

printf ("\nHT 55 MH HH OW OM MO YR\n");
GITS (dl);
strcat Cd!, 11 II);

} I" getdate "1

pdate (dl) char *dl;
{
printf (ll\nHT 55 MM HH OW OM HO YR\n");
printf ("%5\n", dl);

} i* pdate *1

strlower(strng) 1* convert string to lower case k/

char }':strng;

{
while (*strng) {
*strng = tolower(*strng);
}'tstrng++ ;

}
}

prntdata(dbuf,actualen,line)
char }':dbuf;

int actualen, line;

1* this routine just prints out the received data in column or
* line format depending on value of line
~': /

int i;

char ans[~l, filename[12j, c;
FILE 1:£1;

for (i = OJ i < actualen; i++) {

if (i % (20 " line) == 0) {

printf ("\n press any key to continue (e to exit) ");

ans[O] = getch();
printE(lI\n");

if (ans[OJ == 'e')
break;
}

if(line != COL_HODE) (
printf(l~oC" ,dbuf[i 1).;

if (i != 0 && i % 60 == 0)

printf ("\n");
}

else {
if (i % (20 * line) == 0) {

printi (lI\nbyte#\toctal\thex\tcharacter\nll
);

}
printf ("\n%d\t%030\t%03xh\t%c", i, dbufli],dbuf[i],dbufli] < ' , ? '!'

)
} ;

if (files == TRUE) (
printf(lI\nwrite data to file (yin)? ");
c = getche() j

if (tolower(c) == 'y') {

dbufl ill;

90

)
}

printf("\nenter file name: ");
geese filename);

if (fl = fopen(filename,"w")) == NULL) (

printf("\ncannot open output file");
exit(1);

}
fputs("\n");
fc lose(fl);

}

91

DEVELOPMENT OF CHEMICAL
MEASUREMENTS USING ELECTRODES

Arland H. Johannes
School of Chemical Engineering

Oklahoma State University

University Center for Water Research
Oklahoma State University
Stillwater, Oklahoma 74078

July 1987

