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CHAPTER I

INTRODUCTI ON

The purpose of the herein described research was to develop a

numerical model to simulate the performance of fixed-bed ion exchange

columns for general ion exchange systems. The systems of interest were

those which involved gel-type ion exchange resins and two exchanging

ions which exhibited linear, Langmuir, or Freundlich equilibrium­

relationships.

The objective was to develop a model which would require a minimum

of experimental data for evaluation. Since solution-resin equilibrium

is one of the first properties to be eval4ated for a proposed ion

exchange system, the model was developed on the basis of equilibrium

theory which neglects all mass transfer inefficiencies in the solution

and resin phases, describes the rate of exchange as infinite, and

describes the solution to be in equilibrium with the resin at all times

and at all points in the fixed bed. The rate term in the material

balance equation was replaced by a function of the equilibrium

relationship.

Industrial applications of ion exchange include the purification of

water sources, separation of rare earth metals, and decontamination of

nuclear reactor cooling water. A common process arrangement consists of

vertical fixed-bed columns which are used to contact the solution and

1
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the ion exchange material. The effect of changes in operating

conditions on the performance of ion exchange processes is needed to

determine the optimum process configuration, operating conditions, and

column design. Most process development requires scale-up due to the

complexity of ion exchange processes. Considerable effort would be

saved if optimum operating conditions could be determined, through the

use of a rating program on a pilot-scale operation, and then included in

the scaled-up process. Therefore, a reliable mathematical model, which

requires a minimum of experimental data, could be used by engineers to

avoid extensive experimentation with actual columns in the determination

of optimum process operating conditions.

As discussed in Chapter 2, determination of the parameters

necessary for a kinetic treatment of ion exchange requires extensive

experimentation. Equilibrium theory, which. requires only column

characteristics and equilibrium data for evaluation, has been

successfully used in the isolation of potential ion exchange systems.

The convection-dispersion (C-D) equation, which governs the

transient behavior of an ion exchange column with both convective and

dispersive material transport accounted for, was derived. The solution

of the C-D equation, which has historically been difficult to

approximate numerically, was then approximated by an implicit finite­

difference technique. A numerical dispersion correction term was

included to account for truncation error inherent in the approximation

of the partial derivatives.

The approximation was developed from a two-point temporal, three­

point spatial finite-difference grid network, which insured consistent

orders of truncation error in both time and space. The numerical
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approximation was validated by comparison with closed-form analytical

solutions for the linear form of the C-D equation.

The model was evaluated by comparing predicted column performance

with the corresponding experimental data for both linear and nonlinear

systems. Parameters of the model were adjusted to give agreement in the

breakthrough times for all systems studied and the entire breakthrough

curve for the linear-equilibrium system. Sensitivity tests on four

system parameters were conducted to aid in further model development.



CHAPTER II

LITERATURE REVIEW

This chapter gives a review of past work in three areas which the

present work combines. The characteristics of ion exchange are briefly

discussed with an aim to justify the assumption of local equilibrium,

between solution and resin, used in the present model. Applications of

equilibrium theory are then discussed. The final section concerns the

numerical solution of the convection-dispersion equation which is the

foundation of the present study.

Characteristics of Ion ·Exchange

Solid ion-exchange materials consist of a matrix, held together

(cross-linked) by chemical and physical bonding, and of chemically

functional groups which are bonded to the matrix. The matrix is

absorbent to suitable solvents. When this sorption occurs, the

functional groups dissociate to form two types of ions. The first type,

of either positive or negative charge, is immobile and remains bonded to

the matrix. The second type of ion is oppositely charged to the first

type. This ion is mobile and free to move through the solvent-matrix

system and into the external solution.

Most solid ion-exchange materials, the majority of which are

addition copolymers prepared from vinyl monomers, consist of a

hydrocarbon matrix to which the functional groups are bonded. An

4
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example of this type of resin is cross-linked polystyrene which has

functional groups introduced after polymerization, by treating the

polymer with sulfuric acid to produce sulfonic groups.

Ion exchange occurs when the mobile ions, originally in the

solvent-matrix system, move into the external solution and different

ions of similar charge move from the external solution into the solvent­

matrix system. The exchanging ions are termed counter ions, while the

ions originally in the external solution, of opposite charge to the

counter ions, are called co-ions. 1he ion exchange is termed cation

exchange if the counter ions are positively charged, and anion exchange

if the counter ions are negatively charged.

For the condition of electroneutrality to be met, the exchange of

counter ions must be stoichiometric. Also, exchange of counter ions is

usually reversible in that conditions can be found under which the same

counter ion is exchanged into and out of the solvent-matrix system. The

solvent-matrix system will preferably sorb certain counter ions. This

property, termed selectivity, has given ion exchange its potential as a

separation technique in industrial and laboratory applications.

Since the exchange reaction occurs extremely rapidly, the rate of

exchange is controlled by diffusion of ions in the resin pores and

through the external solution. Either of these diffusional mechanisms,

or some combination of both, may be rate limiting.

A rigorous quantitative theory for the general kinetics of fixed­

bed ion-exchange processes is not feasible owing to the complexity of

both ion exchange and the hydrodynamics of porous media. Even the much

simpler problem of batch ion exchange kinetics has been solved only for

certain limiting cases (Helfferich, 1962). For this reason, the
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assumption of local equilibrium, where mass-transfer inefficiencies are

neglected, is appealing for the general model under consideration.

Two basic varieties of equilibrium are found in column exchange

operations. Favorable exchange equilibrium occurs when the counter ion

in the feed is preferred by the ion exchanger. Any spread in the

exchange front is counteracted by delay of preferred ions ahead of the

front and displacement of nonpreferred ions behind the front. A sharp

boundary between converted solution and unconverted solution results.

The sharpness of the boundary is proportional to the strength of

preference.

In unfavorable exchange equilibrium, the ion initially present in

the resin is preferred by the resin. Feed ions which are ahead of the

exchange boundary are held less strongly than the favored ions, while

resin ions behind the boundary are delayed. The boundary becomes

increasingly diffuse through the length of the column.

At breakthrough, when the effluent concentration rises above some

critical level, the bottom layers of resin are not completely

converted. Therefore, the breakthrough capacity is less than the total

column capacity. A measure of column efficiency is given by the degree

of column utilization, which is defined as the ratio of the breakthrough

to the overall capacities and is high when the exchange front is

sharp. In addition, a system which exhibits a sharp boundary allows for

a greater flow rate and a smaller column due to higher exchange

efficiency.

On the macroscopic level, some equil ibrium theories invol ve the

concept of "effective plates," the solution in a vertical section of the

column attaining equilibrium before moving to the next section
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(Helfferich, 1962). Deviations from local equilibrium are accounted for

by assigning each section a finite height, called the effective plate

height, which must be determined experimentally. These theories then

assume mixing in the plates to cause boundary spreading. Other

equilibrium theories, such as that of DeVault (1943), assume that

equilibrium is attained by each resin particle. These theories are

especially useful for unfavorable equilibrium since the boundary rapidly

diffuses and approaches the pattern in which local equilibrium

prevails. The process then becomes independent of the location in the

column. These theories are well suited to multicomponent systems and

systems whose isotherms are partly favorable and partly unfavorable.

On the microscopic level, ion exchange rates are controlled by film

and particle diffusion. Equilibrium theories neglect these mechanisms,

as the exchange rate is infinite. Film diffusion control can usually be

eliminated ill fixed beds of spherical res·in beads by using small beads

and low flow rates. For spherical ion-exchange beads, Gilliland (1953)

gives an empirical relation for the Nernst film thickness as a function

of ro,·the bead radius. ro dereases with decreasing particle size, so

that film thickness and the importance of film diffusion decrease in the

same manner. Helfferich (1962) reported typical film thicknesses on the

order of 10-2 to 10-3 cm.

Particle diffusion control is somewhat more complex because it

involves such parameters as the degree of cross-linking in the resin,

ionic diffusivities, and intraparticle electrical effects. The

evaluation of resin-side parameters requires extensive experimental

work.
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High rates of exchange are favored by a low degree of cross­

linking, which is accompanied by increased swelling of the resin. In

this condition, the resin matrix interferes with ionic diffusion to a

lesser extent than with higher cross-linking in an unswollen resin, and

the diffusing ions are able to move through the resin more rapidly.

Ionic fluxes are coupled by the imposed condition of electroneutral­

ity. The electric field generated by the diffusion of the ions produces

an electric transference of counter ions in the direction of the slower

diffusing ion. This electric transference is superimposed on the

diffision. The resulting net fluxes, but not necessarily velocities, of

the counter ions are equal, while the purely diffusional fluxes,~as a

rule, are not. The Nernst-Plank equation, which expresses the net flux

as the sum of diffusional and electrical fluxes, must be solved for each

species present (Helfferich, 1962). In light of the necessity of

e1ectroneutra1i ty and the st rength of the. elect ri c potent i a1 whi ch

develops under even slight deviations from neutrality, the electrical

transference could overshadow the purely diffusional transference.

Another factor which influences particle diffusion of ions is

convection conductivity. When diffusion begins, there are more counter

ions, than co-ions, in the particle. Momentum is transferred to the

solvent molecules by the diffusing counter ions, and convection occurs

in the direction of counter-ion transfer. The convection of pore liquid

is superimposed on the migration of the ions relative to the pore

liquid. The ions move faster, relative to the matrix, than they would

during ordinary diffusion. In usual resins, the pore width is smaller

than the Debye-Huckel ionic cloud, so that convection occurs through the
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entire pore cross section rather than at the walls only (Bjerrum and

Manegold, 1928).

Complete description of the electrical effects in the exchanger can

be given in terms of irreversible thermodynamics, but the treatment is

rather abstract. Therefore, a model is proposed (Helfferich, 1962).

The ion exchanger is considered as a porous system which is

homogeneous on a macroscopic scale. Transference relative to the matrix

results from superposition of transference relative to the pore liquid

and transport by convection of the 'pore liquid. Some fundamental

limitations exist even for this simple model. The Nernst-Einstein

relation for ionic mobility disregards coupling of fluxes other than by

induced convection. The model also implies that pore liquid ions travel

at the same rate through the pore cross section, disregarding ionic

interactions with the matrix (Spiegler and Coryell, 1953). Individual

ionic-interaction parameters would be req~ired for improvement of the

model, but the mathematics would be greatly complicated.

The parameters needed for evaluation of the model include the

intraparticle electric potential gradient, ionic diffusivities, specific

flow resistance, and specific conductivity of the resin. These

parameters are determined, for a particular system, through extensive

experimentation. This approach is in appropriate for general

considerations.

The assumption of local equilibrium, due to its simplicity, is the

most useful way of treating the kinetics of fixed-bed ion-exchange

processes for general systems. Rigorous mathematical treatment of the

equilibrium theory in fixed beds can be found in the literature; see,
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for example, Goldstein (1953). However, the solutions presented are

valid for linear isotherms only.

In summary, equilibrium theory, which requires only column

. characteristics and equilibrium data for evaluation, is based on the

following assumptions:

1. Equilibrium between solution and exchange resin exists at all

times, and at all points within the exchanger bed;

2. The bed is homogeneous. A random distribution of void spaces

exists within the resin;

3. Flow is in the axial direction only;

4. Secondary processes, such as neutralization, precipitation, and

complex formation are neglected. Furthermore, in the absence of

chemical reactions, ion exchange usually evolves or consumes little

heat. Enthalpy changes during exchange are usually less than 2

kca1/mo1e (He1fferich, 1962). Therefore, the ion-exchange column is

assumed to operate isothermally. Additionally, for the dilute solutions

of primary interest, any changes in solution density or viscosity,

during the exchange process, are small. So, for isothermal operation

with dilute solutions, the density and viscosity of the solution are

constant.

Equilibrium Theory of Ion Exchange

The performance of an ion exchange operation is governed by

exchange stoichiometry, solution-exchanger equilibrium, and exchange

rate, as well as the process arrangement used. Equilibrium theory

involves consideration of stoichiometry and equilibrium only.
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Although calculations based on equilibrium theory may yield

concentrations in the bed, or effluent histories, quite different from

those obtained physically, these calculations represent the optimum

performance of the exchange operation. The calculations may be

extremely useful in the prediction of the behavior of new systems and in

the interpretation of experimental results.

Equilibrium theory calculations can be useful in the exclusion of a

proposed process on the basis of equilibrium data alone. The deter­

mination of additional process parameters is not necessary. The effect

of changes in process variables, such as solution flow rate, column

size, and operating temperature, can also be predicted. Equilibrium

theory accurately predicts any.periods of constant-effluent

concentration which may occur, which is especially important for

multicomponent exchange. Under certain operating conditions, namely low

flow rate, unfavorable equilibrium, and h.igh diffusivities in the

exchanger phase, equilibrium theory calculations may provide a good

approximation to actual column performance.

The first equilibrium theories pertained to chromatography. Wilson

(1940) qualitatively described chromatographic analysis by neglecting

intraparticle diffusion and establishing instantaneous equilibrium

between the solution and the sorbent. The width of the adsorption band

was also assumed to remain constant during the chromatographic

development. Observed widening of the adsorption band was attributed to

lack of equilibrium between sorbent and solution phases.

DeVault (1943) treated single component sorption rigorously, and

discussed multicomponent sorption qualitatively, in terms of equilibrium

operation and a general isotherm. Wilson (1940) had shown that solid-
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phase concentration was a discontinuous function of distance along the

bed, while DeVault's study indicated that this waS true if the solute

was strongly adsorbed. Weiss (1943) extended DeVault's work to linear,

. Langmuir, and Freundlich isotherms, with results similar to those of

DeVault.

Wa lter (1945) used the equil i bri um theory and developed equati ons

for two-component adsorption. As with DeVault (1943) and Weiss (1943),

the diffuse nature of the exchange-front boundaries was investigated.

A chromatographic column, if operated at equilibrium conditions,

could be used to determine the equilibrium isotherm of a system of

interest. An obvious advantage of this method is that a single

experiment gives an almost unlimited number of points of the isotherm.

Glueckauf (1947) has investigated this experimental use of equilibrium

theory.

The analogy between the mode of operation of a distillation column

and that of an ion-exchange column allowed modification of local

equilibrium theory. The ion-exchange column was treated as a series of

"plates." As solution flowed through each plate, equilibrium between

the solution and the exchanger occurred. The plate was of sufficient

length, referred to as the "height equivalent of one theoretical plate

(HETP)," to accomplish this equilibration.

Martin and Synge (1941) found that, under the limited conditions of

constant equilibrium coefficient, the width of the adsorption band

predicted by their HETP theory was similar to the experimentally

observed band width. By using solution volume and resin mass, rather

than theoretical plate area and height, respectively, Mayer and Tompkins

(1947) simplified the theory of Martin and Synge (1941). The approach
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of Mayer and Tompkins (1947) was directly applicable to determining

eluate composition, as well as to predicting the distribution of the

various substances in the column. Application of their method to rare­

earth separations at near-equilibrium conditions showed good agreement

with experimental data.

Glueckauf (1955) reported that the theoretical-plate approach was

important in improving the efficiency of ion-exchange operations. He

found that the column efficiency was improved by making the HETP suf­

ficiently small and the total number of plates sufficiently large.

Pandya et al. (1965) applied stagewise calculations to the

equilibrium-performance evaluation of ion-exchange columns for the

prevention of scale formation during sea water evaporation. The work of

Martin and Synge (1941) and Mayer and Tompkins (1947) was extended to

yield approximate results for multicomponent systems with nonlinear

equilibrium isotherms.

Local-equilibrium theory was applied to process design calculations

by Frisch and McGarvey (1959). Axial dispersion was neglected, and the

work of Walter (1945) was extended to predict the effects of

regeneration level and regenerant purity on maximum regenerated

capacity, equilibrium leakage during the exhaustion cycle, and elute

composition. Good estimation of column performance was accomplished

even with extrapolated data.

The University of California's Sea Water Conversion Laboratory used

the equilibrium model extensively in the design of a sea-water-softening

process, in the analysis of different schemes for saline-water

pretreatment or desalination, and for studying the dynamics of

multi component ion-exchange systems. Of particular importance in a



desalination process was the removal of constituents, from the brine,

which deposited as boiler scale in an evaporator.

Klein et a1. (1963) used the equilibrium model to select suitable

14

ion-exchange resins for the sea-water-treatment process. Optimum values

of the product of selectivity coefficient and resin exchange capacity

were used to eliminate undesirable exchange materials. Within the

useful group of resins, marked trends with cross-linking, total and

individual ionic concentrations, and temperature were not apparent.

Klein et a1. (1965) used the equilfbrium model to develop rules for

outlining the overall concentration profiles for mu1ticomponent

systems. The rules were used to determine the number of constant-

composition zones, the signs of the slopes of the concentration

profiles, and the order of points at which the component concentrations

could become zero. The concentration profiles could then be converted

to effluent concentration histories. Klejn et a1. (1968) performed a

design and cost analysis of the process which was recommended by the

equilibrium studies.

Klein and Vermeulen (1974) summarized the theoretical aspects of

the equilibrium operation of pure ion exchange that had been used in the

previous studies. Column dynamics and ion exchange accompanied by

chemical reaction, as well as design applications in cyclic operation,

were considered.

Solution of the Convection-Dispersion Equation. The parabolic

partial differential equation which describes one-dimensional flow in

porous medi a is

vl£
z az (1)
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where

C = solution phase concentration, lb/ft3,

F = isotherm proportionality function, F(C,€),

Oz = dispersion coefficient, ft 2/sec,

and

Vz = average intersitital velocity, ft/sec.

The solution to this parabolic equation has been historically difficult

to approximate numerically.

Standard implicit finite-difference techniques, such as the method

of Crank and Nicolson (1947), developed oscillations and frontal­

smearing due to truncation of a Taylor series in the numerical

approximation. Von Neumann and Richtmeyer (1950) attributed these

difficulties to shock fronts which manifested themselves mathematically

as discontinuities in system properties•. The shocks occurred when the

value of Oz was zero or much smaller than the value of Vz• Equation 1

became more hyperbolic, than parabolic. under these circumstances.

These authors proposed that the difficulties could be decreased by using

an artificially large value of 0z' which restored some of the parabolic

character of Equation 1. The effect on the numerical solution was to

give the shock fronts a thickness on the order of the numerical-grid

spacing and smear out the discontinuities so that the dependent variable

varied rapidly, but continuously.

Peaceman and Rachford (1962) developed a difference analogue to

Equation 1 by replacing the spatial derivatives with difference

quotients evaluated at tj and tj+1. The resulting equation was referred

to as a "time-centered" difference equation and was given as
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16

Vz j
+ - (C. 1/2/H 1-

j +1 j C j +1 ) _ 2F ( j +1 j)
+ Ci - 1/ 2 - Ci+1/ 2 - i+1/2 - llt Ci - Ci .

where C was a representation of concentration at the spatial node,

i +1/2.

Two choices of C were considered:

1. Distance-Centered

Ci +1/ 2 = (C i +1 + Ci )/2;

2. Backward-in-Distance

Ci +1/ 2 = Ci ·

(3 )

(4 )

Substitution of Equation 4 into Equation 2 gave "off-centering" in the

direction opposite to flow. Calculations with Equation 2 showed

overshoot for the distance-centered difference equation, and frontal

smearing for the backward-in-distance difference equation.

To avoid these characteristics, any overshoot was added ahead of
j+1 j+1the front to Ci+1, and Ci was decreased by the same amount of

overshoot. Results were improved with this "transfer of overshoot"

method. However, application of this method to the two-dimensional

problem with zero dispersion indicated that the method contained a

numerical dispersion of the same order of magnitude as the hydrodynamic

dispersion.

Stone and Brian (1963) developed a rigorous method to determine the

accuracy of various finite-difference approximations of the linear form

of Equation 1. Their analysis was based on the adjustment of arbitrary

weighting parameters to obtain a finite-difference approximation which
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traveled the low-frequency harmonics of the analytical solution to the

C-D equation at velocities close to the convection velocity, Vz• Cyclic

use of weighting parameter values was also observed to enhance the

convection properties of the finite-difference approximations to the C-D

equation. This treatment succeeded in reducing the oscillation and

numerical dispersion, but some oscillatory behavior was still present in

steep-front regions.

Garder, Peaceman, and Pozzi (1964) proposed a method of numerical

solution of the C-D equation based'on characteristic paths. The method

involved moving points, applied to multiple dimensions, accounted for

any amount of hydrodynamic dispersion, and introduced no numerical

dispersion. The equations of the characteristic paths for the one-

dimensional problem were

(5 )

and

(6 )

A stationary finite-difference grid was defined, and a random set of

moving points was introduced into the grid intervals. New positions of

the points were calculated from Equation 5. The concentration change

due to dispersion was calculated from Equation 6, and each moving point

was assigned an updated concentration. This procedure was repeated for

each time step. The dispersive contribution was calculated explicitly,

which imposed a stability limitation on the time increment size.
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Price et al. (1968) presented numerical approximations of the C-D

equation based on variational methods. Galerkin's method, with Chapeau

basis functions, was used to obtain difference approximations of the

form

2 dC(0) +.!. (dC i (0)
j d0 6 d0

dC
i
_1 (0)

+ d0 ) (7)

=
(1 - ~)

+ 2 C. 1(0) +h 1+
Ci =l (0)

where
V L

A = z
0;-

,

0
Dzt

=
EL2 ,

h = mesh spacing,

and

L = system length.

Calculations based on this method were compared to calculations based on

the methods of Price et a1. (1966), and Garder et al. (1964). Increased

accuracy and decreased computer time were observed. A variable

interpolation method, which used two types of basis functions depending

upon the proximity to the front, was also presented.

Laumbach (1975) canceled some of the error in the approximation of

the convection term with that of the accumulation term. Spatial

truncation error was introduced in the approximation of the accumulation

term, aCjat, and an arbitrary parameter, w, was used to give the

approximation of the C-D equation as



19

Cj ;-l_ Cj Cj +1 - C)l + Cj +1 - C j
(1 - w) ( \t i ) + I ( i+1 1+ i -1 i-I) (8)lit

0'1
2C j : 1 Cj +1 j -2C~ + Cil1)= z (C J+ + i+1 + Ci +12(lIZ)2 i+1 1 1

Vz j+1 Cj +1 j
- Ci~l)'- 4liZ (C i+1 . 1 + Ci+11-

where

and

lit
r = 7;:Z:

As lit + 0, Equation 8 reduced to a form identical to that of Stone and

Brian (1963) and Price et al. (1968). This discretization was of the

semi-implicit type and resulted in a set of linear equations which could

be solved by Gaussian elimination.

Larson (1982) presented a method which reduced numerical dispersion

by updatin9 the component fluxes from adjacent finite-difference grid

blocks. The treatment was analogous to the method of characteristics in

that the equations explicitly expressed the velocities at which fixed

val ues of concentration were propagated through the system.

Fanchi (1983) has presented a truncation error analysis which

outlined equations for a numerical dispersion coefficient, the form of

which depended upon the difference techniques used in the numerical

approximation. Total dispersion consisted of a physical contribution

and a numerical contribution. Numerical dispersion was reduced by

subtract i ng the numeri ca1 di spers i on coeffi ci ent from the hydrodynami c



dispersion coefficient which appeared in the numerical model.

Improvement in the accuracy of the numerical solution was observed.

The above studies used exact solutions, where possible, for

comparative purposes. Analytical solutions to the one-dimensional C-O

equation have been reported by Brenner (1962) and Hunt (1978). Brenner

(1962) considered beds of finite length, while Hunt (1978) gave

solutions for semi-finite beds for both instantaneous and continuous
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sources. The solution of interest is

• zV z
Mexp(~) IzlV

C(z,t) = ---.r::-":z,- [exp(- 2D z)
2 £ VZ Z

Iz I
erfc ( 2

- V t

Dt
Z

)
z

(9 )

Izl Vz
- exp( 20 )

z

Izl
erfc( 2

+ V t
o t z )],
z

where M = solution flow rate, ft 3/sec. Equation 9 will be used for

comparative purposes in the present work.



CHAPTER III

PROPOSED MODEL FOR FIXED-BED ION EXCHANGE

This chapter has two primary functions. The first is to define the

ion-exchange system being modeled, with an emphasis on basic

assumptions. The second is to develop the mathematical model for the

defi ned system.

Definition of the Ion-Exchange System Being Modeled

The specific system being defined is shown in Figure 1 and is

described by the following. A solution hav·ing constant volumetric flow

rate, V , and constant inlet concentration, Cin' is fed downward to a

fixed-bed, cylindrical, vertical column having inside dimeter, Dc, and

inside cross-sectional area, A. The solution contains a single ionic

species of interest and may also contain small amounts of nonelectrolyte

components. The concentration of the solution leaving the bottom of the

column is Couto Bulk average flow is in the z-direction only, with

constant interstitial velocity, Vz• Concentrations of the solid and

solution phases are indepedent of the r-direction. The column is packed

to a height, L, with a spherical ion-exchange resin. Resin shrinkage

and expansion is neglected. The resin bed is homogeneous, with a

constant porosity, E, throughout. The initial concentration in the bed,

Cinitia1, applies to all parcels of solution in the bed. The rate of

ion exchange is infinite, i.e. mass transfer resistances in the resin

21
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Figure 1. Schematic Diagram of Ion Exchange Column
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particles, and in the solution layer surrounding the resin particles,

are neglected. This implies that the solution and resin are in

equilibrium at all times. The column operates approximately iso­

thermally and at relatively low ionic concentrations. Therefore, the

solution density and viscosity remain essentially constant throughout

the column. As solution flows through the bed the exchange front is

spread in the z-direction. This phenomena is described by a Fickian

diffusion model and dispersive flux is given by Q = Dz ~~, where Dz is a

constant dispersion coefficient. However, dispersion in the r-direction

is neglected. Also, bulk convection overshadows transport by ionic

diffusion, and the latter mechanism is neglected.

Basic Elements of the Model

The four basic elements of the proposed model are listed below.

(1) The column is divided axially into a· number of cyl indrical volume

elements. The concentrations of the solution and resin phases are

constant across the diameter of an infinitesimally thin slice of an

element. (2) A general mass balance is derived, based on applicable

transport mechanisms, and applies to all volume elements. (3) The

terms of the mass balance equation are approximated for numerical

evaluation. Any empirical parameters are defined from available

literature, or are obtainable experimentally. (4) The set of

simultaneous equations, which arises from application of the

approximated material balance to all spatial increments of the column,

is put into a form for numerical solution with time.
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Development of the Model

Consider the volume element, of thickness ~z, shown in Figure 1. A

mass balance equation of the form

mass in - mass out = mass accumulated + mass produced (10)

can be written for the element over any time increment, ~t. Mass

enters and exits the element by convective and dispersive fluxes. Mass

is accumulated by ionic transfer during the ion-exchange process. No

mass is created or destroyed, so the production term is eliminated.

Defining these quantities in terms of system parameters and

substituting into Equation 10 gives

where

= ~z A(CS+ C)l t - ~zA(CS + e)lt+~t ••• Accumulation,

(11)

and

=

=
=

ae
Dz az'
liquid phase concentration, lb ion/ft3 solution,

solid phase concentration. lb ion/ft3 solid,

Iz = "evaulated at z."

Rearranging Equation 11, dividing by ~t~z, and taking the limit as ~z

and ~t approach zero gives



25

The differences in Equation 12, divided by the incremental values,

(12 )

define the first derivatives of VzC and QL with respect to z, and of (C S

+ C) with respect to t. Substitution of the derivatives into Equation

12 gives, upon rearrangement,

a (Cs + C) =.L D QL - .L V CIT az z az z •

Since Dz and Vz are constants, subsitution for QL gives

(13 )

a 2
-at CT = D _a- C

z az2
aV-C.z az (14 )

where CT is the total concentration, in lb ion/ft3 total, of ions in

both phases of any increment of the resin bed, given by (CS + C).

The mass of ions in the liquid phase, ML' is

where

VT = total volume of bed,

and

€ = bed porosity.

Likewise the mass in the resin phase, MS' is

(15)



(16)
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The total mass of ions in the bed, or any incremental volume thereof,

MT' is given by the sum of the solid and liquid phase masses

(17)

Equation 14 is now written in terms of masses as

(18)

Substituting Equations 15 and 17 into Equation 18 gives

(19 )

Si nce VT and e: are constants, they can be brought out of the part i a1

derivatives of Equation 19 to give

Dividing Equation 20 by VT e: gives

(21 )
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According to equilibrium theory, the resin phase accumulation
dCS dC

term, -at ' is related to the liquid pase accumulation term, at ' by the

equilibrium isotherm.

The isotherms to be considered in this study are the linear,

Langmuir, and Freundlich isotherms. The equations of these isotherms,

along with their time derivatives, are summarized in Table I.

TABLE I

EXCHANGE ISOTHERMS

Li near Langmuir Freundlich

Cs = KC C = KC CSmax C = KC n
S 1 + KC S

dC S K2..£
dCS KC Smax dC dCS KC n- 1 l£-= at -

(1 + KC)2 at at - n dtat at

Inserting the time derivative of the solid phase concentration into

Equation 21 gives

v 2..£
z dZ

(22 )
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where ftC) is the proportionality factor from the isotherm equation.

Factoring ;~ out of Equation 22 gives the final form of the one­

dimensional C-D equation to be studied

v lI.
z az (23)

Initial and Boundary Conditions

Equation 23 contains two spatial derivatives and one time

derivative. Therefore, two boundary conditions and one initial

condition are required for its solution.

The most realistic initial condition defines the solution

concentration at all points within the bed at time t = O.

Mathematically, this is written as

C(z,o) = Cinitial~ (24)

The first boundary condition states that the liquid concentration

at the top of the resin bed is constant and equal to the inlet solution

concentration. This is written as

C(o,t) = Co' (25 )

The second boundary condition concerns the concentration gradient at the

bottom of the column. Physically, it requires that after a parcel of

solution flows out of the bed, the exchange process is complete, and the

concentration does not change further. This condition is written as



.C(L,t) = 0
•z • (26 )
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Danckwerts (1953) indicated that this was the proper boundary condition

to avoid the unacceptable conclusion that the solution concentration

passes through a maximum or minimum somewhere in the column.

Additional Parameters of the Model

Solution Interstitial Velocity

The average interstitial velocity of the solution, which is

constant with time and distance, is given by

V =.J
Z "E

where

V = solution volumetric flow rate, ft3/sec,

A = column cross-sectional area, ft2,

and

E = resin bed porosity.

Axial Hydrodynamic Dispersion Coefficient

(27)

Harleman et al. (1963) reported the empirical relation for axial

hydrodynamic dispersion coefficient, in beds of spherical particles,

gi ven by

Dzhydro
jJ

= .66 -!. Re 1.2
P f P

(28 )



where

IIf = fluid viscosity, lb/ft/sec,

Pf = fluid density, lb/ft3,

and

Rep = Dp Vz Pf/llf'

where

Dp = resin particle diameter.

Numerical Dispersion Coefficient

Fanchi (1983) reported equations for a numerical dispersion

coefficient, Dznum ' for use with finite-difference methods, which were

based on the type of numerical representations used to approximate the

partial derivatives of the equation of interest. For a centered­

difference in space, explicit-in-time representation, the numerical

dispersion coefficient is given by

JU

__ 1
V

2t>t
Dznum -"2" z £

where

Vz = average interstitial velocity, ft/sec,

~t = time increment, sec,

and

8 = poros ity.

(29 )

A summary of the truncation error analysis is included in Appendix D.

The overall dispersion coefficient, Dz ' in Equation 23 is given by

(30 )
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where Dznum is subtracted to eliminate the effect of numerical

dispersion on the numerical solution.

Column Pressure Drop. An expression for total pressure drop across

the entire resin bed was reported by Ergun (1952) as

150
lip = (1 _ E)2 + _1._7_5_p..:.f_V;;-,o,--2_(I_-_E_)

D E
3

P 9c

(31 )

where

Vo = superfi ci a1 column velocity, ft/sec,

Pf = fl uid dens ity, I b/ft3,

Ilf = fluid viscosity, I b/ft/sec,

Dp = particle diameter, ft,

L = bed length, ft,

E = bed porosity,

and

ft 1bmgc = 32.2 2
sec lbf



CHAPTER IV

NUMERICAL SOLUTION OF THE

CONVECTION-OISPERSION EQUATION

This chapter has three primary functions. First, a qualitative

discussion of finite-difference approximations of partial differential

equations is given. Secondly, the finite-difference equations are

developed based on a grid network in space and time. Finally, the

solution algorithm for the system of algebraic equations generated by

the implicit finite-difference method is outlined.

Description of the Finite-Difference Technique

When using a finite-difference technique, the system is first

divided into a network of grid points. The distances between grid

_points are incremental values of the independent variables. The

derivatives of the partial differential equation of interest are then

written as difference equations involving the incremental values of the

independent variables. Solution of the equation(s) gives the valuers)

of the dependent variable at the grid points of interest. By reducing

the size of the independent-variable increments, the approximation of

the dependent variable approaches the true value of this variable at any

grid point.

The two basic finite-difference methods are the explicit and

implicit methods. The explicit finite-difference method uses known

32



values of the dependent variable, at previous increments of the

independent variables, to predict dependent-variable values at

succeeding increments. The implicit finite-difference method uses

unknown values of the dependent variable, at subsequent increments of

independent variables, to predict dependent-variable values at suc-

ceeding increments. The equations generated for the entire incremental

level must be solved simultaneously by solving a matrix of

coefficients. This matrix solution yields an entire incremental level

of dependent-variable values.

The method used in the present work is the implicit method. This

insures numerical stability at all values of f1Z and f1t.

Formulation of the Finite-Difference Equations. Derivation of the

finite-difference equations requires division of the ion-exchange resin

bed into spatial increments of thickness f1z. Figure 2 is a

representation of the discrete element system. Distance increments are

subscripted i, and the distance increment f1z, is equal

33

Time, subscripted j, is the other coordinate of the

grid, and the temporal increment f1t is equal to (t j +1 - t j ) •

Following the development of Laumbach (1975), finite-difference

approximations for the partial derivatives in Equation 14 are obtained

by Taylor series expansion of concentration about the ith spatial node,

and any temporal node, such that

2 2 3 3
C = C + 'Z ~I + (f1z)~ a C, + (f1z)V a C1+ (32)

i+l i" az i ""'"""2~ i 3!~ i •••

and
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Figure 2. Arrangement of Finite-Difference Grid



C = c. ' ac,i-I 1 - uZ az i + • • • • (33 )
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Adding Equations 32 and 33 gives

4 4
+ (AZ) a cI

41 4'• aZ 1
+ • • • • (34 )

Equation 34 is now differentiated once with respect to time to give

(35)

C is ~ow expanded about the j + i temporal node to give the

approximations

(36)

j+! jJ.. 2 2' j+! 3 3 j+l
= C .2 + At ~I .2 + (At)~ a c 1 .2 + (At)~ a C, .2 + •••

1 "2 at 1 ---r-;? 1 48;tJ 1

and

(37)

. 1 .J.. 2 2 ...'! . 3 3 . 1
C~ = cJ~ _ At ac l

J 2 + \(._A~t),-_a_cIJ 2 _ (At) ~IJ~. +
, i "2 at i - 8 at2 i 48 at.) 1

. . . .

Subt ract i ng Equat ion 37 from Equation 36 gi ves, upon rea rrangement,

(38 )



Neglecting derivatives of order two and higher gives an approximation

for the accumulation term in Equation 23.
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C C.'-C. 2
a _ 1 1 + 0 (At )
"IT - At

where

Ci
,

= Cj -:1
1

Ci = C~
1

and

o = "order of error,"

(39 )

The approximation of the first-order spatial derivative is formed

by subtracting Equation 33 from Equation 32 to give

aC Iali (40 )

Equations 36 and 37 are added to give

j+l 2 2 ,+1
= C.2 (At) a CIJ 2 ++ 8 -..". .

1 at~ 1
(41 )

Substituting Equation 39 into the appropriate derivatives of Equation

41, and neglecting derivatives of order two and higher, gives the

approximation for the convection term of Equation 23,

The approximation of the second-order spatial derivative is

developed from the sum of Equations 32 and 33, given by

(42 )
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37

(43)

Differentiating Equation 41 twice with respect to z, and

rearranging the results, gives

. . . . (44 )

Substituting Equation 43 into the appropriate derivatives of Equation

44, and neglecting derivatives of order two and higher, gives the

aproximation for the dispersion term of Equation 23,

(45 )

a2c j~
I i! 1 (C ' 2C '. + C' + C;7 i -= 2(f,z)2 i+l - 1 i-I· i+1

The order of truncation error in Equation 45 is consistent with the

orders of error in the other two approximating equations, namely

Equations 39 and 42.

Substituting Equations 45, 39, and 42 into the appropriate terms of

Equation 23 gives the finite-difference approximation of the C-D

equation

_1 [l + f (C) (1 - E)J (C - C.)
f,tEl 1

(46 )

= (c' 2C + CI C 2C C )i+1 - 1 i-1 + i+1 - i + i-I



Defining parameters

and

and substituting these parameters into Equation 46 gives, after

rearranging, the general difference analogue to Equation 23

(-R-S) Ci_l + (Q + 2R) C'i + (-R + S) C;+l

= (R + S) Ci -1 + (Q - 2R) Ci + (R - S) Ci +1·

(47)

38

Equation 47 is written for every spatial node at each time step. The

system of equations which is generated for the time step is given, in

Table II, by Equation 48.



TABLE II

FINITE-DIFFERENCE EQUATIONS

(Q + 2R) C'l + (-R - S) C'2
(-R - S) C'l + (Q + 2R) C'2 + (-R + S) C'3

(-R - S) C' 2 + (Q + 2R) C' 3 + (-R + S) C' 4

(-R - S) C'N-2 + (Q + 2R) C'N-l + (-R - S) C'N
(-R - S) C'N-l + (Q + R + S) C'N

where

Tj = (-R - S) C'o + (R + S) Co + (Q - 2R) Cl + (R - S) C2, i=l,
Ti = (R + S) Cj_l + (Q - 2R) Cj + (R - S) Cj+l, 2 ( j ( N-l,
Tj = (R + S) Cj_l + (Q - R - S) Cj. i = N.

(48 )

<..oJ
<.0
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When nonl inear isotherms are used in evaluation of the model, f(C)

is not a constant. This difficulty is avoided by assuming f(C) to be

constant over any spatial increment, and evaluating f(C) based on

solution concentration within the increment. This procedure linearizes

Equation 23 over any incremental slice of the column.

The individual equations of Equation 48 are of the form

A
1
· S. 1 + B. S. + C. S. 1 = 0 .•

1- 1 1 1 1+ 1
(49)

The Gaussian elimination a190rithm used to solve the diagonally-dominant

system of equations of the form of Equation 49 is summarized below.

, 1 < i < N-1, (50 )

where

PI = B1,

01
Y1 = ,

PI

A. C. 1
Pi Bi

1 1- 2 < i N,= <p. 1 ,
l-

and
D. - A. y. 1

Yi = 1 1 1- 2 < i < N.
Pi



CHAPTER V

RESULTS

This chapter presents an evaluation of the model proposed in

Chapters III and IV. Calculations using the model are compared to a

closed-form analytical solution and to experimental data involving both

linear and nonlinear equilibrium isotherms.

Model Evaluation

The finite-difference algorithm, the core of which was given by

Equation 48 and the solution algorithm of Chapter IV has been

incorporated into an interactive computer program, a listing of which is

given in Appendix A. The program was developed on a Radio Shack TRS 80

Model II Microcomputer, and tested on the VAX 11/780 of the Oklahoma

State University Computer Center Network.

The validity of the numerical solution was verified by test runs

with data for a system which was described by a linear equilibrium

isotherm. The results from these runs were compared with the results of

evaluation of the analytical solution given by Equation 9. The

parameters of the model were then adjusted to match experimental

breakthrough data for several systems which were described by linear and

nonlinear equilibria.

Finally, sensitivity tests were conducted to determine the effect

of changes in four system parameters on the numerical solution. The

41
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parameters chosen for this analysis were spatial increment size,

temporal increment size, bed porosity, and equilibrium constant.

A material balance check calculation was performed for the linear

system described above. In 800 seconds of simulation time, the error in

total mass balance was 0.0227 Ib/ft3• This gives a percentage error of

approximately 1.0%. Pressure drop calculations matched the values of

Dow Chemical Company (1964), for their ion exchange resins, to within

0.5 psi.

Discussion of Results

Figure 3 is a plot of the analytical and numerical solutions of

Equation 23. Partial removal of numerical dispersion from the numerical

solution is evidenced by improvement in the agreement between the

analytical and numerical solutions upon the inclusion of Dznum in the

model.

For the data of Appendix C, the experimentally determined column

performance data from the literature and the numerical data predicted by

the proposed model are compared graphically in Figures 4, 5, and 6.

These figures represent the best agreement, obtained from model

parameter adjustment, of predicted data with experimental data for a

linear system, an unfavorable nonlinear system, and a favorable

nonlinear system, respectively.

Adjustment of £ produced the best agreement between predicted and

experimental data for all three systems studied. Since £ affects the

value of both convective and dispersive parameters, a change in its

value changes both the breakthrough time and the shape of the

breakthrough curve. Additionally, adjustment of £ is reasonable since
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local porosities within the resin bed cover a range of values due to the

randomness of the particle arrangement. The typical range of porosity

for beds of spherical particles is 0.2 - 0.4.

Subtraction of additional numerical dispersion, through a larger

value of ~t, produced an additional benefit. The value of Oz was

increased, through subtraction of the increased negative value of 0znum'

so that overshoot and oscillation were eliminated from the predicted

breakthrough curve. The increased value of Oz also improved the

agreement between predicted and experimental data.

Figure 4 shows agreement between predicted and experimental data

over the entire breakthrough curve. Figures 5 and 6 show that the

predicted breakthrough time matches the experimental breakthrough time

for favorable and unfavorable systems. However, the curve is more

closely approached for the unfavorable equilibrium system.

Ion exchange under low solution flow. rate conditions is more

closely approximated by equilibrium theory than is exchange under

conditions of high solution flow rate. The flow rates of the nonlinear

systems are over 100 times greater than the linear system flow rate.

Therefore, the closer agreement with the linear data is primarily due to

a lower solution flow rate. The closer approach of the unfavorable

exchange system is due to the nonsharpening boundary observed under

unfavorable exchange conditions. The column operates closer to

equilibrium under these conditions.

The four parameters chosen for sensitivity tests were spatial

increment, ~z, temporal increment, M, porosity, £, and linear

equilibrium constant, Fk• Table III gives the values of each parameter

used in the numeri ca1 sens it i vity tests, the graphi ca1 resul ts of whi ch



are presented in Figures 7 through 14. For comparative purposes, the

tests were run both with and without the inclusion of the numerical

dispersion coefficient, Dznum•

TABLE II I

SENSITIVITY TESTS

Fi g. # t::.z (ft ) t::.t (sec) € ...lk..- D;ZOUlQ

7 0.008-0.023 1.0 0.4 0.58 yes

8 0.008-0.023 1.0 0.4 0.58 no

9 0.023 0.01-1.0 0.4 0.58 yes

10 0.23 0.01-1.0 0.4 0.58 no

11 0.023 1.0 0.3-0.4 0.58 yes

12 0.023 1.0 0.3-0.4 0.58 no

13 0.023 1.0 0.4 0.55-0.65 yes

14 0.023 1.0 0.4 0.55-0.65 no

,

Dependence of Predicted Data on t::.z

Comparison of Figures 7 and 8 shows well how the inclusion of the

numerical dispersion coefficient eliminated the dependence of predicted

data on t::.z. Without the numerical dispersion coefficient, Vz was

approximately 100 times larger than Dz• The increased hyperbolic nature

of the C-D equation under this condition explains the overshoot observed
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in Figure 8. With numerical disperison subtracted from the model, Vz

was approximately 10 times larger than Oz, which caused the C-D equation

to become more parabolic and eliminated overshoot in the predicted

breakthrough curve. From Figure 8, a decreased ~z, which corresponded

to more spatial increments, lessened the overshoot and sharpened the

curve.

Dependence of Predicted Data on ~t

Figures 9 and 10 show the effect of changes in the value of ~t on

the numerical solution with and without numerical dispersion accounted

for. Opposite to the dependence of ~z, subtraction of Dznum from the

model resulted in sensitivity to the value of ~t, while exclusion of

Dznum from the model resulted in no appreciable effect of ~t. This

result was due to the fact that Dznum is directly proportional to the

value of H (see Equation 29). Therefore", a decrease in at caused a

decrease in Dznum ' with an increase in the difference between Vz and

Dz• Increased hyperbolic character of the C-D equation appears, in

Figure 9, as sharpened the breakthrough curve, due to a smaller

dispersive term in the C-D equation.

Dependence of Predicted Data on E

This parameter was chosen for sensitivity tests because of the

questionable, but unavoidable, assumption of a homogeneous resin bed

with constant porosity throughout. The effective porosity will probably

be lower than the normally reported of 0.35 - 0.40, due to the presence

of dead pore volume which contains stagnant solution, and nonhomo­

geneities resulting from the randomness of the packing.
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Figure 12 shows that, for the model without 0znum' a decrease in E

shifted the breakthrough curve ahead in time. The shape of the curve,

however, was essentially unchanged.

Figure 11 shows that, with 0znum included in the model, the shape

of the predicted curve, as well as the breakthrough time, was changed

with a change in the value of E. This was due to the fact that E

affec~s several parameters of the model.

From Equation 27, Vz is inversely proportional to e. From Equation

29, 0znum is proportional to Vz, and inversely proportional to e.

Equation 28 indicates that 0zhydro' which is a function of Vz, is

affected by E. Therefore, as E decreases, Vz, 0znum' and Dzhydro

increase. Increased velocity was shown as decreased breakthrough time,

while the shape of the breakthrough curve was changed due to a larger

dispersive term.

Oependence of Predicted Data on Fk. This parameter was chosen for

sensitivity tests due to the potential difficulties encountered in

describing a set of equilibrium data by a unique constant.

Figures 13 and 14 show that a lower value of Fk shifted the

breakthrough curve ahead in time. This is because the lower value of Fk

effectively put more solute in the solution phase than a higher Fk value

(see Table I: linear isotherm). The exchange can be said to occur more

quickly throughout the column.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The proposed model has several, favorable features which justify its

use for making operational and design decisions.

(1) Subtraction of Dznum• which represents error in the solution

introduced by numerical dispersion, improves agreement between the

numerically approximated and exact solutions. Additionally,

increased subtraction of numerical dispersion eliminates overshoot

from the solution and allows prediction of breakthrough curves

which match actual systems.

(2) The usefulness of equilibrium theory of ion exchange is exhibited

by the accuracy of breakthrough data prediction obtained without

determination of the kinetic parameters of ion exchange, which can

be done only through extensive experimentation for a particular

system.

(3) The proposed model is applicable to general ion exchange systems

with only equilibrium and column data needed for evaluation.

(4) The primary model sensitivities lie in ~t and €.

(5) Adjustment of model parameters gave agreement with the breakthrough

curve in certain systems and with breakthrough time in all systems

studied.
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(6) The computer program, which is based on an implicit finite­

difference technique, is not prohibitively expensive in execution

time or storage.

(7) Closure of the material balance calculation indicates lack of

significant roundoff or machine errors.

Recommendations

The proposed model appears to have merit in applicability to a wide

variety of ion exchange systems with a minimum of experimental data

required for evaluation. The following recommendations are presented.

(1) For the systems studied in the present work, .base values of 100

spatial increments, at = 1.0 second, and a value of porosity

somewhat less than the reported values of 0.35 - 0.40 produced the

best resu lts.

(2) Although the finite-difference algorithm is stable at all values of

at and az, reduction in at below 0.1 second and spatial increments

below 50 resulted in overshoot and oscillation in the solution due

to increased hyperbolic behavior of the C-D equation.

(3) Porosity, £, is recommended as the best parameter for adjustment,

since a change in £ changes the breakthrough time as well as the

shape of the breakthrough curve.

(4) Parameters should be adjusted independently. Base values should be

chosen for all parameters, with single parameter variations made

holding other values constant.
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THIS PROGRAM APPROXIMATES THE SOLUTION TO THE
ONE-DIMENSIONAL, TRANSIENT CONVECTION-DISPERSION
EQUATION APPLIED TO AN EQUILIBRIUM ION EXCHANGE PROCESS.

C**************************************************************
C
C
C
C
C

. C**************************************************************
C *NOMENCLATURE
C
C A,B,C,D: Overall coefficients of finite difference
C equation for use in recursive solution of tridiagonal
C matrix.
C AEMPTY: Total cross-sectional area of column.
C AFNM 1: Absolute value of FNM1.
C AX,ALP: Accumulation coefficients in finite difference
C equation.
C BEDDIA: Resin bed diameter.
C BET: Dispersive coefficient in finite-difference equation.
C BETA,GAI~MA: Factors in matrix solution routine.
C CON: Array of ionic concentrations.
C CPRIME: Inlet solution concentration.
C CSMAX: Maximum attainable resin concentration.
C CZERO: Initial resin concentration.
C DEL: Convective coefficient in finite-difference equation.
C DELTAM: Absolute value of difference between actual mass
C input and numerically calculated input, at time T.
C DELTAP: Pressure drop over entire column.
C DELTAT: Temporal increment.
C DELTAV: Volume increment.
C DELTAZ: Spatial increment.
C DMBAR: Averaged value of material balance closure.
C DMBARO: Material balance closure over entire simulation.
C DP: Resin particle diameter.
C DSUBZ: Hydrodynamic dispersion coefficient.
C DZNUM: Numerical dispersion coefficient.
C Dl,D2,D3: Components of coefficient D.
C FK: Equilibrium constant in isotherm equation.
C FN: Exponent in isotherm equation.
C IF,L: First and last increment subscripts in matrix solution.
C ISO: Isotherm selection numbe~

C KI: Input device number.
C KO: Output device number.
C KT,J: Time loop counters.
C L,M,N: Increment numbers of ZlQ,ZlH,Z3Q respectively.
C NEWDAT: Interactive data-change parameter.
C NEWSEL: Interactive data-change parameter.
C N2SEL: Interactive data-change parameter.
C NEXT: End-of-simulation operation selection parameter.
C NINC: Number of spatial increments.
C NP1: Number of last spatial increment.
C PIN: .Inlet pressure.
C POROS: Resin bed porosity.
C POUT: Outlet pressure.
C REP: Particle Reynolds number.
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*DELP
Arguments: BEDDIA,DELTAP,DP,KO,POROS,RHOL,TEST,VISC,VOLFLO,

XINCL

*DATA
Arguments: BEDDIA,CPRIME,CZERO,KI,KO,NEXT,NINC,PIN,POROS,

RHOL, TMAX, VISC, VOLFLO, XL

**SUBROUTINES
*BEDPAR

Arguments: AEMPTY,BEDDIA,DELTAT,DELTAZ,DP,DSUBZ,IT,KI,KO,
NEXT,NINC,POROS,RHOL,TOUT,VEL,VISC,VOLFLO

RHOL: Solution density.
T: Time.
TEST: Interstitial flow regime determination factor.
TITLE: Optional simulation output title.
TMAX: Total simulation time.
TOUT: Desired time increment for output.
V: Solution array from matrix solution routine.
VEL: Average interstitial solution velocity.
VISCo Solution viscosity.
VOLFLO: Solution volumetric flow rate.
WS: Superficial velocity••
XINCL,XL: Height of resin bed.
Z1Q,Z1H,Z3Q: One fourth, one half, and three fourths

of XL, respectively.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C *DETISO
C Arguments: CSMAX,FK,FN,ISO,KI,KO
C *TRIDAG
C Arguments: A,B,BETA,C,D,GAMMA,IF,L,NP1,VC
c*****************************************************************
C

HIPLICIT REAL*S(A-H,O-Z)
DI!~ENSION CON(501) ,A(501) ,B(501) ,C(501 ),D(501 ),AX(501),

1 BETA(501),GAMMA(501 ),ALP(501),IO(12)
KO;6
KI;5

C
C INITIALIZE TIME AND TIME COUNTERS.

60 T;O.
KT;O
J=1

C
C INPUT SYSTEM DATA.

CALL DATA(NINC,DP,RHOL,VOLFLO,XL,BEDDIA,POROS,VISC,
1 PIN,CZERO,CPRIME,TMAX,KO,KI,NEXT,NEWDAT, NEW SEL)

C
C SPECIFY ISOTHERM TYP&

IF(NEXT.EQ.3)WRITE(KO,S)
IF(NEXT.EQ.3)READ(KI,l)NEWISO
IF(NEXT.EQ.3.AND.NEilISO.EQ.0)GO TO 15
CALL DETISO(KO,KI,FK,FN ,CSMAX,ISO)

15 CONTINUE
C
C DEFINE SPATIAL INCREMENT, DELTAZ(FT).



DELTAZ=XL/FLOAT(NINC)
C
C COMPUTE INTERSTITIAL VELOCITY AND DISPERSION COEFFICIENT
C IN SUBROUTINE BEDPAR.

CALL BEDPAR(DELTAT,AEMPTY,DELTAZ,NINC,DP,RHOL,IT,VOLFLO,
1 BEDDIA,POROS,VISC,VZ,DZ,KO,KI,NEXT)

C
C CALCULATE VOLUME INCREMENT, DELTAV

DELTAV=AEMPTY*POROS*DELTAZ
NP1=NINC+l

C
C INITIALIZE CONCENTRATIONS AT ALL SPATIAL NODES.

DO 10 I=1,NPl
10 CON(I)=CZERO

C
WRITE(KO,2)VZ,DZ

C
C DETERMINE DELTAP FOR ENTIRE COLUMN IN SUBROUTINE DELP.

CALL DELP(DP,RHOL,VOLFLO,BEDDIA,POROS,XL,VISC,TEST,DELTAP,K0)
C CORRECT UNITS OF DELTAP.

DELTAP=DELTAP/144.
WRITE(KO,3)DELTAP

C
C CALCULATE OUTLET PRESSURE.

POUT=PIN-DELTAP
WRITE(KO,4)POUT

C
C CALCULATE FRACTIONAL COLUMN LENGTHS, Z1 Q, Z1 H, AND Z3Q.

Z1Q=.25*XL
Z1H=·5*XL
Z3Q=·75*XL
WRITE(KO,5)ZlQ,ZlH,Z3Q
L=INT(ZlQ/DELTAZ)
M=INT(ZlH/DELTAZ)
N=INT(Z3Q/DELTAZ)

C
C PRINT INITIAL BED CONCENTRATIONS AT TOP, 1/4-1/2-3/4 COLUMN
C LENGTH, AND BOTTOM OF COLUMN.

WRITE(KO,6)T,CON(1),CON(L),CON(M),CON(N),CON(NP1)
C
C DEFINE DISPERSIVE AND CONVECTIVE TERMS, BET AND DEL,
C RESPECTIVELY, IN DIFFERENCE EQUATIONS.

BET=DZ/2./DELTAZ/DELTAZ
DEL=¥Z/4./DELTAZ

C
C CALCULATE ACCUMULATION TERM, AX, FOR USE IN DIFFERENCE EQUATIONS,
C BASED ON ISOTHER~1 TYPE.

70 DO 20 I=2,NPl
IF(ISO.EQ.l)AX(I)=(1.+FK*(1.-POROS)/POROS)
IF(ISO.EQ.2)

1 AX(I)=( 1.+FK*CSMAX*( 1.-POROS)/POROS)/((1.
2 +FK*CON(I»**2)
FNM1=FN-l.
AFNM1=ABS(FNM1)
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IF(ISO.EQ.3.AND.FNM1.GE.0 •• AND.CON(I).NE.O.)
1 AX(I)=( 1.+FN*FK*(CON( I )**FNIU )*( 1.- POROS) /POROS)
IF(ISO.EQ.3.AND.FNM1.LT.0 •• AND.CON(I).NE.0.)

1 AX( 1)=(1.+( 1.-POROS)*FN*FK*( 1./ CO N( I )** AFNM 1) / PORO S)
IF(ISO.EQ.3.AND.CON(I).EQ.0.)

1 AX(I)=1.
20 COIITINUE

C
C SET UP MATRICES OF FINITE-DIFFERENCE COEFFICIENTS FOR USE IN
C SOLUTION OF THE TRIDIAGONAL MATRIX.

DO 30 I=2,NP1
ALP(I)=AX(I)/DELTAT
A(I)=-BET-DEL
B(I)=ALP(I)+2.*BET
c( I)=-BET+DEL
D1=BET+DEL
D2=ALP(I)-2.*BET
D3=BET-DEL

30 D( I)=Dl *CON( 1-1)+D2*CON(I)+D3*CON(I +1 )
D(2)=(BET+DEL)*CPRIME+D(2)
B(NP1)=ALP(NP1)+BET+DEL
D(NP1)=(D2+D3)*CON(NP1)+Dl*CON(NINC)

C
C CALCULATE NEW CONCENTRATIONS AT T=T+DELTAT; CONCENTRATION AT
C TOP OF COLUMN IS CONSTANT(CPRIME) BY BOUNDARY CONDITION.

CON.(1)=CPRIME
CALL TRIDAG(NP1,2,NP1,A,B,C,D,BETA,GAMMA,CON)

C
C CHECK MATERIAL BALANCE

IF(T.EQ.O.)GO TO 80
TMASS1=VOLFLO*CPRIME*T
TMASS3=0.
DO 90 I=l,NPl
TMASS2=CON(I)*DELTAV

90 TMASS3=TMASS3+TNASS2
DELTAl~=ABS(TMASS1-TMASS2)

DMBAR=DMBAR+DELT~

80 T=T+DELTAT
IF«J/IT)*IT.NE.J)GO TO 40

C
C PRINT UPDATED CONCENTRATIONS AT TOP, 1/4-1/2-3/4 COLUMN LENGTH,
C AND BOTTOM OF COLUMN.

WRITE(KO,6)T,CON(1),CON(L),CON(M),CON(N),CON(NP1)
C
C INCREMENT TIME COUNTERS AND TIME

40 J=J+1
KT=KT+1
T=DELTAT*FLOAT(KT)
DMBARO=DMBAR/FLOAT(KT)
IF(T.EQ.TMAX)WRITE(KO,9)DMBARO
IF(T.LT.TMAX)GO TO 70
WRITE(KO,7)
READ(KI,1)NEXT
FOR~IAT(I5)
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GO TO (SO,60,60),NEXT
2 FORHAT(lX,'AVERAGE INTERSTITIAL VELOCITy=',E1S.S,lX,'FT/sEC'

1 ,I1,1 X,'DISPERSION COEFFICIENT(HYDRODYNAMIC - NUMERICAL) ='
2,E1S.S,lX,'FT2/sEC',/)

3 FOR1UT( 1X, 'DELTAP=' ,E1S.S, 1X, 'PSI' ,f)
4 FORMAT( 1X, 'OUTLET PRESSURE=', E1 S.S, 1X,'PSI' ,I)
S FORIUT(j/,1 X,'CONCENTRATION AS FUNCTION OF TIME AND DISTANCE' ,1/,

1 2 X, 'T I ME( SEC)' ,S X, 'TO P' ,6X, F7. 2. 1X, 'FT' ,4X, F7. 2, 1X, 'FT' , 3X, F7. 2,
2 1X, 'FT', 6X,' BOTTOM', f)

6 FORMAT(3X,F7.2,SE13.S)
7 FORloiAT(1X,'SIMULATION COMPLETE--WHAT NEXT?',/1,1X,'1-STOP',

1 1,1 X,'2-NEW PROBLEM',/, 1X, '3-ALTER PARAMETERS OF PREVIOUS
2 PROBLEM', I 1,1 X, 'ENTER SELECTION NUMBER',/)

8 FORMAT(1X,'WOULD YOU LIKE TO CHANGE ISOTHERM DATA?'
1 '/,SX,'1-YES',SX,'0-NO',/)

9 FORNAT(j,1X,'AVERAGE ERROR IN TOTAL MATERIAL BALANCE =', E1S.S,
1 lX,'LB/FT3"/f)

SO END
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SUBROUTINE BEDPAR(DELTAT,AEMPTY,DELTAZ,NINC,DP,RHOL,
1 IT,VOLFLO,BEDDIA,POROS,VISC,VEL,DSUBZ,KO,KI,NEXT)

C*****************************************
C SUBROUTINE TO CALCULATE BED PARAMETERS
C*****************************************

IMPLICIT REAL*a(A-H,O-Z)
DIMENSION 10(12)
DATA 10/100,1000,10000,100000,10,100,1000,10000,1,10,100,1000/

C
C CALCULATE PARTICLE REYNOLDS NUMBER

AEMPTY=3.1416*(BEDDIA**2)/4.
VEL=VOLFLO/AEMPTY/POROS
IF(NEXT.EQ.3)WRITE(KO,4)
IF(NEXT.EQ.3)READ(KI,2)NEWTEM
IF(NEXT.EQ.3.AND.NEWTEM.EQ.0)GO TO 6
WRITE(KO,1)
READ(KI,2)IT
IF(IT.EQ.1)DELTAT=.01·
IF(IT.EQ.2)DELTAT=.1
IF(IT.EQ·3)DELTAT=1.
WRITE(KO,3)
READ(KI,2)IOUT
IT=IO( lOUT)

6 REP=DP*RHOL*VEL/VISC
C
C CALCULATE DISPERSION COEFFICIENT BASED ON HARLEMAN(1963)
C INCLUDE N~lERICAL DISPERSION COEFFICIENT

DSUBZ=.66*VISC*(REP**1.2)/RHOL
DZNUM=.5*VEL*VEL*DELTAT/POROS
DSUBZ=DSUBZ+DZNUM

C
1 FORMAT(1X, 'ENTER TIME INCREMENT, SEC',/,2X, '1-.01 "

1 4X, '2-.1' ,4X, '3-1.0' ,/)
2 FORMAT(I4)
3 FORMAT(1X, 'HOW OFTEN WOULD YOU LIKE TO READ THE CONCENT

1RATION PROFILE?' ,/,lX, 'ENTER SELECTION NUMBER FROM BELOW'
2 ,//,2X,'DELTAT=.01 SEC' ,5X,'DELTAT=.1 SEC' ,5X,'DELTAT=
31 SEC',/,3X,'1-',3X,'1 SEC',9X,'5-',3X,'1 SEC',9X,'9-',3X
4,'1 SEC',/,3X,'2-',2X,'10 SEC',9X,'6-',2X,'10 SEC',8X,'10­
5' , 2X, ' 10 SEC', / , 3X, '3-' , 1x, ' 100 SEC', 9X, '7-' , 1X, ' 100 SEC',
6 ex, '11-',lX, '100 SEC',/,3X, '4-1000 SEC',9X, 'a-l000 SEC'
7 ,ax,'12-1000 SEC' ,/)

4 FORMAT(lX,'WOULD YOU LIKE TO CHANGE TIME INCREMENT
1 OR OUTPUT INTERVAL?',/,5X, 'l-YES',5X, 'O-NO',j)

RETURN
END
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SUBROUTINE DATA (NINC,DP,RHOL,VOLFLO,XL,BEDDIA,POROS,
1 VISC,PIN,CZERO,CPRIME,TMAX,KO,KI,NEXT,NEWDAT,NEWSEL)

c***************************
C SUBROUTINE TO INPUT DATA
c***************************

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TITLE(15) ,
IF(NEXT.EQ.3)NEWDAT=1
IF(NEXT.EQ.3)GO TO 55

40 WRITE(KO,2)
READ(KI,3)(TITLE(I),I=1,15)
IF(NEWDAT.EQ.1)GO TO 53
WRITE(KO,1)

41 WRITE(KO,4)
READ(KI,5)XL
IF(NEWDAT.EQ.1)GO TO 53

42 WRITE(KO,6)
READ(KI,5)BEDDIA
IF(NEWDAT.EQ.1)GO TO 53

43 WRITE(KO,20)
READ(KI,21)NINC
IF(NEWDAT.EQ.1)GO TO 53

44 WRITE(KO,7)
READ(KI,5)VOLFLO
IF(NEWDAT.EQ.1)GO TO 53

45 WRITE(KO,8)
READ(KI,5)RHOL
IF(NEWDAT.EQ.1)GO TO 53

46 WRITE(KO,9)
READ(KI,5)VISC
IF(NEWDAT.EQ.l)GO TO 53

47 WRITE(KO,10)
READ(KI,5)DP
IF(NEWDAT.EQ.1)GO TO 53

48 WRITE(KO,11)
READ(KI,5)POROS
IF(NEWDAT.EQ.1)GO TO 53

49 WRITE(KO ,12)
READ(KI,5)PIN
IF(N~.DAT.EQ.1)GO TO 53

50 WRITE(KO,13)
READ(KI,5)CZERO
IF(NEWDAT.EQ.1)GO TO 53

51 WRITE(KO,14)
READ(KI,5)CPRIME
IF(NEWDAT.EQ.1)GO TO 53

52 WRITE(KO,24)
READ(KI,5)TMAX
IF(NEWDAT.EQ.1)GO TO 53

C PRINT SU!{MARY OF INPUT DATA
WRITE(KO,15)(TITLE(I),I=1 ,15),XL,BEDDIA,NINC,VOLFLO,RHOL,

1VISC,DP,POROS,PIN,CZERO,CPRIME
WRITE(KO,23)
WRITE(KO,16)
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READ(KI,21)NEWDAT
55 IF(NEWDAT.EQ.l)WRITE(KO,19)

IF(NEWDAT.EQ.O.)GO TO 22
54 READ(KI,21)NEWSEL

GO TO (40,41,42,43,44,45,46,47,48,49,50,51,52),NEWSEL
53 WRITE(KO,17)

READ(KI,21)N2SEL
IF(N2SEL.EQ.l)WRITE(KO,18)
IF(N2SEL.EQ.l)GO TO 54
IF(NEWDAT.EQ.l.AND.N2SEL.EQ.0)WRITE(KO,15)

1 (TITLE(I),I=1,15),XL,BEDDIA,NINC,VOLFLO,RHOL,VISC,
2 DP,POROS,PIN,CZERO,CPRIME

GO TO 22
C
C INTERACTIVE FORMATS

1 FORMAT(lX,'------INPUT DATA-----~',II)

2 FORMAT(lX, 'ENTER TITLE, 60 CHARACTERS MAXIMUM' ,I)
3 FORI1AT(15A4)
4 FOID1AT(lX,'ENTER COLUMN HEIGHT, FT',/)
5 FOID1AT( F15. 0)
6 FORMAT(lX,'ENTER COLUMN DIAMETER, FT' ,I)
7 FORMAT(1X,'ENTER SOLUTION VOLUMETRIC FLOW RATE, FT3/sEC',/)
8 FORMAT(lX,'ENTER SOLUTION DENSITY, LB/FT3',/)
9 FOID1AT(lX,'ENTER SOLUTION VISCOSITY, LB/FT/sEC' ,I)

10 FOID1AT(lX,'ENTER RESIN PARTICLE DIAMETER, FT' ,I)
11 FOID1AT( lX, 'ENTER RESIN POROSITY',f)
12 FOID1AT(lX,'ENTER INLET PRESSURE, PSI' ,I)
13 FOID1AT(lX,'ENTER INITIAL RESIN CONCENTRATION, LB/FT3' ,I)
14 FORMAT(lX,'ENTER INLET SOLUTION CONCENTRATION, LB/FT3',/)
15 FOID1AT(lX,52('*')/,3X,'DATA SUMMARY FOR:',

1 lX,15A4,1,4X,'COLUMN HEIGHT(FT):',31X,El0.4,lX,I,
2 4X, 'COLUMN DIM~ETER(FT):' ,29X,E10.4,lX,I,4X,'NUMBER OF '
3 'SPATIAL INCREMENTS: ',22X,I4,I,4X, 'SOLUTION VOLUMETRIC'
4 'FLOW RATE(FT3/sEC):' ,10X,El0.4,lX,I,4X,
5 'SOLUTION DENSITY(LB/FT3):'
6 ,24X,El0.4,lX,I,4X,'SOLUTION VISCOSITY(LB/FT/sEC):',19X,
7 E10.4,lX,I,4X,'RESIN PARTICLE DIAMETER(FT):';
8 21X,E10.4,lX,I,4X,'RESIN POROSITY:' ,34X,El0.4,1,4X,
9 'INLET PRESSURE(PSI):' ,29X,El0.4,1X,I,4X,'INITIAL BED'
A 'CONCENTRATION(LB/FT3):',15X,E10.4,lX,I,4X,'INLET "
B 'SOLUTION CONCENTRATION(LB/FT3):',12X,El0.4,1
C ,lX,52('*')/)

16 FOID1AT(lX,'WOULD YOU LIKE TO CHANGE ANY OF THESE VALUES?'I
1 5X, 'l-YES', 5X, 'O-NO' ,I)

17 FOID1AT(lX,'WOULD YOU LIKE TO CHANGE ANY OTHER VALUES?',I
1 5X,' 1- YES' , 5X, '0-NO ' , f)

'8 FORMAT(lX,'ENTER NUMBER OF QUANTITY TO BE CHANGED',/)
19 FORMAT('X, 'DATA CHANGE MENU',/1X,31('*')

1,1,2X,'t-TITLE',1,2X, '2-COLUMN HEIGHT' ,I,2X,'3-COLUMN DIAMETER'
2 ,1,2X,'4-NUMBER OF INCREMENTS' ,1,2X,'5-VOLUMETRIC FLOW',
3 'RATE',I,2X,'6-S0LUTION DENSITY' ,1,2X,'7-SOLUTION VISCOSITY'
4 ,1,2X,'8-RESIN PARTICLE DIAMETER',1,2X,'9-RESIN POROSITY',I,
5 lX,'10-INLET PRESSURE' ,I,lX,'11-INITIAL RESIN CONCENTRATION'
6 ,I,lX, '12-INLET SOLUTION CONCENTRATION' ,1,1X, '13-MAXIMUM "
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7 'SIMULATION TIME',I,1X,31('*')
8 Il,lX, 'ENTER NUMBER OF QUANTITY TO BE CHANGED' ,I)

20 FORMAT(1X, 'ENTER NUMBER OF SPATIAL INCREMENTS,500 MAx',/)
21 FORMAT(I4)
23 FORMAT(1X,52('*')/)
24 FORMAT(1X,'ENTER MAXIMUM SIMULATION TIME, SEc',/)
22 RETURN

END
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SUBROUTINE DELP(DP,RHOL,VOLFLO,BEDDIA,POROS,XINCL,VISC,TEST,
1 DELTAP,KO)

C******************************************
C SUBROUTINE FOR PRESSURE DROP CALCULATION
C******************************************

IMPLICIT REAL*8(A-H,O-Z)
C
C CALCULATE SUPERFICIAL VELOCITY, WS(FT/sEC)

AEMPTY=3.1416*(BEDDIA**2)/4.
WS=VOLFLO/AEMPTY

C
C DETERMINE FLOW REGIME

TEST=DP*RHOL*Ws/vISc/(1.-POROS)
IF(TEST.GT.1000. )GO TO. 5
IF(TEST.GT.10 •• AND.TEST.LT.1000.)GO TO 6

C
C PRESSURE DROP FOR LAMINAR FLOW(BLAKE-KOZENY EQUATION)

DELTAP=WS*XINCL*150.*VISC*((1.-POROS)**2)/(DP**2)/(pOROS**3)/32.2
WRITE(KO,1 )
GO TO 4

C
C PRESSURE DROP FOR TURBULENT FLOW(BURKE-PLUMMER EQUATION)

5 DELTAP=1.75*XINCL*RHOL*(WS**2)*(1.-POROS)/DP/(pOROS**3 )/32.2
WRITE(KO,2)
GO TO 4

C
C PRESSURE DROP FOR TRANSITION FLOW(ERGUN EQUATION)

6 DELTAP=WS*XINCL*150.*VISC*((1.-POROS)**2)/(DP**2)/(pOROS**3)/32.2
1+1.75*XINCL*RHOL*(W**2)*(1.-POROS)/DP/(pOROS**3)/32.2
WRITE(KO,3)

4 CONTINUE
C

1 FOill1AT(1X,'LAMINAR FLOW REGIME' ,II)
2 FOfu~T(lX,'TURBULENT FLOW REGIME',II)
3 FOill1AT(1X,'TRANSITION FLOW REGIME',II)

RETURN
END
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SUBROUTINE DETISO(KO,KI,FK,FN,CSMAX,ISO)
c*************************************
C SUBROUTINE TO SPECIFY ISOTHERM TYPE
c*************************************

IMPLICIT REAL*8(A-H,O-Z)
WRITE(KO, 1)
llEAD(KI,2)ISO
IF(ISO.NE.1)GO TO 9
WRITE(KO,3)
READ(KI,5)FK
FN=O.
CSMAX=O.
GO TO 11

9 IF(ISO.NE.2)GO TO 10
WRITE(KO,4)
READ(KI,5)FK
WRITE(KO,6)
READ(KI,5)CSMAX
FN=O.
GO TO 11

10 IF(ISO.EQ.3)WRITE(KO,7)
READ(KI,5)FK
WRITE(KO,8)
READ(KI,5)FN
CSMAX=O.

11 CONTINUE
1 FORMAT(1X,'ENTER ISOTHERM TYPE',/I,lX,'1-LINEAR',10X,'2

1-LANGMUIR' ,10X,'3-FREUNDLICH',II)
2 FOR!1AT(I1)
3 FORMAT(1X, 'LINEAR ISOTHERM',II,1X,'ENTER EQUILIBRIUM CON

1STANT' ,II)
4 FORMAT(lX,'LANGMUIR ISOTHERM' ,II,1X,'ENTER EQUILIBRIUM CONSTANT'

1,1/)
5 FORMAT(F15.5)
6 FOR}~T(lX, 'ENTER MAXIMUM RESIN CONCENTRATION',II)
7 FORMAT(1X,'FREUNDLICH ISOTHERM' ,II,1X, 'ENTER EQUILIBRIUM

1 CONSTANT', /)
8 FORMAT(1X,'ENTER EXPONENT FOR SOLUTION CONCENTRATION' ,I)

RETURN
END
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SUBROUTINE TRIDAG(NP1,IF,L,A,B,C,D,BETA,GAMMA,V)
C****************************************
C SUBROUTINE TO SOLVE TRIDIAGONAL SYSTEM
c****************************************

IMPLICIT REAL*S(A-H,O-Z)
DIMENSION A(NP1),B(NP1),C(NP1),D(NP1),V(NP1),BETA(NP1),

1 GAMMA(NP1) ~

BETA(IF)=B(IF)
GAMMA(IF)=D(IF)/BETA(IF)
IFP1=IF+l
DO 1 I=IFP1,L
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-l)
GAMMA(I)=(D(I)-A(I)*GAMMA(I-l))/BETA(I)
V(L)=GANMA(L)
LAST=L-IF
DO 2 K=1, LAST
I=L-K

2 V(I)=GA}rnA(I)-C(I)*V(I+l)/BETA(I)
RETURN
END
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APPENDIX B

SAMPLE INPUT DIALOG/OUTPUT FORMAT
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ENTER TITLE, 60 CHARACTERS MAXIMUM

SAMPLE INPUT DIALOG/OUTPUT FORMAT
------INPUT DATA------

ENTER COLUMN HEIGHT, FT

2.297
ENTER COLUMN DIAMETER, FT

.0446
ENTER NUMBER OF SPATIAL INCREMENTS,500 MAX

100
ENTER SOLUTION VOLUMETRIC FLOW RATE, FT3/SEC

5·916E-06
ENTER SOLUTION DENSITY, LB/FT3

62·94 .
ENTER SOLUTION VISCOSITY, LB/FT/SEC

.0008
ENTER RESIN PARTICLE DIAMETER, FT

.0017
ENTER RESIN POROSITY

.4
ENTER INLET PRESSURE, PSI

20
ENTER INITIAL RESIN CONCENTRATION, LB/FT3

o
ENTER INLET SOLUTION CONCENTRATION, LB/FT3

2·56
ENTER MAXIMUM SIMULATION TIME, SEC

100
**********..........********.........******************....****

DATA SUMMARY FOR: SAMPLE INPUT DIALOG/OUTPUT FORMAT
COLUMN HEIGHT(FT): 0.2297E+01
COLUMN DIAMETER(FT): 0.4460E-01
NUMBER OF SPATIAL INCREMENTS: 100
SOLUTION VOLUMETRIC FLOW RATE(FT3/SEC): 0.5916E-05
SOLUTION DENSITY(LB/FT3): 0.6294E+02
SOLUTION VISCOSITY(LB/FT/SEC): 0.8000E-03
RESIN PARTICLE DIAMETER(FT): 0.1700E-02
RESIN POROSITY: 0.4000E+00
INLET PRESSURE(PSI): 0.2000E+02
INITIAL BED CONCENTRATION(LB/FT3): O.OOOOE+OO
INLET SOLUTION CONCENTRATION(LB/FT3): 0.2560E+Ol

•••••••••••••***************************************
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WOULD YOU LIKE TO CHANGE ANY OF THESE VALUES?
l-YES O-NO

1
DATA CHANGE MENU

*******************•••••••••***
l-TITLE
2-COLUMN HEIGHT
3-COLUMN DIAMETER
4-NUMBER OF INCREMENTS
5-VOLUMETRIC FLOW HATE
6-S0LUTION DENSITY
7-S0LUTION VISCOSITY
8-RESIN PARTICLE DIAMETER
9-RESIN POROSITY

10-INLET PRESSURE
ll-INITIAL RESIN CONCENTRATION
12-INLET SOLUTION CONCENTRATION
13-MAXIMUM SIMULATION TIME
******•••••••••••••••••••••••••

ENTER NUMBER OF QUANTITY TO BE CHANGED

1
ENTER TITLE, 60 CHARACTERS MAXIMUM

SAME TEST- SAMPLE DIALOG/FORMAT
WOULD YOU LIKE TO CHANGE ANY OTHER VALUES?

l-YES O-NO

o
***•••••••***********•••••••******••••••••••••••••••

DATA SUMMARY FOR: SAME TEST- SAMPLE DIALOG/FORMAT
COLUMN HEIGHT(FT): 0.2297E+Ol
COLUMN DIAMETER(FT): 0.4460E-Ol
NUMBER OF SPATIAL INCREMENTS: 100
SOLUTION VOLUMETRIC FLOW RATE(FT3/SEC): 0.5916E-05
SOLUTION DENSITY(LB1FT3): 0.6294E+02
SOLUTION VISCOSITY(LB/FT/SEC): 0.8000E-03
RESIN PARTICLE DIAMETER(FT): 0.1700E-02
RESIN POROSITY: 0.4000E+00
INLET PRESSURE(PSI): 0.2000E+02
INITIAL BED CONCENTRATION(LB/FT3): O.OOOOE+OO
INLET SOLUTION CONCENTRATION(LB/FT3): 0.2560E+Ol

....................*****************••••••*********



ENTER ISOTHERM TYPE
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l-LINEAR

1
LINEAR ISOTHERM

2-LANGMUIR 3-FREUNDLICH

ENTER EQUILIBRIUM CONSTANT

·58
ENTER TIME INCREMENT, SEC

1-.01 2-.1 3-1.0

3
HOW OFTEN WOULD YOU LIKE TO READ THE CONCENTRATION PROFILE?
ENTER SELECTION NUMBER FROM BELOW

DELTAT-.Ol SEC
1- 1 SEC
2- 10 SEC
3- 100 SEC
4-1000 SEC

10

DELTAT=. 1 SEC
5- 1 SEC
6- 10 SEC
7- 100 SEC
8-1000 SEC

DELTAT=l SEC
9- 1 SEC

10- 10 SEC
11- 100 SEC
12-1000 SEC



AVERAGE INTERSTITIAL VELOCITY= 0.94669E-02 FT/SEC

DISPERSION COEFFICIENT(HYDRODYNAMIC - NUMERICAL)= 0.12316E-03 FT2/SEC

LAMINAR FLOIi REGIME

DELTAp-· 0.43814E+00 PSI
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OUTLET PRESSURE- 0.19562E+02 PSI

CONCENTRATION AS FUNCTION OF TIME AND DISTANCE

TIME(SEC) TOP 0.57 FT 1.15 FT 1.72 FT BOTTOM
•

0.00 O.OooOOE+OO O.OOOOOE+oo O.OOOOOE+oo O.OOOOOE+OO O.OOOOOE+OO
10.00 0.25600E+Ql 0.11012E-13 0.18859E-35 O.OOOOOE+OO O.OOOOOE+OO
20.00 0.25600E+Ol 0·97093E-09 0.14194E-27 O.OOOOOE+OO O.OOOOOE+OO
30.00 0.25600E+Ql 0·91213E-06 0·56319E-22 O.OooOOE+OO O.OOOOOE+OO
40.00 0.25600E+Ol 0.81733E-04 0·95578E-18 0.15078E-35 O.OOOOOE+OO
50.00 0.25600E+Ol 0.18132E-02 0.19264E-14 0.99811E-31 O.OOOOOE+OO
60.00 0.25600E+Ol 0.16279E-Ol 0.84292E-12 0.10890E-26 O.OOOOOE+OO
70.00 0.25600E+Ol 0.78479E-Ol 0.11811E-09 0.29239E-23 O.OOOOOE+OO
80.00 0.25600E+Ol 0.24250E+00 0.68987E-08 0.25597E-20 0.28804E-36
90.00 0.25600E+Ol 0·54084E+00 0.20234E-06 0.89962E-18 0·99874E-33

100.00 0.25600E+Ol 0·94719E+00 0·34122E-05 0.14864E-15 0.13923E-29

AVERAGE ERROR IN TOTAL MATERIAL BALANCE - 0.74968E-03 LB/FT3

SIMULATION COMPLETE--~llAT NEX'f?

1-STOP
2-NEIi PROBLEM
3-ALTER PARAMETERS OF PREVIOUS PROBLEM

ENTER SELECTION NUMBER



APPENDIX C

EXPERIMENTAL DATA FROM THE LITERATURE
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Linea r Isotherm System

Vassiliou and Dranoff (1962) reported experiments on the exclusion

of glycerol from aqueous solutions using a small fixed-bed columns of a

hydrogen form ion exchange resin. The reported data is summarized below

in appropriate units for use in the computer program of Appendix A.

Column Characteristics: L = 2.297 ft.
Dc = 0.0446 ft.

Solution Characteristics: V = 5.916e-06 f3
3/sec

p = 62.94 lb/ft
~ = 0.0008 lb/~t/sec

Cin = 2.56 lb/ft

Resin Characteristics: Dp = 0.0017 ft.

e: = 0.4
Fk = 0.58

Breakthrough Data: t, sec

·257
269
292
306
333
365
393
424
483
543
603
660

Freundlich Isotherm System

C/Co

0.030
0.045
0.100
0.160
0.300
0.470
0.600
0.701
0.850
0.930
0.980
1.000

Erickson (1979) reported experiments performed on the

ethylenediamine dihydrochloride and ammonium chloride system. The ion

exchange equilibrium was described by a Freundlich isotherm for



favorable and unfavorable exchange. The reported data are summarized

below for use in the computer program of Appendix A.

Favorable Exchange

Column Characteristics: L = 1.732 ft.
Dc = 0.1306 ft.

Solution Characteristics: V = 0.812e-03 f~3/sec
p = 62.22 lb/ft
u = 0.0006 lb/f3/sec

Cin = 1.985 lb/ft

Resin Characteristics: Dp = 0.0013 ft.

EO = 0.352
Fk = 1.117
Fn = 0.4447

Breakthrough Data:

Column Characteristics:

Solution Characteristics:

t. sec

20.0
30.0
40.0
50.0
65.0
75.0
85.0
95.0
115.0
135.0
155.0

Unfavorable Exchange

C/Co

0.022
0.169
0.387
0.510
0.643
0.705
0.760
0.800
0.836
0.870
0.892



Resin Characteristics: Dp = 0.0012 ft.

E = 0.352
Fk = 1.0985
Fn = 0.38414
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Breakthrough Data: t, sec

9.8
10.1
10.8
11.8
12.8
13.8
14.8
15.8
16.8
17 .8
18.8
19.8
20.8
21.8
22.8
42.8
62.8
82.8

102.8

CICo

0.001
0.004
0.020
0.064
0.150
0.227
0.296
0.348
0.395
0.447
0.456
0.488
0.503
0.534
0.543
0.700
0.780
0.833
0.858



APPENDIX D

TRUNCATION ERROR ANALYSIS
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by
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Truncation Error Analysis

The general one-dimensional convection-dispersion equation is given

aC a2c aC
e: aT= DZ;-Z- Vz az·

z

(51 )

The explicit, centered-difference representation of Equation 51 is given

by

~t [C(z, t+fit) - C(Z,t)]

Dz
= [C(Z+fiZ,t) - 2 C(z.t) + C(Z-fiz,t)]

(fiZ )2

Vz- 2fiz [C(Z+fiz,t) - C(Z-fiz,t)]

(52 )

Truncation is inherent in the solution of Equation 52. This error is

quantified by subtracting the exact equation (Equation 51) from the

approximated equation (Equation 52).

where

ET = truncation error,

SA = approximated equation,

and

SE = exact equation.

(53)



se

Expressing the finite-difference terms as Taylor series expansions,

and keeping terms up to second order in the increments, gives

and

ac (llt)2 a2c
C(z ,t+llt) - C(z, t) = llt - + .>.=-;;..L-

at 2 at2'
(54)

C(Z+llz,t) - C(z-llz,t) = 2llz 2.f .az • (55 )

Substitution of Equations 54 and 55 into Equation 52 gives

2 .
{D a C _ V 2.f}

z -::-:z z azaz

V
z

ac}
at

(56 )

(57)

Subtracting Equation 57 from Equation 56 gives the expression for ET, ,

t ,2C
E = e :::ll~a~

. T 2 at 2

The error can be converted to a more revealing form by rewriting

the a2C/at2 term.

Equation 51 is the first differentiated with respect to t:

(58 )

(59 )

Neglect third-order iterated partial. derivatives to obtain

(60 )



Expressions for the second-order derivatives are obtained by

differentiating Equation 51 with respect to z:

Again, third-order derivatives are neglected to give

From Equations 60 and 62,

and

Then

Substituting Equation 65 into Equation 58 yields

V 2 2
E = 6t (_z_~)
T "2 £ ai

From Equation 53,

(61 )

(62)

(63 )

(64 )

(65 )

(66)
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s ~ SA ~ E oj. t
T

rh~refore f
, rom [quat.10ns

Now, Equation 65 is
inserted to

57 and 58 ,

v ~
Z d Z •

give

(67)

(68)

90

SA "'E:!..f [at - 0
Z

The solution of SA '" 0
Equation 69 is

rewri tten

v aezaz-

is the deSired solo.
Therefore .,

(69 )

(70)

The above truncation error analysis shows. the solution of the

difference equation SA '" 0 corresponds to Equat70, not the original

Equation 51. The difference is due to ET, whiopears as an

alteration of the dispersion coefficient. Thiseration is given by

where

o - 0 - 0ztot - z znum
(71)


