PLUME 3D
 Three-Dimensional Plumes In Uniform Ground Water Flow

By
Jan Wagner, Stophanie A. Watts and Douglas C. Kent Oklahoma State University stillwater, OK 74078

Prepared for
Robert S. Kerr Environmental Research Laboratory
U.S. Environmental Protection Agency

Ada, OK 74820

PLUME3D: THREE-DIMENSIONAL PLUMES IN UNIFORM GROUND WATER FLOW

Jan Wagner and S. A. Watts
School of Chemical Engineering
Oklahoma State University Stillwater, OK 74078
D. C. Kent
Department of Geology
Oklahoma State University
Stillwater, OK 74078

Introduction

This document describes a mathematical model and the associated computer program which can be used to estimate concentration and distributions in a leachate plume which emanates from one or more point sources. The model includes both linear adsorption and first-order reactions.

The use of the computer program is fairly simple, but represents only one tool which can aid in the analysis and understanding of ground-water contamination problems. The user must select the appropriate tools for the problem at hand, based on a sound understanding of the principles of ground water hydrology, the physical problem, and the assumptions and limitations ofthe mathematical model.

Model Formulation

The differential equation describing the conservation of mass of a component in a saturated, homogeneous aquifer with uniform, steady flow in the x-direction can be written as

$$
\begin{equation*}
R_{d} \frac{\partial C}{\partial t}+V^{*} \frac{\partial C}{\partial x}=D_{x}^{*} \frac{\partial^{2} C}{\partial y^{2}}+D_{z}^{*} \frac{\partial^{2} C}{\partial z^{2}}-R_{d} \lambda C \tag{1}
\end{equation*}
$$

where

C	$=$ component mass per unit of fluid phase	$\mathrm{M} / \mathrm{L}^{3}$
D_{x}^{*}	$=$ dispersion coefficient in x-direction	$\mathrm{L}^{2} / \mathrm{t}$
D_{y}^{*}	$=$ dispersion coefficient in y-direction	$\mathrm{L}^{2} / \mathrm{t}$
D_{z}^{*}	$=$ dispersion coefficient in z-direction	L 2/t
R_{d}	$=$ retardation coefficient	
V^{*}	$=$ average interstitial velocity in x-direction	L / t
x, y, z	$=$ retangular coordinates	L
λ	$=$ first-order decay constant	l / t

$\lambda=$ first-order decay constant $1 / t$

The retardation coefficient accounts for partitioning of the component between the fluid and solid phases using a linear adsorption isotherm, and is defined as

$$
\begin{equation*}
R_{d}=1+\frac{\rho_{B}}{\theta} K_{d} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{B} & =\text { bulk density of the aquifer } \\
\theta & =\text { effective porosity } \\
K_{d} & =\text { distribution constant for a linear adsorption isotherm } \frac{M / L^{3}}{M / L^{3}}
\end{aligned}
$$

A closed-form analytical solution to Equation 1 for an infinite aquifer with a continuous point source of strength M_{0} at the origin can be written as (Hunt, 1978; Turner, 1972)

$$
\begin{array}{r}
C_{c}=\frac{M_{0} \exp \left(\frac{1}{2} \frac{V^{\star} x}{D_{x}^{\star}}\right)}{8 \pi \Theta R \sqrt{D_{y} D_{z}}}\left(\exp \left(\frac{1}{2} \frac{R U}{D_{x}}\right) \operatorname{erfc}\left(\frac{1}{2} \frac{R_{d} R+U t}{\sqrt{R_{d} D_{x}^{\star} t}}\right)\right. \\
+\exp \left(-\frac{1}{2} \frac{R U}{D_{x}^{\star}}\right) \operatorname{erfc}\left(\frac{1}{2} \frac{R_{d} R-U t}{\sqrt{R_{d} D_{x}^{\star} t}}\right) \tag{2}
\end{array}
$$

where

$$
\begin{equation*}
R=x^{2}+\frac{D_{x}^{*}}{D_{y}^{*}} y^{2}+\frac{D_{x}^{*}}{D_{z}^{*}} z^{2} \quad 1 / 2 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
U=v^{\star}\left(1+\frac{4 D_{x}^{*} R_{d} \lambda}{V^{\star} 2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

The steady-state solution for a continuous point source is (Hunt, 1978)

$$
\begin{equation*}
C_{C, \infty}=\frac{C_{0} Q}{4 \pi \theta R \sqrt{D_{y}^{\star} D_{z}^{\star}}} \exp \left(\frac{1}{2} \frac{V^{\star} x}{D_{x}^{\star}}-\frac{U R}{D_{x}^{\star}}\right) \tag{5}
\end{equation*}
$$

Equations 2 and 5 can be used to calculate the concentrations in a leachate plume under the following assumptions and limitations:

1. The ground-water flow regime is completely saturated.
2. All aquifer properties are constant and uniform throughout the aquifer.
3. The ground-water flow is horizontal, continuous, and uniform throughout the aquifer.
4. The aquifer is infinite in extent.
5. The leachate source is a point located at the origin of the coordinate system.
6. The mass flow rate of the source is constant.
7. At zero time the concentration of leachate in the aquifer is zero.

The assumptions of an infinite aquifer depth and a uniform source mass rate can be overcome by using the principles of superposition in space and time, respectively (Walton, 1962). Both of these provisions have been incorporated in the computer program developed in this project. Superposition is also used to include multiple sources.

Computer Program

The closed-form analytical solutions for the two-dimensional plumes as presented above have been incorporated in an interactive computer program. The source code has been written in a subset of FORTRAN 77 and can be compiled with FORTRAN IV, FORTRAN 66, as well as FORTRAN 77 compilers. As a result, the code is almost entirely independent of hardware and operating systems. Those changes which may be required to implement the code on a given system, such as assigning logical devices are clearly identified.

The program has been developed for interactive use and requires input data under two modes of operation -- "Basic Input Data" and "Edit." The basic input data listed in Table 1 are required to initiate a new problem. The user is prompted for the required data through a series of input commands.

Once the basic input data have been entered, the problem as currently defined is listed and the program enters the "edit" mode. The two character edit commands listed in Table 2 can be used to redefine the problem, run the calculations, and terminate the program.

The program has been written to require a minimum of machine resources and will run on both 8 and 16 bit microcomputers under $C P / M$, MS-DOS, and PCDOS as well as larger minicomputers and mainframe machines.

The models and computer codes developed in this project are intended to serve as additional tools in the analysis of ground-water contamination problems. The user must select the best tool for the problem at hand based on a sound understanding of the principles of ground-water hydrology, the physical problem, and the limitations of the mathematical model(s). Unfortunately, these computer programs cannot substitute for an understanding of the processes and mechanisms of solute transport in ground-water systems or sound judgement based on training and experience.

References

Hunt, B., 1978, "Dispersive Sources in Uniform Ground-Water Flow," Journal of The Hydraulics Division, ASCE, Vol. 104, No. HY1, pp. 75-85.

Turner, G. A., 1972, Heat and Concentration Waves, Academic Press, New York, New York, 233 pp.

Walton, W. C., 1962, "Selected Analytical Methods for Well and Aquifer Evaluation," Bulletin 49, Illinois State Water Survey, Urbana, Illinois, 81 pp.

TABLE 1

Input Data Required for the Analytical Three-Dimensional Plume Model

Title - Units for length, time, and concentration
Saturated thickness (for aquifer of finite depth)
Effective porosity
Ground water interstitial velocity
Retardation coefficient
Longitudinal dispersion coefficient
Transverse dispersion coefficient
Vertical dispersion coefficient
First-order decay constant
Type of solution (transient or steady-state)
Number of sources
Location and rate schedules for each source
Coordinates of observation points
Observation times (for transient solution)

TABLE 2
EDIT COMMANDS

Command
ST
PO
vx

RD

DE
DX
DY
DZ
RT
OB
XC

ZC

YC

TC

AS
CS
MU
LI
RN
NP
DN

Variable changed/Execution
Saturated Thickness
Porosity
New Seepage Velocity
Retardation Coefficient
Decay Constant
X-Dispersion Coefficient
Y-Dispersion Coefficient
Z-Dispersion Coefficient
Source Rate Schedule
Observation Points
X-Coordinates
Z-Coordinates
Y-Coordinates
Observation Times
Aquifer Sectioning
Change Solution/Sources
Menu of Edit Commands
List input data
Run
New Problem
Done

PLUME3D
THREE-DIMENSIONAL PLUMES IN UNIFORM GROUND WATER FLOW
by

Jan Wagner and Stephanie A. Watts
School of Chemical Engineering
Oklahoma State University
Stillwater, Oklahoma 74078

Douglas C. Kent
Department of Geology
Oklahoma State University
Stillwater, Oklahoma 74078

CR811142-01-0

Project Officer
Carl G. Enfield
Robert S. Kerr Environmental Research Laboratory
U. S. Environmental Protection Agency

Ada, Oklahoma 74820

DISCLAIMER

This report has been reviewed by the Robert S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement of recommendation for use.

TABLE OF CONTENTS

INTRODUCTION 1
SECTION I - MATHEMATICAL DEVELOPMENT 2
Analytical Solution 3
Assumptions and Limitations. 7
Superposition 8
SECTION II - COMPUTER PROGRAM. 16
Basic Input Data 16
Edit Commands 20
SECTION III - APPLICATIONS 23
Site Location. 23
Hydrogeology 23
Plating-Waste Contamination. 24
Analytical Model 25
REFERENCES 32
APPENDIX A - Input Data Dialog and Results for Example Problem A-1
APPENDIX B - Listing of Source Code for PLUME3D B-1
APPENDIX C - Solute Transport in Uniform Ground-Water Flow Mathematical Development. C-1

LIST OF TABLES

Table 1 - Edit Commands. 22
Table 2 - Input Data Required for the Analytical Three-Dimensional Plume Model 26
Table 3 - Typical Values for Aquifer Properties. 28
Table 4 - Model Input for Example Problem 1. 30

Figure 1 - Decomposition of a variable rate using superposition in time.
 10

Figure 2 - Use of image sources to account for aquifers of finite depth. 13
Figure 3 - Superposition in space to account for barrier boundaries. 14

This document describes a mathematical model and the associated computer program which can be used to estimate concentration distributions in a leachate plume which emanates from a point source. The model includes both linear adsorption and first-order reactions.

The use of the computer program is fairly simple, but represents only one tool which can aid in the analysis and understanding of ground-water contamination problems. The user must select the appropriate tools for the problem at hand, based on a sound understanding of the principles of groundwater hydrology, the physical problem, and the assumptions and limitations of the mathematical model.

SECTION I

MATHEMATICAL DEVELOPMENT

The differential equation describing the conservation of mass of a component in a saturated, homogeneous aquifer with uniform, steady flow in the x-direction can be written as

$$
\begin{equation*}
R_{d} \frac{\partial C}{\partial t}+V^{*} \frac{\partial C}{\partial x}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}+D_{z} \frac{\partial^{2} C}{\partial z^{2}}-R_{d} \lambda C \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
C & =\text { component mass per unit volume of fluid phase } & & M / L^{3} \\
D_{x} & =\text { dispersion coefficient in x-direction } & & L^{2} / t \\
D_{y} & =\text { dispersion coefficient in y-direction } & & L^{2} / t \\
D_{z} & =\text { dispersion coefficient in z-direction } & & L^{2} / t \\
R_{d} & =\text { retardation coefficient } & \\
V^{*} & =\text { average interstitial velocity in x-direction } & L / t \\
x, y, z & =\text { rectangular coordinates } & L \\
\lambda & =\text { first-order decay constant } & & 1 / t
\end{array}
$$

The retardation coefficient accounts for partitioning of the component between the fluid and solid phases using a linear adsorption isotherm, and is defined as

$$
\begin{equation*}
R_{d}=1+\frac{\rho_{B}}{\theta} K_{d} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\rho_{B} & =\text { bulk density of the aquifer } \\
\theta & =\text { effective porosity } \\
K_{d} & =\text { distribution constant for a linear adsorption isotherm } \frac{M / L^{3}}{M / L^{3}}
\end{aligned}
$$

Analytical Solution
A closed-form analytical solution to Equation 1 can be obtained by making a change of variables. Let

$$
\begin{equation*}
\tau=t / R_{d} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x=x-V_{\tau}^{*} \tag{4}
\end{equation*}
$$

Then Equation 1 is transformed to

$$
\begin{equation*}
\frac{\partial C}{\partial \tau}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}+D_{z} \frac{\partial^{2} C}{\partial z^{2}}-R_{d} \lambda C \tag{5}
\end{equation*}
$$

with boundary conditions

$$
\begin{align*}
& C(x, y, z, 0)=0 \tag{6a}\\
& C(x, y, \pm \infty, \tau)=0 \tag{6b}\\
& C(x, \pm \infty, z, \tau)=0 \tag{6c}
\end{align*}
$$

$$
\begin{equation*}
C(\pm \infty, y, z, \tau)=0 \tag{6~d}
\end{equation*}
$$

Equation 5 is a special form of the analogous equations in heat conduction, for which solutions are given by Carslaw and Jaeger (1959). The solution for an instantaneous point source of strength M_{0} at the origin is

$$
\begin{equation*}
C_{i}=\frac{M_{0}}{8 \theta \sqrt{\pi^{3} t^{3} D_{x} D_{y} D_{z}}} \exp \left(-\frac{x^{2}}{4 D_{x}^{\tau}}-\frac{y^{2}}{4 D_{y}^{\tau}}-\frac{z^{2}}{4 D_{z}^{\tau}}-R_{d} \lambda \tau\right) \tag{7}
\end{equation*}
$$

In terms of the untransformed variables,

$$
\left.\begin{array}{r}
C_{i}=\frac{M_{0}}{8 \theta \sqrt{\pi^{3} t^{3} D_{x} D_{y} D_{z}}} \exp \left(-\frac{\left(x-v^{*} t / R_{d}\right)^{2}}{4 D_{x} t / R_{d}}-\frac{y^{2}}{4 D_{y} t / R_{d}}\right. \\
-\frac{z^{2}}{4 D_{z} t / R_{d}}-\lambda t \tag{8}
\end{array}\right)
$$

The solution for a continuous point source is obtained by integrating Equation 8 with respect to time and letting $C_{0} Q=d M_{0} / d t$, or

$$
\begin{align*}
C_{c}=\frac{1}{8 \theta \sqrt{\pi^{3} D_{x} D_{y} D_{z}}} & \int_{0}^{t} C_{0} Q t^{-3 / 2} \exp \left(-\frac{\left(x-v^{*} t / R_{d}\right)^{2}}{4 D_{x}^{t / R} d}\right. \\
& \left.-\frac{y^{2}}{4 \sigma_{y}^{t / R_{d}}}-\frac{z^{2}}{4 D_{z} t / R_{c}}-\lambda t\right) d t \tag{9}
\end{align*}
$$

Equation 9 can be rearranged slightly to

$$
\begin{equation*}
C_{c}=\frac{\exp \frac{1}{2} \frac{v^{*} x}{D_{x}}}{8 \theta \sqrt{\pi^{3} D_{x} D_{y} D_{z}}} \int_{0}^{t} C_{0} Q t^{-3 / 2} \exp \left(-\frac{R_{d} R^{2}}{4 D_{x} t}-\frac{u^{2} t}{4 D_{x} R_{d}}\right) d t \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
R^{2}=x^{2}+\frac{D}{D_{y}} y^{2}+\frac{D x}{D_{z}} z^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
U=v^{\star}\left(1+\frac{4 D_{x} R_{d} \lambda}{v^{\star 2}}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Turner (1972) gives the solution to Equation 10 as

$$
\begin{align*}
C_{c}= & \frac{C_{0} Q \exp \left(\frac{1}{2} \frac{V^{*} x}{D_{x}}\right)}{8 \pi \theta R \sqrt{D_{y} D_{z}}}\left\{2 \cosh \left(\frac{1}{2} \frac{R U}{D_{x}}\right)+\exp \left(\frac{1}{2} \frac{R U}{D_{x}}\right) \operatorname{erf}\left[\frac{1}{2}\left(\frac{U^{2} t}{D_{x} R_{d}}\right)^{1 / 2}\right.\right. \\
& \left.\left.-\frac{1}{2}\left(\frac{R_{d} R^{2}}{D_{x} t}\right)^{1 / 2}\right]-\exp \left(-\frac{1}{2} \frac{R U}{D_{x}}\right) \operatorname{erf}\left[\frac{1}{2}\left(\frac{U^{2} t}{D_{x} R_{d}}\right)^{1 / 2}+\frac{1}{2}\left(\frac{R_{d} R^{2}}{D_{x}}\right)^{1 / 2}\right]\right\} \tag{13}
\end{align*}
$$

which can be simplified somewhat to yield

$$
\begin{align*}
& \left.+\exp \left(-\frac{1}{2} \frac{V U}{V_{x}}\right) \operatorname{erfc}\left(\frac{1}{2} \frac{R_{d} R-U t}{\sqrt{R_{d} 0_{x} t}}\right)\right\} \tag{14a}
\end{align*}
$$

for $\mathrm{x}>0$.

For $x<0$, only the first term, $\exp \left(V^{*} x / D_{x}\right)$, has the sign of x altered, because the value of the integral in Equation 10 is the same for both positive and negative values of x. Therefore

$$
\begin{align*}
C_{c} & \left.=\frac{C_{0} Q \exp \left(-\frac{1}{2} \frac{V^{*} x}{D_{x}}\right.}{8 \pi \theta R \sqrt{D_{y} D_{z}}}\right)\left\{\exp \left(-\frac{1}{2} \frac{R U}{D_{x}}\right) \operatorname{erfc}\left(\frac{1}{2} \frac{R_{d} R+U t}{\sqrt{R_{d} D_{x} t}}\right)\right. \\
& \left.+\exp \left(-\frac{1}{2} \frac{R U}{D_{x}}\right) \quad \operatorname{erfc}\left(\frac{1}{2} \frac{R_{d} R-U t}{\sqrt{R_{d} D_{x} t}}\right)\right\} \tag{14b}
\end{align*}
$$

for $x<0$.

The steady-state solution for a continuous point source is found from Equation 8 as (Hunt, 1978)

$$
\begin{equation*}
C_{C, \infty}=\int_{0}^{\infty} C_{i} d t \tag{15}
\end{equation*}
$$

and the limit of Equation 12 as $t \rightarrow \infty$ is

$$
\begin{equation*}
C_{c, \infty}=\frac{C_{0} Q}{4 \pi \theta R \sqrt{D_{y} D_{z}}} \exp \left(\frac{1}{2} \frac{V^{*} x}{D_{x}}-\frac{U R}{D_{x}}\right) \tag{16}
\end{equation*}
$$

Equations 14 and 16 describe the transient and steady-state concentration distributions arising from a continuous point source in an infinite aquifer with uniform ground-water flow.

Assumptions and Limitations
Equations 14 and 16 can be used to calculate the concentrations in a leachate plume under the following assumptions and limitations:

1. The ground-water flow regime is completely saturated.
2. All aquifer properties are constant and uniform throughout the aquifer.
3. The ground-water flow is horizontal, continuous, and uniform throughout the aquifer.
4. The aquifer is infinite in extent.
5. The leachate source is a point located at the origin of the coordinate system.
6. The mass flow rate of the source is constant.
7. At zero time the concentration of leachate in the aquifer is zero.

The assumptions of an infinite aquifer depth and a uniform source mass rate can be overcome by using the principles of superposition in space and
time, respectively (Walton, 1962). Both of these provisions have been incorporated in the computer program described in the next section.

Superposition

The differential equation describing component mass concentration in a porous medium, Equation 1 , is a linear partial differential equation. The principal of superposition can be used directly to solve complex ground-water contamination problems in terms of the simplier solutions described above. Unfortunately, the scattered applications of this principle are not explained in any single reference. Some texts indicate that superposition means that any sum of solutions is also a solution. Superposition is commonly used to generate a linear no-flow boundary condition through the use of "image wells" or to simulate multiple sources and sinks (Walton; 1962, 1970). The principle of superposition is also complicated by referring to the "Duhamel theorem," the "Faltung integral," and/or "convolution integrals." These terms often have no apparent physical interpretation. For the purposes of this report, "superposition in space" will refer to the approximation of sources of finite area or volume as the sum of a finite number of point sources or the generation of no-flow boundaries using image wells. "Superposition in time" will refer to the approximation of a variable source rate of contamination as the sum of a finite number of constant source rates distributed in time.

The three-dimensional solutions presented above can be used to simulate aquifers of finite width or depth or sources of finite volume. Applications of this type require a thorough understanding of the physical interpretation of the principal of superposition.

However, some applications are relatively straight forward, and the computer program provides for the approximation of a non-uniform source rate
using superposition in time. Multiple sources and aquifers of finite thickness are also included using superposition in space.

Consider the variable source of contamination shown in Figure 1 . The solutions of the governing differential equation presented in this report are of the form

$$
\begin{equation*}
C(x, z, t)=C_{0} Q^{\prime} f(x, z, t)=\dot{Q}^{\prime} f(x, z, t) \tag{17}
\end{equation*}
$$

where Q^{\prime} is the source mass rate per unit length. The principle of superposition in time can be written for any position as

$$
\begin{equation*}
C(x, z, t)=\sum_{i=1}^{n} \dot{Q}_{i}^{\prime} f\left(x, z, t_{i}\right) \tag{18}
\end{equation*}
$$

Now, the variable rate schedule shown in Figure la can be decomposed into a series of positive and negative mass rates as shown in Figure lb. The concentration at a point x, y, z at the end of the simulation, t_{s}, can be evaluated as

$$
\begin{align*}
C(x, y, z, t) & =\dot{Q}_{1}^{\prime} f\left(x, y, z, t_{1}\right)-\dot{Q}_{1}^{\prime} f\left(x, y, z, t_{2}\right) \\
& +\dot{Q}_{2}^{\prime} f\left(x, y, z, t_{2}\right)-\dot{Q}_{2}^{\prime} f\left(x, y, z, t_{3}\right) \\
& +\dot{Q}_{3}^{\prime} f\left(x, y, z, t_{3}\right)-\dot{Q}_{3}^{\prime} f\left(x, y, z, t_{4}\right) \\
& +\dot{Q}_{4}^{\prime} f\left(x, y, z, t_{4}\right) \tag{19}
\end{align*}
$$

Figure 1. Decomposition of a variable source rate using superDosition in time.

In general terms

$$
\begin{equation*}
c\left(x, y, z, t_{s}\right)=\sum_{i=1}^{n}\left(\dot{Q}_{i}^{\prime}-\dot{Q}_{i-1}^{\prime}\right) f\left(x, y, z, t_{i}\right) \tag{20}
\end{equation*}
$$

with $\dot{Q}_{0}^{\prime}=0$

Note the time corresponding to a given source rate, t_{i}, is the period beginning with the start of the given rate to the end of the simulation period; time is not the duration of a given rate. For ease of application, Equation 20 can be rewritten as

$$
\begin{equation*}
C\left(x, y, z, t_{s}\right)=\sum_{k=1}^{n}\left(\dot{Q}_{k}^{\prime}-\dot{Q}_{k-1}^{\prime}\right) f\left(x, y, z, t_{s}-t_{k-1}\right) \tag{21}
\end{equation*}
$$

where t_{k-1} is the time corresponding to the end of mass rate Q_{k-1} or the beginning of rate Q_{k} with $Q_{0}=0$ and $t_{0}=0$.

A continuous non-uniform rate schedule may be approximated as closely as desired by increasing the number of discrete rates in the source rate schedule. In theory an infinite number of discrete rates would be required. An understanding of the physical problem and the assumptions incorporated in the mathematical model are the best guidelines for decomposing a continuous non-uniform source of contamination.

The influence of geohydrologic boundaries on the movement of a tracer is similar to the influence of these boundaries on the drawdown response of an aquifer to pumping. The applications of image well theory described by Walton (1962,1970) can be extended to the horizontally-averaged solution to the solute transport problem considered in this report. The following discussion
parallels Walton's examples of the use of image wells to account for barrier boundaries.

Consider the contaminant plume which would exist if the aquifer were of infinite depth as shown in Figure 2a. If the contaminant plume was to intersect an impermeable base of the aquifer as shown in Figure $2 b$, the vertical concentration gradient must change since there can be no transport of mass across the boundary as a result of dispersion. In mathematical terms

$$
D_{z} \frac{\partial C}{\partial z}=0
$$

at $z=B$. Now, if an imaginary, or image, source were placed across the boundary at a distance equal to the depth of the aquifer, as shown in Figure 2c, this source would create a concentration gradient from the boundary to the image water table equal to the concentration gradient from the boundary to the real water table. A "concentration divide" would be established at boundary, and the no-transport boundary condition ($\partial \mathrm{C} / \partial z=0$) would be satisfied.

The imaginary system of a contaminant source and its image in an aquifer of infinite depth satisfies the boundary conditions dictated by the finite depth system. The resultant concentration distribution is the sum of concentrations in both the real and image systems as shown in Figure 2d.

In theory an infinite number of image systems may be required. For example, if the plume in the infinite system intersects the water table in the image system a second no-transport boundary is encountered as shown in Figure 3. This boundary can be handled by introducing another image system across the imaginary boundary and equidistant from the first image system. This process of adding image systems could be repeated indefinitely. In practice

Figure 2. Use of image sources to account for aquifers of finite depth.

Figure 3. Superposition in space to account for barrier boundaries.
only a few image systems are required. The computer program automatically introduces an appropriate number of image systems.

SECTION II

COMPUTER PROGRAM

The computer program evaluates the analytical solution of the differential equation describing concentration distributions in a threedimensional plume with uniform ground-water flow. The program has been designed for interactive use and requires input data under two modes of operation -- "Basic Input Data" and "Edit."

Basic Input Data
Basic input data are required to initiate a new problem using the PLUME3D program. The user is prompted for the required data through a series of input commands described below. Numeric data may be entered through the keyboard with or without decimal points and multiple data entries should be separated by comma(s). The first basic input command is:

ENTER TITLE
?
Any valid keyboard characters can be used. The first 60 characters will be retained for further problem identification.

The next three input commands define the units for all variables used in the calculations. Any consistent set of units may be used.

ENTER UNITS FOR LENGTH (2 CHARACTERS) ?

Any valid keyboard characters can be used. The first two characters will be retained for identifying the units of the length dimension which may be required for other input data or output listings.

ENTER UNITS FOR TIME (2 CHARACTERS)
? .

Any valid keyboard characters can be used. The first two characters will be retained for identifying the units of the time dimension which may be required for other input data or output listings.

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS) ?

The first six characters of any valid keyboard entries will be retained for identifying the concentration units for data input and output.

The remaining input commands are used to initialize all variables for a given problem. They include both aquifer and contaminant parameters. Input data errors which may interrupt the computational sequence are detected by the program, and a command is issued to reenter the data for the appropriate variable.

ENTER SATURATED THICKNESS, (O FOR INFINITE THICKNESS), L ?

The saturated thickness must be entered in the units requested with dimensions of L. If a zero or negative value is entered, the calculations will be carried out assuming an aquifer of infinite depth. The program automatically includes up to 20 image wells for aquifers of finite depth.

ENTER AQUIFER POROSITY
?
Enter the volume void fraction.
ENTER SEEPAGE VELOCITY, L/t ?

The seepage, or interstitial, velocity must be entered with dimensions of L / t in the units requested. Numerical values must be greater than zero.

ENTER RETARDATION COEFFICIENT

 ?The retardation coefficient includes the effects of absorption of the tracer on the solid matrix. The numerical value must be greater than 1.0 , or equal to 1.0 if absorption is neglected.

ENTER X DISPERSION COEFFICIENT, SQ L/t ?

Dispersion coefficients have dimensions of L^{2} / t and must be entered in the units requested. Numerical values must be greater than zero. The next two commands will ask for the Y and Z dispersion coefficients, respectively. They also have dimensions of L^{2} / T and must be entered in the units requested. Numerical values must be greater than zero.

ENTER Y DISPERSION COEFFICIENT, SQ L/t ?

ENTER Z DISPERSION COEFFICIENT, SQ L/t ?

The subsequent command is:
ENTER DECAY CONSTANT, $1 / t$?

The first order decay constant has dimensions of $1 / t$ and must be entered in the units requested. The decay constant must be greater than, or equal to, zero.

SELECT TRANSIENT OR STEADY-STATE SOLUTION
TR FOR TRANSIENT SOLUTION
SS FOR STEADY-STATE SOLUTION
?
Selection of the transient solution also allows the approximation of a nonuniform rate schedule by a series of uniform rates. Approximation is accomplished through superposition of a series of uniform rates. If steadystate solution is chosen, the steady state concentration will be evaluated.

ENTER THE NUMBER OF SOURCES (MAXIMUM OF N)
?
The number of sources of contaminant should be entered. The value entered must be greater than zero.

MASS RATES HAVE UNITS OF (M/L ${ }^{3}$) $\left(L^{3} / t\right)$
TIME HAS UNITS OF t

This statement reminds the user of the units that will be used for mass rates and for time. All mass rates and time values entered must be in these units. The next three commands will be repeated for each source.

ENTER X, Y, AND Z COORDINATES OF SOURCE I (L) ?

The input units for the coordinates must be in the units requested. The Z coordinate must be greater than or equal to zero.

If the transient solution was chosen the following two commands will be issued.

ENTER THE NUMBER OF RATES FOR SOURCE I (MAXIMUM OF N) ?

The number of uniform rates used to approximate a nonuniform rate schedule for this source is entered. The value must be greater than zero.

SOURCE I, RATE J STARTS AT TIME t ENTER MASS RATE AND ENDING TIME ?

The source mass rate is entered in units of concentration times the volumetric rate. Note the actual source concentration and rate are not required, but the units must be consistent. The time units must also be consistent.

If the steady-state solution has been selected, the following command will be entered instead of the two previously listed commands.

ENTER STEADY-STATE MASS RATE I ?

The next three basic input commands are used to define the matrix of observation points, or coordinates at which concentration will be evaluated. ENTER XFIRST, XLAST, DELTAX (L) ?,?,?

The input units for the coordinates must also be in the units requested. A zero entry for DELTAX will result in a single X-coordinate observation.

Results of calculations for multiple X-coordinates will be listed from XFIRST to XLAST.

ENTER YFIRST, YLAST, DELTAY (L) ?,?,?

Any of the numerical values used to define the γ-coordinates of observation points may be positive or negative.

ENTER ZFIRST, ZLAST, DELTAZ (L)
?,?,?
Both ZLAST and ZFIRST must be greater than or equal to zero and less than or equal to the saturated thickness.

ENTER PLANE FOR SECTIONING AQUIFER (XY, XZ, OR YZ)

 ?The selection of a particular plane determines the presentation of the output of the program. Concentrations at the specified coordinates in the selected plane will be printed for a constant value of the third coordinate.

ENTER TFIRST, TLAST, DELTAT (t)
?,?,?
The beginning value and ending value of the time interval of contaminant transport being modeled is entered. Both TFIRST and TLAST must be positive values in the units requested. A zero entry for DELTAT will result in model output at a single value of time.

Edit Commands
Once the basic input data have been entered, the problem as currently defined is listed and the program enters the "edit" mode. The edit commands are listed in Table 1 and are also listed the first time the program enters the edit mode. The request for information is:

ENTER NEXT COMMAND ?

One of the reponses from Table 1 should be given. If the response is incorrect or improperly formulated the statement

ERROR IN LAST COMMAND -- REENTER ?
is issued. Error messages for invalid numerical data will be issued as described under the Basic Input Commands. The request for information will be repeated until one of the responses MU, LI, RN, NP, or $D N$ is entered.

MU will list the table of edit commands.
LI will list the problem as currently defined.
RN will initiate the calculation of concentrations and print the results.
NP will request a complete new problem using the "Basic Input Data" dialog.

DN will terminate the program.
Although many tests for valid input data and properly formulated edit commands have been embedded in the program, the user is encouraged to correct "keyboard errors" before the data are transmitted. These precautions will serve to minimize the frustration of program termination as a result of fatal errors during execution of the numerical computations.

Table 1
 EDIT COMMANDS
 Variable changed/Execution

Command

ST
PO
VX
RD
DE
DX
DY
DZ
RT
OB
XC
ZC
YC
TC
AS
CS
MU
LI
RN
NP
DN

Saturated Thickness
Porosity
Seepage Velocity
Retardation Coefficient
Decay Constant
X-Dispersion Coefficient
Y-Dispersion Coefficient
Z-Dispersion Coefficient
Source Rate Schedule
Observation Points
X-Coordinates
Z-Coordinates
Y-Coordinates
Observation Times
Aquifer Sectioning
Change Solution/Sources
Menu of Edit Commands
List Input Data
Run
New Problem
Done

SECTION III

APPLICATIONS

The example problems presented in this document are based on the dispersal of chromium discharged to the ground water in southeastern Nassau County, New York. The hydrogeology and history of contamination have been documented by Perlmutter and Lieber (1970) and will be briefly summarized in the following paragraphs.

Site Location

The general area of the documented case history of the concentrations of contaminants in ground-water is in southeastern Nassau County, Long Island, New York (Figure 4). The detailed study area included an industrial park at South Farmingdale. During World War II, the industrial park was occupied by an aircraft company whose cadmium and chromium enriched metal plating waste was the source of much of the heavy-metal contamination in a shallow glacial aquifer.

Hydrogeology

The upper glacial aquifer which is addressed in this document extends from the water table, at depths ranging from 0 to 15 feet below the ground surface, to the top of the deeper Magothy aquifer, at depths of 80 to 140 feet below the ground surface. The upper unit consists of beds and lenses of fine to coarse sand and gravel. In some parts of the aquifer, thin lenses of fine to medium sand, as well as some silt, are interbedded with the coarse
material. Data from scattered well borings indicate that the lower 8 to 10 feet of the upper unit may consist of silty and sandy clays.

The principal direction of ground-water flow in the upper glacial unit is from north to south. The regional hydraulic gradient is approxmately 0.0025 $\mathrm{ft} / \mathrm{ft}$ and the average coefficient of permeability is assumed to be $1,600 \mathrm{gal} / \mathrm{day} / \mathrm{ft}^{2}$ with an average total porosity of 0.35 (Perlmutter and Lieber, 1970). The ground-water movement is horizontal throughout the area of interest, with the exception of local recharge and discharge areas where vertical or oblique flow may be predominant.

Plating-Waste Contamination

The chromium contamination in the upper glacial unit was derived principally from the disposal of metal-plating and anodizing waste water to unlined basins. During World War II, and for several years thereafter, essentially untreated plating-water effluent was recharged to the aquifer through these disposal basins. Perlmutter and Lieber (1970) estimated that during the early 1940's as much as 200,000 to 300,000 gallons of effluent containing approximately 52 pounds of chromium was discharged daily into the upper glacial unit. At the end of World War II, the amount of plating-waste effluent was decreased substantially and a chromium removal unit was installed in 1949.

By 1949, or approximately 9 years after the start of plating-waste disposal, a plume of contaminated water had migrated southward approximately 3,900 feet with a maximum width of about 850 feet. Maximum observed chromium concentration was approximately $40 \mathrm{mg} / 1$.

Since 1949 the chromium concentrations decreased substantially in nearly all sections of the sections of the plume. The maximum observed chromium
concentration was about $10 \mathrm{mg} / 1$ in 1962. However, the plume of contaminated water had migrated further southward beyond Massapequa Creek, a small stream which serves as a natural drain for part of the contaminated ground water. The plume was approximately 4,300 feet long with a maximum width of almost 1000 feet in 1962.

Analytical Model

The data required for the analytical two-dimensional plume model are listed in Table 2. The following paragraphs will discuss the estimation of these model parameters based on the limited field data, judgement, and experience.

All input data for the computer program must be in consistent units. For the example problems, the following system of units will be selected: length in feet, time in days, and concentration in mg/l.

Assuming that the water table is located approximately at the ground surface, the average saturated thickness of the upper glacial unit can be estimated from the depth to the top of the deeper Magothy aquifer. Thus, the average saturated thickness, S_{t}, will be taken as:

$$
S_{t}=\frac{80+140}{2}=110 \mathrm{ft}
$$

The superficial, or Darcy, velocity can be estimated from the average coefficient of permeability, K, and the regional hydraulic gradient, $\mathrm{dh} / \mathrm{dx}$. From Darcy's law

$$
v=-k \frac{d h}{d x}
$$

TABLE 2

Input Data Required for the AnalyticalThree-Dimensional Plume Model
Title - Units for length, time, and concentration Saturated thickness (for aquifer of finite depth) Effective porosity
Ground water interstitial velocity Retardation coefficient
Longitudinal dispersion coefficient
Transverse dispersion coefficient
Vertical dispersion coefficient
First-order decay constant
Type of solution (transient or steady-state)
Number of sources
Location and rate schedules for each source
Coordinates of observation points
Observation times (for transient solution)
where the minus sign indicates that the flow is in the direction of decreasing hydraulic head. Thus

$$
V=\frac{1600 \mathrm{gal}}{\mathrm{day} \mathrm{ft}^{2}} \frac{\mathrm{ft}^{3}}{7.48 \mathrm{gal}} \frac{0.0025 \mathrm{ft}}{\mathrm{ft}}
$$

and

$$
V=0.52 \mathrm{ft} / \mathrm{day}
$$

The average interstitial, or pore, velocity, V^{*}, can be estimated by assuming that the areal porosity is equal to the volume porosity, θ, and

$$
V^{*}=\frac{V}{\theta}
$$

Using the estimated value of effective porosity

$$
v^{*}=\frac{0.52 \mathrm{ft} / \mathrm{day}}{0.35}
$$

or

$$
V^{*}=1.5 \mathrm{ft} / \mathrm{day}
$$

The longitudinal, transverse and vertical dispersion coefficients are the most difficult parameters to estimate. Typical values for dispersivities, as well as hydraulic conductivity, are summarized in Table 3. Based on the results of a numerical model for the same site, Pinder (1973) estimated longitudinal and transverse dispersivities as $\alpha_{x}=69.9$ feet and $\alpha_{y}=14.0$ feet, respectively. Considering the interbedding of finer materials in the

Typical Values of Aquifer Properties (after Yeh, 1981)

	Material		
Parameter	Clay	Silt	Sand

Bulk density, lb/ft		$87.36-137.2-80.50-112.3$	$73.63-98.59$
Effective porosity	$0.03-0.05$	$0.05-0.10$	$0.10-0.30$

Hydraulic Conductivity,
gal/day/ft ${ }^{2}$
0.01-0.1

1-10
$100-100,000$
Dispersivity, ft
Longitudinal
0.1-1.0

1-10
10-100
Transverse
0.01-0.1
0.1-1.0
1.0-10

Vertical
0.01-0.1
0.1-1.0

1-10
shallow upper unit together with the typical values of longitudinal and vertical dispersivities in Table 3 , the vertical dispersivity will be assumed to be approximately two orders of magnitude smaller than the longitudinal dispersivity. Thus $\alpha_{z}=0.7 \mathrm{ft}$, and the dispersion coefficients are evaluated as

$$
\begin{aligned}
& D_{x}=\alpha_{L} V^{*}=(69.9 \mathrm{ft})(1.5 \mathrm{ft} / \text { day })=105 \mathrm{ft}^{2} / \text { day } \\
& D_{y}=\alpha_{y} V^{*}=(14.0 \mathrm{ft})(1.5 \mathrm{ft} / \text { day })=21.0 \mathrm{ft}^{2} / \text { day }
\end{aligned}
$$

and

$$
D_{z}=\alpha_{z} V^{*}=(0.7 \mathrm{ft})(1.5 \mathrm{ft} / \text { day })=1.05 \mathrm{ft}^{2} / \text { day }
$$

Chromium is believed to be a conservative material in this system (Perlmutter and Lieber, 1970), and both adsorption and chemical/biological decay can be neglected. Therefore, $\mathrm{K}_{\mathrm{d}}=0$ (or $\mathrm{R}_{\mathrm{d}}=1$) and $\lambda=0$.

The last set of model input data to be specified is the source mass/rate schedule. A steady mass rate of $52 \mathrm{lb} /$ day of chromium will be assumed from the time of initial injection to mid-1949, or approximately $2800 /$ days. At this time, the actual extent of the contamination was estimated; and the chromium removal unit was installed. The actual volumetric rate and concentration of the source of chromium contamination are not required. However, the units of the source term must be consistent with other parameters in the model.

The mass rate of chromium can be converted to units of concentration times volume rate per unit width of aquifer as follows:

TABLE 4

Model Input Data for Example Problem 1.

Title:

Units for length:
Units for time:
Units for concentration:

Saturated thickness:
Effective porosity: 0.35
Interstitial velocity:
Retardation coefficient: 1.0
x-dispersion coefficient $\quad 105 \mathrm{ft}^{2} / \mathrm{dy}$
y-dispersion coefficient
z-dispersion coefficient
First-order decay constant:

Source/rate schedule
Number of sources:
Location of source:
Number of rates:
Mass rate and time:

110 ft
$1.5 \mathrm{ft} / \mathrm{dy}$
$21.0 \mathrm{ft}^{2} / \mathrm{dy}$
$1.05 \mathrm{ft}^{2} / \mathrm{dy}$
$0 / d y$
$x=0, y=0, z=0$
Hexavalent Chromium Plume--Example 1 ft
dy
$\mathrm{mg} / 1$

1
$833,586(\mathrm{mg} / 1)\left(\mathrm{ft}^{3} / \mathrm{dy}\right)$ from 0 to 2800 dy

$$
\frac{52 \mathrm{lb}}{\text { day }} \frac{454 \times 10^{3} \mathrm{mg}}{1 \mathrm{~b}} \frac{\mathrm{ft}^{3}}{28.321 \mathrm{liter}}=833,586 \text { (mg/1iter) }\left(\mathrm{ft}^{3} / \text { day }\right)
$$

for 2800 days.
The model input data for this example problem are summarized in Table 4. The input data dialog for the example problem and the model results are included in Appendix A.

This example problem is not intended to serve as a verification of a model. The example illustrates the type of input data required, and some methods for estimating input data. The input data dialog and model results can be used to partially test the model code. The analytical model and the computer program are tools which can aid in the analysis of ground-water contamination problems. The user must select the best tools for the problem at hand based on a sound understanding of the principles of ground-water hydrology, the physical problems, and the limitations of the mathematical model(s).

REFERENCES

Abramowitz, M. and I. A. Stegan, 1966, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U. S. Department of Commerce, 1046 pp.

Carslaw, H. S. and J. C. Jaeger, 1959, Conduction of Heat in Solids, Oxford University Press, 0xford, England, 510 pp.

Hunt, B., 1978, "Dispersive Sources in Uniform Ground-Water Flow, Jour. Hydraul. Div., ASCE, 104, No. HY1, January 1978, pp. 75-85.

Perlmutter, N. M. and M. Lieber, 1970, "Dispersal of Plating Wastes and Sewage Contaminants in Ground Water and Surface Water, South FarmingdaleMassapequa Area, Nassau County, New York," U. S. Geological Survey WaterSupply Paper 1879-G, pp. G1-G67.

Pinder, G. F., 1973, "A Galerkin Finite Element Simulation of Ground-water Contamination on Long Island," Water Resources Research, Vol. 9, No. 6, pp. 1657-1669.

Turner, G. A., 1972, Heat and Concentration Waves, Academic Press, New York, New York, 233 pp .

Walton, W. C., 1962, "Selected Analytical Methods for Well and Aquifer Evaluation," Bulletin 49, Illinois State Water Survey, Urbana, Illinois, 81 pp.

Walton, W. C., 1970, Groundwater Resource Evaluation, Mc-Graw-Hill, New York, New York, 664 pp.

Yeh, G. T., 1981, "AT123D: Analytical Transient One-, Two-, and ThreeDimensional Simulation of Waste Transport in the Aquifer System," Publication No. 1439, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 83 pp.

APPENDIX A

Input Data Dialog and Results for Example Problem

ENTER TITLE
?HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1

ENTER UNITS FOR LENGTH (2 CHARACTERS)
? FT

ENTER UNITS FOR TIME (2 CHARACTERS)
?DY

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)
?MG/L

ENTER SATURATED THICKNESS (Ø FOR INFINITE THICKNESS), FT ?110.

ENTER AQUIFER POROSITY
? 0.35

ENTER SEEPAGE VELOCITY, FT/DY ? 1.5

ENTER RETARDATION COEFFICIENT
? 1.0

ENTER X DISPERSION COEFFICIENT, SQ FT/DY ? 1 05.

ENTER Y DISPERSION COEFFICIENT, SQ FT/DY ? 21 .

ENTER Z DISPERSION COEFFICIENT, SQ FT/DY ? 1. 05

ENTER DECAY CONSTANT, I/DY ? 0 .

SELECT TRANSIENT OR STEADY-STATE SOLUTION
TR FOR TRANSIENT SOLUTION
SS FOR STEADY-STATE SOLUTION
?TR

```
ENTER THE NUMBER OF SOURCES (MAXIMUM OF 10 )
?l
MASS RATES HAVE UNITS OF (MG/L ) (CU FT/DY)
TIME HAS UNITS OF DY
ENTER X, Y, AND Z COORDINATES OF SOURCE 1 (FT)
?,?,?ด.,\emptyset.,\emptyset.
ENTER THE NUMBER RATES FOR SOURCE 1 (MAXIMUM ØF 1\emptyset)
?1
SOURCE 1, RATE 1 STARTS AT Ø.\emptyset DY
ENTER MASS RATE AND ENDING TIME
?,?833586.,280Ø.
ENTER XIRST, XLAST, DELTAX (FT)
?,?,?600.,3600.,600.
ENTER YFIRST, YLAST, DELTAY (FT)
?,?,?450.,-450.,150.
ENTER ZFIRST, ZLAST, DELTAZ (FT)
?,?,?0.,110.,55.
ENTER PLANE FOR SECTIONING AQUIFER (XY,XZ,OR YZ)
?XY
ENTER TFIRST, TLAST, DELTAT (DY)
?,?,?2800.,2800.,0.
```

PLUME3D
VERSION 2.01
PAGE 1

HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1

10.00	0.00	0.00	833586.00	0.00	2800.00
OBSERVATION	POINTS (FT),	AND TIMES	(DY)		
XFIRST =	600.00	XLAST $=$	3600.00	DELX =	600.0000
YFIRST	450.00	YLAST	-450.00	DELY =	150.0000
ZFIRST =	0.00	ZLAST	110.00	DELZ $=$	$55.00 \square \square$
TFIRST $=$	2800.00	TLAST $=$	2800.00	DELT $=$	0.0000

AQUIFER SECTIONED IN XY PLANE

MENU OF EDIT COMMANDS

SATURATED THICKNESS	ST
POROSITY	PO
SEEPAGE VELOCITY	VX
RETARDATION COEFFICIENT	RD
X DISPERSION COEFFICIENT	DX
Y DISPERSION COEFFICIENT	DY
Z DISPERSION COEFFICIENT	DZ
DECAY CONSTANT	DE
SOURCE/RATE SCHEDULE	$R T$
CHANGE SOLUTION/SOURCES	$C S$

OBSERVATION POINTS OB
X COORDINATES XC
Y COORDINATES YC
Z COORDINATES ZC OBSERVATION TIMES TC AQUIFER SECTIONING AS NEW PROBLEM NP
MENU OF COMMANDS MU
LIST INPUT DATA LI RUN CALCULATIONS RN DONE DN

[^0]PLUME3D
VERSION 2.01
PAGE 2

HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1

CONCENTRATION DISTRIBUTION AT 2800.00 DY (MG/L)
$\mathrm{z}=\quad \varnothing . \emptyset \emptyset \mathrm{FT}$

*	600.00	1200.00	18øø. 00	2400.00	3000.00	3600.00
Y(FT) *						
450.00	1.1622	3.7737	6.0164	7.2392	7.3914	6.2020
300.00	10.5229	16.8523	17.7165	16.6967	14.7097	11.3227
150.00	62.9100	46.6486	35.3420	28.0852	22.4262	16.3152
$0.0 \square$	134.5398	67.2738	44.8561	33.5146	25.8517	18.4413
-150.00	62.9100	46.6486	35.3420	28.0852	22.4262	16.3152
-300.00	10.5229	16.8523	17.7165	16.6967	14.7897	11.3227
-450.00	1.1622	3.7737	6.0164	7.2392	7.3914	6.2020

PLUME3D
VERSION 2.01
PAGE 3

HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1
CONCENTRATION DISTRIBUTION AT 28øØ.øØ DY (MG/L)

$$
Z=55.0 \emptyset \mathrm{FT}
$$

*	600.00	1200.00	1800.00	2400.00	3000.00	3600.00
$\mathrm{Y}(\mathrm{FT})$ *						
450.00	. 4395	1.8379	3.5409	4.8545	5.4148	4.8044
300.00	2.9774	7.3832	9.9691	10.9487	10.6514	8.7202
150.00	12.3888	18.7138	19.2646	18.1440	16.1159	12.5181
0.00	21.5268	26.0413	24.1684	21.5383	18.5286	14.1310
-150.00	12.3888	18.7138	19.2646	18.1440	16.1159	12.5181
-300.00	2.9774	7.3832	9.9691	10.9487	10.6514	8.7202
-450.0ø	. 4395	1.8379	3.5409	4.8545	5.4148	4.8044

PLUME3D
VERSION 2.01
PAGE 4

HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1

```
CONCENTRATION DISTRIBUTION AT 280Ø.ØØ DY (MG/L )
Z = 110.00 FT
```

*	600.00	1200.00	1800.00	2400.00	3000.00	3600.00
Y(FT) *						
450.00	. 0755	. 5147	1.4813	2.6624	3.5125	3.4326
300.00	. 3219	1.6786	3.7892	5.7406	6.7651	6.1782
150.00	. 8561	3.5798	6.8411	9.2287	10.0941	8.8018
0.00	1.2145	4.6664	8.3725	10.8380	11.5486	9.9142
-150.00	. 8561	3.5798	6.8411	9.2287	10.0941	8.8018
-300.00	. 3219	1.6706	3.7892	5.7406	6.7651	6.1702
-450.00	. 8755	. 5147	1.4813	2.6624	3.5125	3.4326

ENTER NEXT COMMAND

?YC

```
ENTER YFIRST, YIAST, DELTAY (FT)
```

?,?,30.,0.,0.

ENTER NEXT COMMAND
3ZC

ENTER ZFIRST, ZLAST, DELTAZ (FT)
?,?,30.,110.,20.

ENTER NEXT COMMAND
?AS

ENTER PLANE FOR SECTIONING AQUIFER (XY,XZ,OR YZ) 3XZ

```
PLUME3D
VERSION 2.01
PAGE 5
```

HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1
SOURCE/RATE SCHEDULE (MG/L) (CU FT/DY)

		SOURCE		RATE	MASS		(DY)
NO	X (FT)	Y (FT)	Z	NO	RATE	START	

```
SATURATED THICKNESS, (FT)
SEEPAGE VELOCITY, (FT/DY)
X DISPERSION COEFFICIENT (FT**2/DY)
Y DISPERSION COEFFICIENT (FT**2/DY)
Z DISPERSION COEFFICIENT (FT**2/DY)
POROSITY
.- (F2**)
```

RETARDATION COEFFICIENT 1.ØØØØ
FIRST ORDER DECAY CONSTANT (1/DY) Ø.ØØØØ
110.0000
1.5000
$105.00 \varnothing \square$
21.0000
1.0500
.3500
1.0000
0.0000

1
0.00
0.00
$1833586.0 \emptyset$
Ø. Øø 28Øロ.øの

OBSERVATION POINTS (FT), AND TIMES (DY)

$\mathrm{XFIRST}=$	600.00	XLAST $=$	3600.00	DELX =	600.0000
YFIRST	0.00	YLAST $=$	0.00	DELY	0.0000
ZFIRST =	$\emptyset . \emptyset \emptyset$	ZLAST $=$	110.00	DELZ =	20.0000
TFIRST $=$	2800.00	TLAST $=$	2800.00	DELT $=$	0.000

AQUIFER SECTIONED IN XZ PLANE

ENTER NEXT COMMAND
? RN

PLUME3D
VERSION 2.01
PAGE 6

HEXAVALENT CHROMIUM PLUME -- EXAMPLE 1

	CONCENTRATION D		BUTION	2800	DY (MG)		
	$Y=$	0.00 FT						
*								
$\star \underset{*}{X}(F T) .$	600.00	$1200 . \emptyset \varnothing$	1800.00	24ØØ.0Ø	3000.00	3600.00		
Z (FT) *								
0.00	134.5398	67.2738	44.8561	33.5146	25.8517	18.4413		
20.00	101.2264	58.9650	41.2153	31.5259	24.6661	17.7508		
40.00	47.1345	40.1774	32.1269	26.3553	21.5287	15.9102		
60.00	16.1375	22.0086	21.6384	19.9389	17.5144	13.5252		
80.00	4.7086	10.3607	13.3152	14.3904	13.9192	11.3590		
100.00	1.5140	5.2569	8.9261	11.2473	11.8248	10.0831		
110.00	1.2145	4.6664	8.3725	10.8380	11.5486	9.9142		

ENTER NEXT COMMAND ? DN

STOP

APPENDIX B
 Listing of Source Code for PLUME3D


```
C PL30071
C DEFINE UNITS PLSDO72
    WRITE(NO,35)
    35 FORMAT(3X,'ENTER UNITS FOR LENGTH (2 CHARACTERS)'./.' ?')
    READ(NI, 45) IL
    45 FORMAT(A2)
    WRITE(NO,55)
    55 FORMAT(3X.'ENTER UNITS FOR TIME (2 CHARACTERS)',/,' ?')
    READ(N1,45) IT
    WRITE(NO,65)
    5 FORMAT(3X,'ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)',/,' ?') PL3DO81
    READ(NI, 75) IM1,IM2,IM3
    75 FORMAT (3A2)
C
C
C
    ENTER DATA FOR FIRST PROBLEM
    SATURATED THICKNESS
    8O IMAGE = MAXIMG/2
    84 WRITE(NO,85) IL
    85 FORMAT(3X,'ENTER SATURATED THICKNESS (O FOR INFINITE THICKNESS),
        4A2,/,' ?')
        READ(NI,95,ERR=84) ST
    95 FORMAT(F10.0)
        IF(ST.GT.O.O) GO TO 100
        IMAGE = 1
        ST = 1.OE32
    100 CONTINUE
        GO TO (120,110),IEDIT
    110 IF(XF(3).LE.ST.AND.XL(3).LE.ST) GO TO 3000
        WRITE(NO,145) ST,IL
    115 FORMAT(3X, 'RANGE OF Z-COORDINATES IS OUTSIDE UPPER LIMIT OF',/,
    13X,'SATURATED THICKNESS =',F10.4,A3)
        GO TO 590
C
C POROSITY
    120 WRITE(NO, 125)
    125 FORMAT(3X,'ENTER AQUIFER POROSITY',/.' ?')
    130 READ(NI, 95, ERR=120) P
        IF(P.GT.O.O.AND.P.LT.1.O) GO TO }15
        WRITE(NO,145)
    145 FORMAT(3X,'POROSITY MUST BE GREATER THAN ZERO',
        1. AND LESS THAN ONE -- REENTER',/,' ?')
        GO TO 130
    150 GO TO (160,3000).IEDIT
C
    SEEPAGE VELOCITY
    160 WRITE(NO, 165) IL.IT
    165 FORMAT(3X,'ENTER SEEPAGE VELOCITY, 'A2,'/',A2./.', ?')
    170 READ(NI,95,ERR=460) V
        IF(V.GT.O.O) GO TO 180
        WRITE(NO,175)
    175 FORMAT(3X,'SEEPAGE VELOCITY MUST BE GREATER THAN ZERO',
        1, -- REENTER',/,' ?')
            GO TO 170
    180 GO TO (490,3000), IEDIT
C
C RETAROATION COEFFICIENT
    190 WRITE(NO, 195)
    195 FORMAT(3X,'ENTER RETARDATION COEFFICIENT'./,' ?')
    200 READ(NI, 95, ERR* 190) RD
        IF(RD.GE.1.0) GO TO 210
        WRITE(NO,2O5)
    2O5 FORMAT (3X,'RETARDATION COEFFICIENT MUST BE GREATER THAN OR',
        '' EQUAL TO ONE'./.3X,' -- REENTER',/.' ?')
        GO TO 200
    210 GO TO (220,3000), IEDIT
C
C X DISPERSION CDEFFICIENT
    220 WRITE(NO, 225) IL.IT
    225 FORMAT(3X,'ENTER X DISPERSION COEFFICIENT, SO,,A2,
```

```
        1'/',A2./.' ?')
    230 READ(NI,95,ERR=220) DX
        IF(DX.GT.O.0) GO TO 240
        WRITE(NO,235)
    235 FORMAT(3X,'X DISPERSION COEFFICIENT MUST BE GREATER THAN ZERO',
        1' -- REENTER'./.' ?')
            GO TO 230
    240 GO TO (250,3000), IEDIT
C
C Y DISPERSION COEFFICIENT
    250 WRITE(NO,255) IL,IT
    255 FORMAT(3X,'ENTER Y DISPERSION COEFFICIENT, SQ '.A2,
        1'/',A2,/,' ?')
    260 READ(NI,95,ERR=250) DY
    IF(DY.GT.O.O) GO TO 270
    WRITE(NO, 265)
    265 FORMAT(3X,'Y DISPERSION COEFFICIENT MUST BE GREATER THAN ZERO'.
        1'-- REENTER'./,' ?')
            GO TO 260
    270 GO TO (280,3000). IEDIT
C
    280 WRITE(NO,285) IL,IT
    285 FORMAT(3X.'ENTER Z DISPERSION COEFFICIENT, SO ',AZ.
        1%/'A2,/, ?')
    290 READ(NI,95,ERR=280) DZ
        IF(DZ.GT.O.O) GO TO 300
        WRITE(NO,295)
    295 FORMAT(3X,'Z DISPERSION COEFFICIENT MUST BE GREATER THAN ZERO',
        1' -- REENTER',/,' ?')
            gO TO 290
    300 GO TO (310,3000), IEDIT
C
C FIRST-ORDER DECAY CONSTANT
    310 WRITE(NO.315) IT
    315 FORMAT(3X,'ENTER DECAY CONSTANT, 1/',A2./,' ?')
        READ(NI,95,ERR=310) DECAY ,A2,N, PL3D177
        GO TO (320,3000).IEDIT
c
C DEFINE LOCATIONS AND RATES OF SOURCES
    INITIALIZE SOURCE/RATE ARRAYS
    320 MAXRT2 = MAXRT + 2
    DO 330 I=1,MAXSOR
        DO 330 J=1,MAXRT2
                O(I,J)=0.0
                O(I,J)=0.0
    330 CONTINUE
        JFLOW = 3
    340 WRITE(NO,345)
    345 FORMAT(3X,'SELECT TRANSIENT OR STEADY-STATE SOLUTION',/,
        16X,'TR FOR TRANSIENT SOLUTION',/.
        26X,'SS FDR STEADY-STATE SOLUTION'./,' ?')
    350 READ(NI.45) KSOL
    IF(KSOL.EQ.KSOL1) JFLOW=1
            IF(KSOL.EQ.KSOL2) JFLOW=2
    GO TO (370,370,360). JFLOW
    360 WRITE (NO,365)
    365 FORMAT(3X,'ERROR IN SELECTION -- REENTER'/,' ?')
            GO TO }35
C
    370 WRITE(NO,375) MAXSOR
    370 WRITE(NO,375) MAXSOR NUMBER OF SOURCES (MAXIMUMM OF',I3,')',%, PLMD2O1 
    1,?''), % PL30203
    380 READ(NI,385,ERR=370) FDUM PL3D2O4
    385 FORMAT(F10.0)
    NS=FDUM
    IF(NS.GT.O.AND.NS.LE.MAXSOR) GO TO 400
        WRITE(NO,395) MAXSOR
    395 FORMAT(3X.'NUMBER DF SOURCES MUST BE GREATER THAN ZERO,
    1'AND LESS THAN',I3,' -- REENTER'./.' ?')
PL3D141
    PL3D 142
    Z DISPERSION COEFFICIENT
PL3D205
PL3D205
PL30207
PL3D208
PL30209
PL3D2 }1
```

```
    GO TO 380 PL3D211
    400 WRITE (NO,405) IM1,IM2,IM3,IL,IT,IT PL3D212
    405 FORMAT(3X,'MASS RATES HAVE UNITS OF (',3A2,') (CU,',A2,'/',A2, PL3D213
    1',',/,3X,'TIME HAS UNITS OF ',A2,/) PL3D214
    DO 540 I=1,NS
    414 WRITE(NO,415) I,IL
    445 FORMAT(3X,'ENTER X, Y, AND Z COORDINATES OF SOURCE',I2.
    1' (',A2,')',/,' ?,?,?')
        READ(NI,425,ERR=414) XS(I).YS(I),ZS(I)
    425 FORMAT(3F10.0)
    430 IF(ZS(I).GE.O.O.AND.ZS(I).LE.ST) GO TO 440
    434 WRITE(NO,435) ST,IL
    435 FORMAT ( }3X,'Z-COORDINATE MUST BE GREATER THAN OR EQUAL TO ZERO'.
    1' AND',/,3X,'LESS THAN OR EOUAL TO SATURATED THICKNESS (',
    2F tO.4,A3,')',/,3X,' -- REENTER',/,' ?')
        READ(NI,95,ERR=434) ZS(I)
        GO TO 430
    440 IF(JFLOW.EQ.2) GO TO 530
    Q(I,1)=0.0
    T(I, 1) = 0.0
    450 WRITE(NO,455) I ,MAXRT
    455 FORMAT(3X.'ENTER THE NUMBER RATES FOR SOURCE'.I2,
    1' (MAXIMUM OF',I3,')',/.' ?')
    460 READ(NI,465,ERR=450) FDUM
    465 FORMAT (F 40.0)
    NR(I) = FDUM
    IF(NR(I).GT.O.AND.NR(I).LE.MAXRT) GO TO 480
    WRITE(NO,475) MAXRT
    475 FORMAT(3X,'NUMBER OF RATES MUST BE GREATER THAN ZERO AND'.
    4'LESS THAN'.I3,' -- REENTER'./.' ?')
    GO TO 460
    480 CONT INUE
    NRT = NR(I)
    DO 520 J=1,NRT
        M=J + 1
    484 WRITE(NO,485) I,U,T(I,M-1),IT
    485 FORMAT(3X,'SOURCE,,I2,', RATE,,I2,' STARTS AT',F8.1,A3,/. PL3D247
    1 3X,'ENTER MASS RATE AND ENDING TIME, ,/,, ?,?';) PL3D248
        READ(NI,495,ERR=484) Q(I,M),T(I,M) PL3D249
    495 FORMAT(2F10.O) PL3D250
    500 IF(T(I,M).GT.T(I,M-1)) GO TO 510 PL3D251
    504 WRITE(NO.505) PL3D252
    505 FORMAT(3X,'ENDING TIME MUST BE GREATER THAN STARTING TIME , PLSD253
    1 '-- REENTER',/,' ?')
        READ(NI,95,ERR=504) T(I,M)
        GO TO 500
    510 CONTINUE
    520 CONTINUE
    GO TO 540
    530 WRITE(NO,535) I
    535 FORMAT(3X,'ENTER STEADY-STATE MASS RATE',I2,/,' ?')
        READ(NI,95,ERR=530) Q(I,1)
        NR(I) = O
    540 CONTINUE
        IF(IEDIT.EQ.2.AND.JFLOW.EQ.1.AND.TF.LE.1.OE-OG) GO TO 720
    550 GO TO (560,3000), IEDIT
C
C
    COORDINATES OF THE OBSERVATION POINTS
    560 WRITE(NO,565) IL
    565 FORMAT (3X,'ENTER XIRST, XLAST, DELTAX (',A2,')' ./,' ?,?,?')
    READ(NI,575,ERR=560) XF(1),XL(1),DEL(1)
    575 FORMAT (3F 10.0)
        DEL(1) = ABS(DEL(1))
        IF(DEL(1).LE.1.OE-06) XL(1)=XF(1)
        GO TO (580,3000),KNTL
C
    580 WRITE(NO,585) IL
    580 WRITE(NO,585) IL _ YFIRST, YLAST, DELTAY (',A2,')',/., ?.?,?')
        READ(NI,575,ERR=580) XF(2),XL(2),DEL(2) PL3D279
        DEL(2) =ABS(DEL(2))
```

```
        IF(DEL(2).LE.1.OE-06) XL(2)=XF(2)
        GO TO (590.3000), KNTL
C
    590 WRITE(NO.595) IL
    595 FORMAT(3X,'ENTER ZFIRST, ZLAST, DELTAZ (',A2,')',/,', ?,?.?')
        READ(NI,575,ERR=590) XF(3),XL(3),DEL(3)
        DEL(3) = ABS(DEL(3))
    600 IF(XF(3).GE.O.O.AND.XF(3).LE.ST.AND.DEL(3).LE.1.OE-O6) GO TO 62O
        IF(XF(3).GE.O.O.AND.XF(3).LE.ST) GO TO 610
    604 WRITE(NO.605) 5T,IL
    605 FORMAT(3X,'ZFIRST MUST BE GREATER THAN OR EQUAL TO ZERO AND'./. PLSD291
        13X,' LESS THAN OR EQUAL TO SATURATED THICKNESS (',F10.4,A3,')'./, PL3D292
        2' -- REENTER',/,' ?')
            READ(NI,95,ERR=604) XF(3)
            GO TO 600
    614 WRITE(NO,615) ST,IL PL3D297
    615 FORMAT(3X,'ZLAST MUST BE GREATER THAN OR EQUAL TO ZERO AND'./, PL
        13X.' LESS THAN OR EQUAL TO SATURATED THICKNESS ('.F10.4,A3,')'./. PL3D299
        23X,' -- REENTER',/,' ?') PL3D300
            READ(NI,95,ERR=614) XL(3) PL3D304
            GO TO 630
    620 XL(3) = XF(3)
    630 GO TO (640.3000), IEDIT
C
C PLANE FOR SECTIONING AQUIFER
    640 WRITE(NO,645)
    645 FORMAT(3X,'ENTER PLANE FOR SECTIONING AQUIFER (XY,XZ,OR YZ)',
    1/,' ?')
    650 READ(NI,45) ISEC
        DO 660 LSEC=1,3
            IF(ISEC.EQ.KSEC(LSEC)) GO TO 670
    660 CONTINUE
        WRITE(NO,665)
    665 FORMAT(3X,'INVALID SECTION -- REENTER'./.' ?')
        GO TO 650
    670 GO TO (680,690,700), LSEC
    680 KHAR1 = KAR3
        KHAR2 = KAR1
        KHAR3 = KAR2
        GO TO 710
    690 KHAR1 = KAR2
        KHAR2 = KAR1
        KHAR3 = KAR3
        GO TO }71
    700 KHAR1 = KAR1
        KHAR2 = KAR2
        KHAR3 = KAR3
    710 GO TO (720,3000), IEDIT
C
    OBSERVATION TIMES
    720 IF(JFLOW.EQ.2) GO TO 770
    724 WRITE(NO,725) IT
    725 FORMAT(3X,'ENTER TFIRST, TLAST, DELTAT (',A2.')',/.' ?,?,?') PL3D334
    730 READ(NI,575,ERR=724) TF,TL,OELT
    DELT = ABS(DELT)
    740 IF(TF.GT.O.O.AND.DELT.LE.1.OE-O6) GO TO 760 P P OD337
    IF(TF.GT.O.O) GO TO 750
    744 WRITE(NO,745)
    745 FORMAT(3X,'TFIRST MUST BE GREATER THAN ZERO -- REENTER'./.' ?')
    READ(NI,95,ERR=744) TF
    GO TO 740
    750 IF(TL.GT.O.O) GO TO 770
    754 WRITE(NO,755)
        READ(NI,95,ERR=754) TL
        GO TO 750
    760 TL = TF
    770 GO TO (1000,780).IEDIT
    780 IF(JFLOW.EQ.2) WRITE(NO.785)
```

```
    785 FORMAT(3X,'TIME IS NOT A PARAMETER IN STEADY-STATE SOLUTION') PL3D35!
    GO TO 3000
C
t000 WRITE(NO,1005) NPAGE,(TITLE(I),I=1,30)
1005 FORMAT(1H1,/.3X,'PLUME3D',/.3X,'VERSIDN 2.02',
    1/,3X,'PAGE ',I3,///,3X,30A2,///)
    NPAGE = NPAGE + 1
    IF(ST.LE.O.9E32) WRITE(ND,1015) IL,ST
1015 FORMAT(1HO,2X,'SATURATED THICKNESS. (',A2,') ',26X,F10.4) PL3D361
    WRITE(NO,1025) IL,IT,V,IL,IT,DX,IL,IT,DY,IL,IT,DZ,P PL3D362
1025 FORMAT(3X,'SEEPAGE VELOCITY, (',A2,'/',A2,') ',27X,F10.4,/, PL3D363
    13X.'X DISPERSION COEFFICIENT (',A2,'**2/',A2.') ',15X,F10.4,/. PL3D364
    23X.'Y DISPERSION COEFFICIENT (',A2,'**2/',A2,') ',15X,F10.4,/. PL3D365
    33X,'Z DISPERSION COEFFICIENT (',A2,'**2/',A2,') ,,15X,F10.4,%, PL3D366
    43X,'POROSITY '.44X,F10.4)
        WRITE(ND, 1035) RD.IT.DECAY
1035 FORMAT(//,3X,'RETARDATION COEFFICIENT'.30X,F10.4,/,
    13X,'FIRST ORDER DECAY CONSTANT (1/',A2,')',20X,F10.4)
    GO TO (1070,1040), JFLOW
1040 WRITE(NO,1045) IL,IL,IL,IM1.IM2,IM3,IL.IT
1045 FORMAT(//.3X,'STEADY-STATE SOURCE RATES',//,
    13X,'SOURCE',6X,'X',11X,'Y',11X,'Z',17X,'RATE'./,
    25X,'NO',6x,'(',A2,')', Ox,'(',A2,')', 8x, '(',A2,')',6x '(', 3AZ
    NO',6X,'('.A2,')'.8X,'(',A2,')'.8X,'(',A2,')',6X,'(',3A2,
    3')(CU ',A2,'/'.A2.')',/)
        DO 1060 I=1,NS
            WRITE(NO, 1055) I,XS(I),YS(I),ZS(I),Q(I,1)
    1055
                            FORMAT(EX.I2,F10.2, 2X,F10.2,2X,F10.2,6X,F16.4)
1060 CONTINUE
    GO TO 1110
1070 WRITE(NO, 1075) IM1,IM2,IM3,IL.IT,IT,IL,IL,IL
1075 FORMAT(//,3X,'SOURCE/RATE SCHEDULE (',3A2.')(CU ',A2,'/',A2
    1')'//,15X,'SOURCE',13X,'RATE',4X,'MASS'.8X,'TIME (',A2,')'.
    2/.3X,'NO X (',A2,') Y (',A2,') Z (',A2,') NO',5X,'RATE', PL3D385
    35X,'START',6X,'END',/) PL3D386
        D01400 I=1,NS PL30387
        WRITE(NO,1085) I,XS(I),YS(I),ZS(I) PL3D388
1085 FORMAT(/,3X, I2,3F9.2)
    NRT = NR(I)
    DO 1100 J=1,NRT
            M = ل + 1
            WRITE(NO, 1O95) J,Q(I,M),T(I,M-1),T(I,M)
    1095 FORMAT(34X,I2,F12.2.2F9.2)
    1100 CONTINUE
1140 WRITE(NO, 1115) IL,IT,XF(1),XL(1),DEL(1),XF(2),XL(2),DEL(2),
    1 XF(3),XL(3),OEL(3)
PL30389
PL30390
PL30394
PL3D392
PL30393
PL3D394
PL3D395
PL3D396
PL3D397
1415 FORMAT(//.3X,'OESERVATION POINTS (',A2,'), AND TIMES (',A2,')',//, PL3D398
    15X,'XFIRST =',F10.2,5X.'XLAST =',F10.2,5X,'DELX =',F10.4,/, PLSMO9
    25X,'YFIRST =',F10.2,5X,'YLAST =',F10.2.5X,'DELY =',F10.4.%. PLSD400
    35X,'ZFIRST m',F10.2,5X,'ZLAST =',F10.2.5X,'DELZ m',F10.4) PL3D401
        IF(JFLOW.EQ.1) WRITE(NO,1125) TF,TL.DELT PL3D4O2
1125 FORMAT(/,5X,'TFIRST =',F10.2,5X,'TLAST =',F10.2,5X,'DELT m',F10.4)
    WRITE(NO.1135) KSEC(LSEC)
PL3D403
    FORMAT(//.3X,'AQUIFER SECTIONED IN ',A2,' PLANE')
        GO TO 3000
ののロのロOOロ
```

```
        IF(ABS(DIF).LE.1.OE-O3) GO TO 2020
        IF(DIF.LE.O.O) DEL(L)=-DEL(L)
        NPTS = ABS(DIF/DEL(L))
        REM = DIF - DEL(L)*FLOAT(NPTS)
        NPTS = NPTS + 1
        NP(L) = NPTS
        IF(ABS(REM).LT.1.OE-03) GO TO 2020
        NP(L) = NP(L) + 1
    2020 CONTINUE
    GO TO (2040,2060,2080),LSEC
    2040 MAXSC = NP(3)
    MAXRW = NP(2)
    MAXCL = NP(1)
    GO TO 2100
    2060 MAXSC = NP(2)
    MAXRW = NP(3)
    MAXCL = NP(1)
    GO TO 2100
    2080 MAXSC = NP(1)
    MAXRW = NP(3)
    MAXCL =NP(2)
    2100 CONTINUE
C
c TIME COORDINATES
    NTIME = 1
    IF(DELT.LE.1.OE-06) GO TO 2410
    NTIME = ABS(TL-TF)/DELT + 1.0
    IF(TF.GT.TL) DELT=-DELT
    2110 TSOL = TF
    MTIME = NTIME
C
    DAMK = DX*DECAY*RD/(V*V)
    ALPHA=SQRT(1.0+4.0*DAMK)
    PE*V/DX
    BETA = DX/DY
    GAMMA = DX/DZ
    LAMBDA = 1.O/(25.132741*P*SORT(DY*DZ))
C
C
C
    DO 2660 NT=1,NTIME
    NSEC = 1
2120 LPRT = 1
    LP = 1
    NCFLG = 1
2140 NROW1 = 1
    NROW2 = MAXROW
2460 IF(NROW2.GT.MAXRW) NROW2=MAXRW
    DO 2580 NROW=NROW1.NROW2
    GO TO (2180,2220,2200),NCFLG
2180 NCOL1 = 1
    NCOL2 = MAXCOL
2200 IF(NCOL2.GT.MAXCL) NCOL2=MAXCL
    NCOL = MAXCOL
    IF(NCOL2.EQ.MAXCL) NCOL=NCOL2-NCOL 1+1
2220 GO TO (2240,2260,2280), LSEC
2240 IX1 = NCOL1
    IX2 = NCOL2
    JY1 = NROW
    JY2 = NROW
    KZ1 = NSEC
    KZ2 = NSEC
    GO TO 2290
2260 IX1 = NCOL1
    IX2 = NCOL2
    NY4 = NSEC
    JY2 = NSEC
    KZ1 = NROW
    KZ2 = NROW
PL30421
PL3D422
PL3D423
PL3D424
PL3D425
PL30426
PL3D427
PL30428
PL30429
PL3D430
PL30431
PL30432
PL3D433
PL3D434
PL30435
PL3D436
PL3D437
PL30438
PL3D439
PL3D440
PL3D44, 1
PL3D442
PL3D443
PL3D444
PL3D445
PL3D446
PL3D447
PL3D448
PL3D449
PL30450
PL3D451
PL3D452
PL3D453
PL3D454
PL3D455
PL3D456
PL30457
PL30458
PL30459
PL3D460
PL3046 1
PL3D462
PL3D463
PL3D464
PL3D465
PL30466
PL30467
PL3D468
PL30469
PL30470
PL3D471
PL3D472
PL3D473
PL30474
PL3D475
PL3D476
PL3D477
PL3D478 PL3D479
PL30480
PL3D481
PL3D482
PL3D483 PL3D484 PL3D485 PL30486
PL30487
PL3D488
PL3D489
PL30490
```



```
                    F10.4,' Y=',F10.4,' Z =',F10.4) PL3D561
2320
                CONTINUE
2325 CON(L) = CON(L) + CXYZT
                GO TO 2340
2330 CON(L) = -9.9999
2340 GO TO (2360,2380,2400), LSEC
2360
SEC = Z
ROW = Y
COL(L) = x
GO TO 2420
2380
SEC = Y
ROW = z
                COL(L) = x
                GO TO 242O
2400
SEC = X
            ROW = Z
            COL(L) = Y
                            CDNTINUE
                CONTINUE
2430
    CONTINUE
C
C PRINT CONCENTRATION DISTRIBUTION
    GO TO (2460.2560), LPRT
    2460 WRITE(NO, 1005) NPAGE, (TITLE(I),I=1,30)
    NPAGE = NPAGE + 1
    IF(JFLOW.EQ.2) GO TO 2500
    WRITE(NO,2465) TSOL,IT,IM1,IM2,IM3,KHAR1,SEC,IL,
    f(LBL(LP,L),L=1,6),KHAR2,IL
2465 FORMAT(13X,'CONCENTRATION DISTRIBUTION AT ',F10.2,
    11X,A2,' (',3A2.') './/.13X,A1,' =',F10.2.1X,A2,3X,6A2.//.
    2'*',/,'*',A1,'(',A2,')')
    GO TO 252O
2500 WRITE(NO,2505) IM1,IM2,IM3,KHAR1,SEC,IL,(LBL(LP,L),L=1,6),
    1KHAR2,IL
2505 FORMAT(13X,'CONCENTRATION DISTRIBUTION AT STEADY STATE'.
    1'(',3A2,')',//13X,A1,' =',F10.2,1X,A2,3X,6A2,//,
    2' *',/,' * ',A1,'(',A2,''')
    2520 CONTINUE
    WRITE(NO,2525) (COL(L),L=1,NCOL)
    2525 FORMAT(' *',4X,7F10.2)
    WRITE(NO,2545) KHAR3,IL
    2545 FORMAT(1X,At.'(',A2.') *'./,9x,'*')
c
    2560 WRITE(NO,2565) ROW,(CON(L).L=1.NCOL)
    2565 FORMAT(2X,F8.2,7F10.4)
    LPRT = 2
    2580 CONTINUE
    IF(NROW2.EQ.MAXRW) GO TO 2600
    NROW1 = NROW 1 + MAXROW
    NROW2 = NROW2 + MAXROW
    LPRT = 1
    LP = 2
    NCFLG =2
    GO TO 2160
    2600 IF(NCOL2.EQ.MAXCL) GO TO 2620
    NCOL1 = NCOL 1 + MAXCOL
    NCOL2 = NCOL2 + MAXCOL
    LPRT = 1
    LP = 2
    NCFLG = 3
    GO TO 2140
    2620 IF(NSEC.EQ.MAXSC) GO TO 2640
        NSEC = NSEC + 1
        GO TO 2120
    2640 CONTINUE
        TSOL = TSOL + DELT
        IF(NT.EQ.MTIME) TSOL=TL
    2660 CONTINUE
C
```



```
    1', Z=',F8.2,A3./,3X,'STEADY-STATE MASS RATE =',F16.4,
    2'(',3A3,')(CU '.A2,'/'.A2,')'./)
3270 WRITE(NO,3275)
3275 FORMAT(3X,'CHANGE COORDINATES (Y/N)?')
    READ(NI, 3075) UC
        IF(JC.NE.IY) GO TO 3290
3276 WRITE(NO,415) US,IL
    READ(NI,425,ERR=3276) XS(US),YS(US),ZS(JS)
3280 IF(ZS(US).GE.O.O.AND.ZS(US).LE.ST) GO TO 3290
3284 WRITE(NO,435) ST,IL
    READ(NI,95,ERR=3284) 2S(US)
    GO TO 3280
3290 GO TO (3300,3430), JFLOW
c
c TRANSIENT SOURCES
    3300 WRITE(NO,3305) US
    3305 FORMAT(3X,'MODIFY RATE SCHEDULE FOR SOURCE'.I3.' (Y/N) ?')
        READ(NI,3075) JY
        IF(JY.NE.IY) GO TO 306O
    3310 WRITE(NO,3315)
    3315 FORMAT(3X.'ENTER RATE TO BE CHANGED',/,
        13X,'(ENTER O TO CHANGE ALL RATES)',/,' ?')
        READ(NI,465,ERR=3310) FDUM
        JR=FDUM
        IF(JR.LE.O) GO TO 3350
        IF(JR.LE.NR(JS)) GO TO 3330
        WRITE(NO.3325) JR
    3325 FORMAT(3X,'RATE ',I2,' NOT IN CURRENT SCHEDULE')
        GO TO 3300
    3330 WRITE(NO,3335) JS,UR,T(JS,UR),T(US,JR+1),IT
    3335 FORMAT(3X,'SOURCE ',I2,', RATE '.I2,' STARTS AT',F8.2.
        1' AND ENDS AT',F8.2,A3,/,3X.'ENTER NEW MASS RATE'./.' ?')
        M = JR + 1
        READ(NI,3345,ERR=3330) Q(US.M)
    3345 FORMAT(F10.0)
    GO TO 3300
C
    3350 NRT = NR(JS)
        DC 3360 J=1.NRT
            M = J + 1
            Q(US,M) = 0.0
            T(US,M) = 0.0
    3360 CONTINUE
    3370 WRITE(NO,455) JS,MAXRT
    3380 READ(NI,465,ERR=3370) FDUM
        NR(US)=FDUM
        IF(NR(US).GT.O.AND.NR(US).LE.MAXRT) GO TO 3390
        WRITE(NO.475) MAXRT
        GO TO 3380
    3390 CONTINUE
    NRT = NR(JS)
    DO 3420 J=1,NRT
            M = J + 1
    3394 WRITE(NO,485) US.U.T(US,M-1),IT
            READ(NI,495, ERR=3394) O(US,M),T(US,M)
    3400 IF(T(US,M).GT.T(US,M-1)) GO TO 3410
    3404 WRITE(NO,5O5)
            READ(NI,95,ERR=3404) T(JS.M)
            GO TO 3400
    3440 CONTINUE
    3420 CONTINUE
        gO TO 3060
C
    STEADY-STATE SOURCES
    3430 WRITE(NO,3435) US
    3435 FORMAT(3X,'CHANGE STEADY-STATE RATE FOR SQURCE '.I2,' (Y/N) ?')
        READ(NI,3075) JC
        IF(UC.NE.IY) GO TO 3060
    3444 WRITE(NO,3445) JS
    3445 FORmAT(3X,'ENTER NEW STEADY-STATE MASS RATE FDR SOURCE ',I2,/.
```

PL3D701
PL30702
PL3D703
PL30704
PL30705
PL3D706
PL3D707
PL3D708
PL3D709
PL3D710
PL3D711
PL3D7 12
PL3D7 13
PL3D714
PL3D715
PL3D716
PL3D717
PL3D718
PL30719
PL3D720
PL3D72 1
PL3D722
PL3D723
PL30724
PL3D725
PL3D726
PL3D727
PL3D728
PL3D729
PL3D730
PL3D731
PL3D732
PL3D733
PL3D734
PL3D735
PL3D736
PL3D737
PL3D738
PL3D739
PL3D740
PL3D741
PL3D742
PL3D743
PL3D744
PL3D745
PL3D746
PL30747
PL3D748
PL3D749
PL3D750
PL3D75 1
PL3D752
PL3D753
PL3D754
PL30755
PL30756
PL30757
PL30758
PL30759
PL3D760
PL3D76 1
PL3D762
PL30763
PL3D764
PL3D765
PL3D766
PL30767
PL3D768
PL3D769
PL3D770

```
    1. ?') PL3D771
    READ(NI,3345,ERR=3444) Q(US,1) PL30772
    GO TO 306O
C
C - ADD A NEW SOURCE
C
    3450 NS = NS + 1
    US = NS
    3454 WRITE(NO,415) US,IL
    READ(NI, 425, ERR=3454) XS(JS),YS(US), ZS(US)
    3460 IF(ZS(US).GE.O.O.AND.ZS(US).LE.ST) GO TO 3470
    3464 WRITE(NO,435) ST,IL
    READ(NI.95,ERR=3464) ZS(US)
    GO TO 3460
    3470 GO TO (3370.3480),JFLOW
C
C STEADY-STATE SOURCES
    3480 WRITE(NO,3485) US
    3485 FDRMAT(3X.'ENTER STEADY-STATE MASS RATE FOR SOURCE '.I2,
            1/.' ?')
            READ(NI, 3345,ERR*3480) Q(US,1)
            NR(US) =0
            GO TO 3060
C DELETE A SOURCE
3490 IF(NS.GT. 1) GO TO 3500
    WRITE(NO,3495)
3495 FORMAT(3X,'ONLY ONE SOURCE IN SCHEDULE -- CAN NOT DELETE',/)
    GO TO 3060
3500 WRITE(NO, 3505) IL,IL,IL
3505 FORMAT( 3X,'SOURCE', 6X,'X (',A2,')', 3X,'Y (',A2,')',3X,
    1'Z (',A2,')',/)
    OO 352O I*1,NS
        WRITE(NO,3515) I,XS(I).YS(I),ZS(I)
3515 FORMAT(5X,12,3X,F8.2,3X,F8.2,3X,F8.2)
3520 CONTINUE
3530 WRITE(NO,3535)
3535 FORMAT(3X,'ENTER SOURCE TO DELETE',/,
    13X,'(ENTER O TO CANCEL)'./.' ?')
    READ(NI,465,ERR=3530) FDUM
        JS=FDUM
        IF(JS.LE.O) GO TO 3060
        IF(US.LE.NS) GO TO 3550
        WRITE(NO.3545) US
3545 FORMAT (3X,'SOURCE ', I2,' NOT IN CURRENT SCHEDULE')
    GO TO 3530
3550 WRITE(NO,3555) JS
3555 FORMAT(3X,'DELETE SOURCE ',I2,' (Y/N)?')
        READ(NI,3075) UC
        IF(JC.NE.IY) GO TO 353O
        NSD = NS - 1
        GO TO (3560,3590).UFLOW
C
C TRANSIENT SOURCES
3560 IF(JS.EQ.NS) GO TO 3575
        DO 3570 J=JS,NSD
            XS(U)=XS(U+1)
            YS(U)=YS(U+1)
            ZS(J)= ZS(v+1)
            NR(J)=NR(J+1)
            NRT = NR(J)
                    DO 3570 K=1,NRT
                    M=K+1
                    Q(J,M)=O(J+1,M)
                    T(J,M)=T(J+1,M)
3570 CONTINUE
3575 NRT = NR(NS)
        DO 358O K=1,NRT
            M}=K+
PL3D773
PL3D774
PL30775
PL3D776
PL30777
PL3D778
PL3D779
PL3D780
PL3D781
PL30782
PL3D783
PL3D784
PL3D785
PL30786
PL3D787
PL30788
PL3D789
PL3D790
PL3D791
PL3D792
PL3D793
PL30794
PL3D795
PL3D796
PL3D797
PL3D798
PL3D799
PL3D800
PL30801
PL30801
PL3D803
PL3D804
PL3D805
PL3D806
PL3D807
PL3D808
PL3D808
PL3D810
PL3D811
PL3D8 }1
PL3D8 13
PL3D814
PL30815
PL3D816
PL3D817
PL3D818
PL3D819
PL3D820
PL3D821
PL3D822
PL3D823
PL3D824
PL3D824
PL3D826
PL30827
PL30828
PL3D829
PL30830
PL30831
PL3D831
PL3D832
PL3D833
PL3D834
PL3D835
PL30836
PL3D837
PL3D838
PL3D838
PL3D84O
```

```
                            O(NS,M) = 0.0 PL3D841
        T(NS,M) =0.0
3580 CONTINUE
    NR(NS) =0
    NS = NSD
    GO TO 306O
C
    STEADY-STATE SOURCES
    DO 3600 J=JS,NSD
            Q(U,1)=Q(J+1,1)
        XS(J)=XS(v+1)
        YS(J)=VS(J+1)
        ZS(J)=2S(J+1)
    3600 CONTINUE
    3605 Q(NS, 1) =0.0
        NS = NSD
        GO TO 306O
C
C
C MENU OF EDIT COMMANDS FOR PLUME3D VERSION 2.02
37.00 WRITE(NO,3705)
    3705 FORMAT(1H1,/.3X,'MENU OF EDIT COMMANDS',//.
        13X,'SATURATED THICKNESS ST OBSERVATION POINTS
        23X, 'POROSITY
PO X COORDINATES
        33X,'SEEPAGE VELOCITY
        43X,'RETARDATION COEFFICIENT
        53X,'X DISPERSION COEFFICIENT DX
        53X,'Y DISPERSION COEFFICIENT
    63X,'Z DISPERSION COEFFICIENT DZ 
    63X,'Z DISPERSION COEFFICIENT DZ 
    83X.'SOURCE/RATE SCHEDULE
        93X,'CHANGE SOLUTION/SOURCES
        43X,'
        GO TO 3000
C
    4 0 0 0 ~ S T O P ~
            END
    PL3D841
    PL30843
    PL30844
    PL3D845
    PL3D846
PL3D847
    PL3D848
    3590 IF(JS.EQ.NS) GO TO 3605
    L30849
    PL3D850
    PL3D851
            ZS(J)=ZS(J+1)
        ONTINUE
PO 
        , PL30864
OB',/.
    33X,'SEEPAGE VELOCITY VX
OBSERVATION TIMES
AQUIFER SECTIONING
NEW PROBLEM
MENU OF COMMANDS
LIST INPUT DATA
RUN CALCULATIONS
DONE
XC'./. PL3D865
VX Y COOROINATES
XC'./. PL3D865RDOBSERVATION TIMES
ZC'./' PL3D867
DX
DX
    63X,'Z DISPERSION COEFFICIENT DZ 
    DE
        RT
            CS
    TC../. PL3D868
AS.'/, PL3D869
NP,'/, PL3D870
ML',/, PL3D871
LI'./. PL3D872
RN';/, PL30873
DN';'PL3D874
PL3D875
PL3D875
PL3D877
                                    PL3D878
```



```
SUBROUTINE SOLSD(C,PEX,PEY,PEZ,TSOL,N,NR)
SUBROUTINE SOLSD(C,PEX,PEY,PEZ,TSOL,N,NR)
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
C
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
C
C
C
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
C
C
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
C
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
C
SUBROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR)
SURROUTINE SOL3D(C,PEX,PEY,PEZ,TSOL,N,NR) 
```


APPENDIX C

Solute Transport in Uniform Ground-Water Flow Mathematical Development

SOLUTE TRANSPORT IN UNIFORM GROUND-WATER FLOW

MATHEMATICAL DEVELOPMENT

Analytical solute-transport models are highly idealized mathematical approximations of complex physical phenomena. However, if applied properly this class of models represents a useful tool for analyzing the transport and fate of substances under both field and laboratory conditions.

This mathematical derivation of a governing differential equation for solute transport in uniform ground-water flow is developed in an effort to show the relationship between physical processes in the aquifer and terms in the mathematical model. In this context, the "mathematical manipulations" of the derivation are not as important as the simplifying assumptions which are required to obtain a mathematical description of the problem.

The resulting differential equation serves as the basis of many analytical solute-transport models. Solutions of the differential equation which would provide the actual concentration distributions in time and space are not addressed in this document. However, the simplifying assumptions which are incorporated in the formulation of the mathematical model must be considered in both the application of the model and in the interpretation of modeling results, regardless of how the model is solved.

Derivation or the Governing Differential Equation.
Consider a differential element of homogeneous aquifer as shown in Figure 1. A material balance for any tracer can be written as

$$
\begin{align*}
& \text { Rate of } \tag{1}\\
& \text { Mass In }
\end{aligned} \begin{aligned}
& \text { Rate of } \\
& \text { Mass Out }
\end{aligned}+\begin{gathered}
\text { Rate of Mass } \\
\text { Generation }
\end{gathered}=\begin{aligned}
& \text { Rate of Mass } \\
& \text { Accumulation }
\end{align*}
$$

Each of the terms in this expression are developed in the following paragraphs.

Rate of Mass In:
The tracer can enter the differential control volume by two mechanisms. The first is convection, or bulk flow, of tracer in solution. This mechanism can be expressed as

$$
\left.Q_{x} C\right|_{x}+\left.Q_{y} C\right|_{y}+\left.Q_{z} C\right|_{z}
$$

where Q_{x}, Q_{y} and Q_{z} are the volumetric flow rates in the x, y and z directions, respectively, and C is the concentration of tracer in the fluid.

Tracer can also enter the control volume by molecular diffusion and hydrodynamic dispersion. For the time being these processes can be combined as a "dispersion flux" term, q", with dimensions of mass input per unit time per unit area. Thus,

$$
\left.\mathrm{q}_{x}^{\prime \prime}\right|_{x} \Delta y \Delta z+\left.\mathrm{q}_{y}^{\prime \prime}\right|_{y} \Delta z \Delta z+\left.\mathrm{q}_{z}^{\prime \prime}\right|_{z} \Delta z \Delta y
$$

represents the rate of mass entering the control volume by "dispersion."

Figure 1 - Differential Control Volume for Mass Balance

Rate of Mass Out:
Tracer can leave the control volume by the same mechanisms described for the input terms. Thus, the rates of mass leaving by convection and dispersion can be written as

$$
\left.Q_{x} C\right|_{x+\Delta x}+\left.Q_{y} C\right|_{y+\Delta y}+\left.Q_{z} C\right|_{z+\Delta z}
$$

and

$$
\left.q_{x}^{\prime \prime}\right|_{x+\Delta x} \Delta y \Delta z+\left.q_{y}^{\prime \prime}\right|_{y+\Delta y} \Delta x \Delta z+\left.q_{z}^{\prime \prime}\right|_{z+\Delta z} \Delta x \Delta y
$$

respectively

Rate of Mass Generation:
Tracer can be generated (or degraded) in the control volume by physical, chemical, and/or biological reaction. A general relationship can be written as
$r_{T} \Delta x \Delta y \Delta z$
where r_{T} is the total, or overall, rate of generation per unit volume of aquifer.

Rate of Mass Accumulation:
The total rate of mass accumulated in the control volume during a differential period of time is

$$
\frac{\left.C_{T}\right|_{t+\Delta t}-\left.C_{T}\right|_{t}}{\Delta t}(\Delta x \Delta y \Delta z)
$$

where C_{T} is the total mass of trace per unit volume of aquifer.

Substituting the expressions for the various terms into Equation 1, and dividing by ($\Delta x \Delta y \Delta z$) yields

$$
\begin{align*}
& -\frac{\left.Q_{x} C\right|_{x+\Delta x}-\left.Q_{x} C\right|_{x}}{\Delta x(\Delta y \Delta z)}-\frac{\left.Q_{y} C\right|_{y+\Delta y}-\left.Q_{y} C\right|_{y}}{\Delta y(\Delta x \Delta z)}-\frac{\left.Q_{z} C\right|_{z+\Delta z}-\left.Q_{z} C\right|_{z}}{\Delta z(\Delta x \Delta y)} \\
& -\frac{\left.q_{x}^{\prime \prime}\right|_{x+\Delta x}-\left.q_{x}^{\prime \prime}\right|_{x}}{\Delta x}-\frac{\left.q_{y}^{\prime \prime}\right|_{y+\Delta y}-\left.q_{y}^{\prime \prime}\right|_{y}}{\Delta y}-\frac{\left.q_{z}^{\prime \prime}\right|_{z+\Delta z}-\left.q_{z}^{\prime \prime}\right|_{z}}{\Delta z}+r_{T} \\
& =\frac{\left(C_{T}\right)_{t+\Delta t}-\left(C_{T}\right)_{t}}{\Delta t} \tag{2}
\end{align*}
$$

Now

$$
\begin{align*}
& v_{x} \equiv \frac{Q_{x}}{\Delta y \Delta z} \tag{3a}\\
& v_{y} \equiv \frac{Q_{y}}{\Delta z \Delta x} \tag{3b}
\end{align*}
$$

and

$$
\begin{equation*}
v_{z} \equiv \frac{Q_{z}}{\Delta x \Delta y} \tag{Bc}
\end{equation*}
$$

where V is the superficial, or Darcy, velocity. Taking the limit of Equation 2 as $\Delta x, \Delta y, \Delta z$, and Δt go to zero yields

$$
\begin{equation*}
-\frac{\partial\left(V_{x} C\right)}{\partial x}-\frac{\partial\left(V_{y} C\right)}{\partial y}-\frac{\partial\left(V_{z} C\right)}{\partial z}-\frac{\partial q^{\prime \prime} x}{\partial x}-\frac{\partial q^{\prime \prime} y}{\partial y}-\frac{\partial q^{\prime \prime} z}{\partial z}+r_{T}=\frac{\partial C_{T}}{\partial t} \tag{4}
\end{equation*}
$$

Equation 4 is the differential mass balance for a tracer in a porous medium.
If a Fickian model is assumed for the dispersion flux, these fluxes can be expressed in terms of concentration gradients. Neglecting surface diffusion of tracer which may be adsorbed on the solid matrix,

$$
\begin{equation*}
q_{n}^{\prime \prime}=-D_{n} \frac{\partial(\theta C)}{\partial_{n}} \tag{5}
\end{equation*}
$$

where n is the coordinate direction, D_{n} is a dispersion coefficient, and θ is the effective porosity or fractional void volume. The concentration gradient in the liquid phase is the driving force for mass tranport by dispersion. The porosity has been included since the mass balance has been formulated for a unit volume of aquifer, which includes the solid matrix as well as the fluidfilled pores. Substituting an expression of the form of Equation 5 for each of the dispersion flux terms in Equation 4 yields

$$
\begin{align*}
\frac{\partial C_{T}}{\partial_{x}} & +\frac{\partial\left(V_{x} C\right)}{\partial x}+\frac{\partial\left(V_{y} C\right)}{\partial y}+\frac{\partial\left(V_{z} C\right)}{\partial z} \\
& =\frac{\partial}{\partial_{x}} D_{x} \frac{\partial(\theta C)}{\partial x}+\frac{\partial}{\partial_{y}} D_{y} \frac{\partial(\theta C)}{\partial_{y}}+\frac{\partial}{\partial_{z}} D_{z} \frac{\partial(\theta C)}{\partial_{z}}+r_{T} \tag{6}
\end{align*}
$$

Two assumptions will be made at this point. The first is that the aquifer is homogeneous, which implies that the porosity and dispersion coefficients are not functions of position. The second assumption is that the ground-water flow is uniform and directed along the x-axis, i.e., $V_{x}=$ constant and $V_{y}=V_{z}=0$. With these assumptions, Equation 6 reduces to

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}+V_{x} \frac{\partial C}{\partial x}=\theta D_{x} \frac{\partial^{2} C}{\partial x^{2}}+\theta D_{y} \frac{\partial^{2} C}{\partial y^{2}}+\theta D_{z} \frac{\partial^{2} C}{\partial z^{2}}+r_{T} \tag{7}
\end{equation*}
$$

This equation is a statement of conservation of tracer in homogeneous aquifer with uniform ground-water flow. The accumulation and reaction terms are developed in the following paragraphs.

Accumulation. In general, the total mass of tracer per unit volume of aquifer, C_{T}, can be distributed as dissolved solute in the fluid-filled pore volume and as adsorbed solute on the solid matrix, or

$$
\begin{align*}
\frac{\text { mass of tracer }}{\text { bulk volume }} & =\frac{\text { mass of tracer }}{\text { volume of solution }} \frac{\text { volume of solution }}{\text { bulk volume }} \\
& +\frac{\text { mass of tracer }}{\text { mass of solids }} \frac{\text { mass of sol ids }}{\text { bulk volume }} \tag{8}
\end{align*}
$$

Equation 8 can be written in terms of aquifer properties as

$$
\begin{equation*}
C_{T}=\theta C+\rho_{B} C_{S} \tag{9}
\end{equation*}
$$

where ρ_{B} is the bulk density of the solid matrix and C_{S} is the adsorbed mass concentration (mass of tracer per unit mass of solids). For a homogeneous aquifer, the accumulation term in Equation 7 can be written as

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}=\theta \frac{\partial C}{\partial t}+\rho_{B} \frac{\partial C_{s}}{\partial t} \tag{10}
\end{equation*}
$$

In general, the concentration of absorbed solute, C_{S}, is a function of the concentration of solute in solution, C, and

$$
\begin{equation*}
\frac{\partial C_{s}}{\partial t}=\frac{d C_{s}}{d C} \frac{\partial C}{\partial t} \tag{11}
\end{equation*}
$$

For a linear adsorption isotherm,

$$
\begin{equation*}
c_{s}=k_{d} C \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d C_{s}}{d C}=K_{d} \tag{13}
\end{equation*}
$$

where K_{d} is a constant commonly referred to as an adsorption, or distribution, coefficient. The rate of accumulation of tracer per unit volume of aquifer can be expressed in terms of the concentration in solution by combining Equations 10,11 and 13 as follows:

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}=\theta \frac{\partial C}{\partial t}+\rho_{B} K_{d} \frac{\partial C}{\partial t} \tag{14}
\end{equation*}
$$

The coefficients of $\partial C / \partial t$ are often combined as

$$
\begin{equation*}
R_{d} \equiv 1+\frac{K_{d} \rho_{B}}{\theta} \tag{15}
\end{equation*}
$$

where R_{d} is referred to as a "retardation coefficient." Rewriting Equation 14 as

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}=\theta R_{d} \frac{\partial C}{\partial t} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial C_{T}}{\partial t}=\theta \frac{\partial C}{\partial\left(t / R_{d}\right)} \tag{15}
\end{equation*}
$$

gives some insight into the effect of adsorption on accumulation of tracer in the homogeneous aquifer. The apparent effect is a distortion or "retardation" of the time dimension.

Reaction. Only first-order reactions will be considered in formulating the rate of reaction term, r_{T}, in Equation 7. The kinetic models for reaction of tracer in solution and adsorbed tracer are

$$
\begin{equation*}
\frac{\partial C}{\partial t}=-\lambda_{f} C \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial C_{s}}{\partial t}=-\lambda_{s} C_{s} \tag{17}
\end{equation*}
$$

where λ_{f} and λ_{s} are the fluid phase and solid phase rate coefficients, respectively. Equations 16 and 17 have been written for degradation of tracer, i.e. negative generation. The overall rate of reaction can be written as

$$
\begin{equation*}
r_{T} \equiv \frac{\partial C_{T}}{\partial t}=-\theta \lambda_{f} C-\rho_{B} \lambda_{s} C_{s} \tag{18}
\end{equation*}
$$

Including the linear adsorption isotherm developed above

$$
C_{s}=K_{d} C
$$

and

$$
\begin{equation*}
r_{T}=-\theta\left(\lambda_{f}+\frac{\rho_{B} K_{d}}{\theta} \lambda_{s}\right) c \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{T}=-\theta \lambda_{T}^{C} \tag{20}
\end{equation*}
$$

where λ_{T} is an apparent overall first-order rate constant defined as

$$
\begin{equation*}
\lambda_{T} \equiv \lambda_{f}+\frac{\rho_{B} K_{d}}{\theta} \lambda_{s} \tag{21}
\end{equation*}
$$

For radioactive decay, the rate of reaction is usually expressed in terms of the "half-life" or the time required for the concentration to be reduced to one-half of the initial concentration, $t / \frac{1}{2}$. Integrating Equation 16 or 17 from $t=0$ to $t=t 1 / 2$

$$
\int_{0}^{C_{0} / 2} \frac{d C}{C}=-\lambda \int_{0}^{t} 1 / 2 d t
$$

or

$$
\ln c \left\lvert\, \begin{aligned}
& C_{0} / 2 \\
& C_{0}
\end{aligned}=-\lambda t_{1 / 2}\right.
$$

Solving for the rate constant,

$$
\lambda=\frac{\ln 2}{\mathrm{t}_{1 / 2}}
$$

which is an expression for evaluating a first-order rate constant from the half-life of the reaction.

In the case of radioactive decay, the rate constants are independent of the phase in which the reaction is occuring, and

$$
\lambda=\lambda_{f}=\lambda_{s}
$$

Equation 21 can then be written as

$$
\lambda_{T}=R_{d} \lambda
$$

and Equation 19 becomes

$$
\begin{equation*}
r_{T}=-\theta R_{d} \lambda C \tag{22}
\end{equation*}
$$

Equation 22 applies to all cases where the first-order reaction rate constants are the same for both fluid and solid phase reactions.

Differential Equation in Terms of Fluid Phase Concentrations.
The differential mass balance for a tracer in a homogeneous aquifer with uniform ground-water flow, Equation 7, can be written in terms of fluid-phase concentrations by incorporating Equation 14 for linear adsorption and Equation 19 for first-order reactions. Making these substitutions and rearranging yields

$$
\begin{equation*}
R_{d} \frac{\partial C}{\partial t}+V * \frac{\partial C}{\partial x}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}+D_{z} \frac{\partial^{2} C}{\partial z^{2}}-\lambda_{T} C \tag{23}
\end{equation*}
$$

where v^{*} is the average interstitial, or pore, velocity defined as

$$
\begin{equation*}
v * \equiv \frac{V}{\theta} \tag{24}
\end{equation*}
$$

Integration of Equation 23 with appropriate initial and boundary conditions yields the temporal and spacial distribution of a tracer in a homogeneous aquifer with uniform ground-water flow.

Closed-form analytical solutions to Equation 23 can be obtained by making a change of variables. Let

$$
\begin{equation*}
\tau=t / R_{d} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
x=x-V * \tau \tag{26}
\end{equation*}
$$

Now, $C=C(x, y, z, t)$, and holding y and z constant

$$
\begin{equation*}
\left(\frac{\partial C}{\partial \tau}\right)_{X}=\left(\frac{\partial C}{\partial X}\right)_{\tau}\left(\frac{\partial X}{\partial \tau}\right)_{X}+\left(\frac{\partial C}{\partial \tau}\right)_{X}\left(\frac{\partial \tau}{\partial \tau}\right)_{X} \tag{27}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left(\frac{\partial \dot{X}}{\partial \tau}\right)_{X}=\left(\frac{\partial X}{\partial \tau}\right)_{X}+V^{*}\left(\frac{\partial \tau}{\partial \tau}\right)_{X} \tag{28}
\end{equation*}
$$

Substituting Equation 28 into Equation 27 yields

$$
\begin{equation*}
\left(\frac{\partial C}{\partial \tau}\right)_{x}=\left(\frac{\partial C}{\partial \tau}\right)_{X}-V^{*}\left(\frac{\partial C}{\partial x}\right)_{\tau} \tag{29}
\end{equation*}
$$

For the second derivative term in x,

$$
\begin{equation*}
\left(\frac{\partial^{2} C}{\partial X^{2}}\right)_{\tau}=\frac{\partial}{\partial X}\left(\frac{\partial X}{\partial X}\right)_{\tau}\left[\left(\frac{\partial C}{\partial X}\right)_{\tau}\left(\frac{\partial X}{\partial X}\right)_{\tau}\right]=\frac{\partial^{2} C}{\partial x^{2}} \tag{30}
\end{equation*}
$$

Substituting Equations 25, 29 and 30 into Equation 23 yields

$$
\begin{equation*}
\frac{\partial C}{\partial \tau}=D_{x} \frac{\partial^{2} C}{\partial x^{2}}+D_{y} \frac{\partial^{2} C}{\partial y^{2}}+D_{z} \frac{\partial^{2} C}{\partial z^{2}}-\lambda_{T} C \tag{31}
\end{equation*}
$$

which is a special form of the heat conduction equation. Closed-form analytical solutions for this equation are available in the literature for a variety of boundary conditions.

Summary.

Equation 23 provides the basis for many of the analytical solutions for solute transport in uniform ground-water flow. This equation is a mathematical model of complex physical phenomena and incorporates many simplyfying assumptions which are required to obtain a solution to the problem. Assumptions incorporated in the formulation of the differential equation are also present in the solution and must be considered in interpreting any numerical results.

The assumption that the aquifer is homogeneous is seldom satisfied in practical field problems. Also, the use of an equilibrium adsorption isotherm implies that adsorption of solute on the solid matrix is both reversible and
instantaneous. Although these assumptions are seldom met in either field or laboratory problems, the approximations to the physical system may be reasonable for initial estimates of concentration distributions.

Solutions to Equation 23 with a continuous source of tracer are often encountered in the literature. The assumption of a uniform velocity in the x direction makes no provision for the effects of a high volumetric source rate on the flow-field in the region of the source. For most problems, this assumption is probably reasonable at moderate distances from either sources or sinks of fluid, or on a regional basis.

The use of a Fickian model for the dispersive flux is probably the most frequently misinterpreted or incorrectly applied portion of the mathematical model. Hydrodynamic dispersion is an observed effect of one or more physical phenomena which are difficult to define and cannot be measured. A discussion of the topic is beyond the scope of this brief treatise. However, the mathematical formulation of the problem as developed in this paper treats dispersion as a potential flow problem. Analogous mechanism are conduction in heat transfer and molecular diffusion in mass transfer. Thus, the model does not distinguish between hydrodynamic dispersion in the direction of ground-water flow or opposite to the direction of ground-water flow. The model is a statement of conservation of tracer, and solutions of the governing differential equation can lead to higher concentrations upgradient of sources (and thus lower concentrations downgradient) than would be observed in practice.

Analytical solutions to the solute transport equation present viable and valuable alternatives for analyzing fairly complex problems, even with the simplifying assumptions which have been incorporated. Interpretation of the results of an analytical solution to the problem must be based on an understanding of both the physical system and the mathematical model.

$$
C-15
$$

[^0]: ENTER NEXT COMMAND
 ? RN

