PLUME 2D Two-Dimensional Plumes In Uniform Ground Water Flow

Ву

Jan Wagner, Stephanie A. Watts and Douglas C. Kent Oklahoma State University Stillwater, OK 74078

Prepared for

Robert S. Kerr Environmental Research Laboratory U.S. Environmental Protection Agency Ada, OK 74820

PROJECT SUMMARY

PLUME2D: TWO-DIMENSIONAL PLUMES IN UNIFORM GROUND WATER FLOW

Jan Wagner and S. A. Watts School of Chemical Engineering Oklahoma State University Stillwater, OK 74078

D. C. Kent
Department of Geology
Oklahoma State University
Stillwater, OK 74078

Introduction

Relatively simple analytical methods can often be used to evaluate ground-water contamination problems, depending upon the complexity of the system and the availability of field data. Analytical models can also serve as valuable tools in developing parameters for more sophisticated numerical models. Although the numerical evaluation of an analytical solution to a ground-water problem may be mathematically complex, analytical models are well suited for interactive use on digital computers. Many analytical solutions to ground-water contamination problems can be coded on programmable hand-held calculators. In general, very few input parameters are required to define a given problem, and numerical results can be calculated in a few seconds.

This report presents analytical solutions to two ground-water pollution problems -- two-dimensional plumes in uniform ground-water flow. An interactive computer code has been developed which enables the user to modify the definition of a given problem, and thus gain some insight into the effects of various parameters on the extent of a contaminant plume.

Model Formulation

The differential equation describing the conservation of mass of a component in a saturated, homogeneous aquifer with uniform, steady flow in the x-direction can be written as

$$R_{d} \frac{\partial C}{\partial t} + V^{*} \frac{\partial C}{\partial x} = D_{x}^{*} \frac{\partial^{2} C}{\partial x^{2}} - D_{y}^{*} \frac{\partial^{2} C}{\partial y^{2}} - R_{d} \lambda$$
 (1)

where

C = component mass per unit volume of fluid phase

D = dispersion coefficient in x-direction

 D_{v}^{*} = dispersion coefficient in y-direction

 R_d = retardation coefficient

 V^* = average interstitial velocity in x-direction

x,y = rectangle coordinates

 λ = first-order decay constant.

The retardation coefficient accounts for partitioning of the component between the fluid and solid phases using a linear adsorption isotherm and is defined as

$$R_{d} = 1 + \frac{\rho_{B}}{\Theta} K_{d}$$
 (2)

where

 ρ_R = bulk density of the rock

θ = effective porosity

 K_d = distribution coefficient for a linear adsorption isotherm.

Closed-form analytical solutions for the two types of ground-water contamination problems shown in Figure 1 are included in this report. The first is a vertically-averaged solution which describes a contaminant plume in the x-y, or horizontal, plane (Figure 1a). The second is a horizontally-averaged solution describing a contaminant plume in a vertical plane (Figure 1b).

The vertically-averaged solution applies to an aquifer of infinite areal extent and finite depth. The contaminant is assumed to be well mixed over the saturated thickness. The source of contamination is a vertical line source located at the origin of a coordinate system in the x-y plane. The conceptual model is similar to an injection well which fully penetrates the saturated zone or a finite vertical segment of the aquifer. Wilson and Miller (1978) have also applied this solution down-gradient from a contaminant source at the water table. For a relatively thin saturated zone, vertical dispersion will tend to mix the contaminant vertically. The concentration distribution can be considered as being two-dimensional in a horizontal plane at distances downstream of the source for the concentration distribution to become uniform with depth. For a continuous source of strength M' at the origin, the vertically-averaged solution is (Hunt, 1978; Wilson and Miller, 1978)

$$C = \frac{M_0' EXP (\frac{V_X^*}{2D_X})}{4 \pi \Theta (D_X D_y)^{0.5}} W(U,B)$$
 (3)

where

$$U = \frac{\left(\frac{V_{x}^{*}}{D_{x}^{*}}\right)^{2} + \frac{D_{x}^{*}}{D_{x}^{*}} \left(\frac{V_{y}^{*}}{D_{x}^{*}}\right)^{2}}{\frac{4 V^{2} t}{R_{d} D_{x}^{*}}}$$
(4)

$$B = \frac{1}{2} \left[\left(\frac{v_x^*}{v_x^*} \right)^2 + \frac{Dx}{Dy} \left(\frac{v_y^*}{v_x^*} \right)^2 \right]^{1/2} \left[1 + \frac{4 \frac{v_x^*}{v_x^*} \frac{R_d^{\lambda}}{v_x^*}}{v_x^*} \right]^{1/2}$$
 (5)

The function W(U,B) is defined as

$$W(U,B) = \int_{U}^{\infty} \frac{1}{\xi} EXP(-\xi - \frac{B^2}{4\xi}) d\xi$$
 (6)

where ξ is a dummy integration variable. This function is often referred to as the "well function for leaky artesian aquifers" (Hantush, 1956). The corresponding steady-state solution of Equation 1 is

$$C = \frac{M_0' \text{ EXP } (\frac{V_X^*}{2D_X^*})}{2\pi\Theta (D_X^* D_Y^*)^{0.5}} K_0(B)$$
 (7)

where $K_{O}(B)$ is the modified Bessel function of the second kind of order zero.

The horizontally-averaged solution is based on the conceptual model shown in Figure 1b. A line source is located at the water table and normal to the direction of ground-water flow. A problem which might fit this conceptual model is seepage from a trench.

The closed-form analytical solution follows directly from the vertically-averaged solution. Since the water table represents a no-flow boundary passing through the origin, the horizontally-averaged solution can be written directly as

$$C = \frac{M_0' \text{ EXP } (\frac{V_X^*}{2D_X^*})}{2\pi\Theta (D_X^* D_Z^*)^{0.5}} W(U,B)$$
 (8)

The steady-state solution is

$$C = \frac{M_o'}{\pi \Theta} \frac{(V_X^*)}{(D_X^*)^{1/2}} K_o(B)$$
 (9)

Equations 5 and 7 and 8 and 9 can be used to calculate concentrations in contaminant plumes under the following assumptions and limitations:

- 1. The ground-water regime is completely saturated.
- All aquifer properties are constant and uniform throughout the problem domain.
- The ground-water flow is horizontal, continuous, and uniform throughout the aquifer.
- 4. The aquifer is infinite in extent.
- 5. The contaminant source is a line located at the origin of the coordinate system.
- 6. The mass flow rate of the source is constant.
- 7. At zero time the concentration in the aquifer is zero.

The assumptions of an infinite aquifer and uniform source rates can be overcome by using the principles of superposition in space and time.

Superposition can also be used to include multiple sources.

Computer Program

The closed-form analytical solutions for the two-dimensional plumes as presented above have been incorporated in an interactive computer program. The source code has been written in a subset of FORTRAN 77 and can be compiled with FORTRAN IV, FORTRAN 66, as well as FORTRAN 77 compilers. As a result, the code is almost entirely independent of hardware and operating systems. Those changes which may be required to implement the code on a given system, such as assigning logical devices are clearly identified.

The program has been developed for interactive use and requires input data under two modes of operation -- "Basic Input Data" and "Edit." The basic input data are required to initiate a new problem. The user is prompted for the required data through a series of input commands.

Once the basic input data have been entered, the problem as currently defined is listed and the program enters the "edit" mode. The two character edit commands listed in Table 1 can be used to redefine the problem, run the calculations, and terminate the program.

The program has been written to require a minimum of machine resources and will run on both 8 and 16 bit microcomputers under CP/M, MS-DOS, and PC-DOS as well as larger minicomputers and mainframe machines.

Summary

The models and computer codes developed in this project are intended to serve as additional tools in the analysis of ground-water contamination problems. The user must select the best tool for the problem at hand based on a sound understanding of the principles of ground-water hydrology, the physical problem, and the limitations of the mathematical model(s). Unfortunately, these computer programs cannot substitute for an understanding

of the processes and mechanisms of solute transport in ground-water systems or sound judgement based on training and experience.

References

- Hantush, M. S., 1956, "Analysis of Data from Pumping Tests in Leaky Aquifers," Transitions, American Geophysical Union, Vol. 37, No. 6, pp. 702-714.
- Hunt, B., 1978, "Dispersive Sources in Uniform Ground-Water Flow," <u>Journal of The Hydraulics Division</u>, ASCE, Vol. 104, No. HY1, pp. 75-85.
- Wilson, J. L. and P. J. Miller, 1978, "Two-Dimensional Plume in Uniform Ground-Water Flow," <u>Journal of the Hydraulics Division, ASCE, Vol. 104</u>, No. HY4, pp. 503-514.

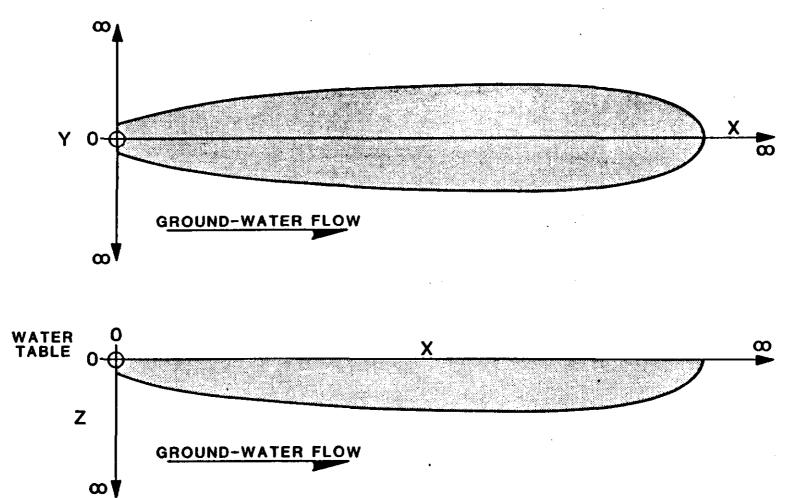


Figure 1. Coordinate systems for (A) vertically averaged solution and (B) horizontally averaged solution.

TABLE 1

EDIT COMMANDS

Command	Variable changed/Execution
ST	Saturated Thickness
PO	Porosity
VX	New Seepage Velocity
RD	Retardation Coefficient
DE	Decay Constant
DX	X-Dispersion Coefficient
DY	Y-Dispersion Coefficient
DZ	Z-Dispersion Coefficient
RT	Source Rate Schedule
ОВ	Observation Points
XC	X-Coordinates
YC	Y-Coordinates
ZC	Z-Coordinates
TC	Observation Times
CS	Change Solution/Sources
MU	Menu of Edit Commands
LI	List input data
RN	Run
NP	New Problem
DN	Done

PLUME 2D

TWO-DIMENSIONAL PLUMES IN UNIFORM GROUND WATER FLOW

by

Jan Wagner and Stephanie A. Watts School of Chemical Engineering Oklahoma State University Stillwater, Oklahoma 74078

Douglas C. Kent
Department of Geology
Oklahoma State University
Stillwater, Oklahoma 74078

CR811142-01-0

Project Officer

Carl G. Enfield
Robert S. Kerr Environmental Research Laboratory
U. S. Environmental Protection Agency
Ada, Oklahoma 74820

DISCLAIMER

This report has been reviewed by the Robert S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement of recommendation for use.

TABLE OF CONTENTS

INTRODUCTION	
SECTION I - MATHEMATICAL DEVELOPMENT	
SECTION II - COMPUTER PROGRAM	25
SECTION III - APPLICATIONS	32
REFERENCES	40
APPENDIX A - Example Problems	A-1
APPENDIX B - Description of Program PLUME2D	B-1
APPENDIX C - Numerical Analysis of the Hantush Well Function	C-1
APPENDIX D - Listing of Program PLUME2D	D-1
APPENDIX E - Listing of Utility Function Subroutines	E-1

LIST OF FIGURES

Figure	1	-	Coordinate system for vertically averaged solution6
Figure	2	-	Coordinate system for horizontally averaged solution6
Figure	3	-	Decomposition of a variables source rate using superposition in time
Figure	4	-	Use of image sources to account for aquifers of finite depth22
Figure	5	-	Superposition in space to account for barrier boundaries24
Figure	6	-	Results of hexavalent chromium plume simulation at 3280 days33
Figure	7	-	Results of hexavalent chromium spill simulation at 365 days36

LIST OF TABLES

Table 1 - Edit Commands	31
Table 2 - Comparison of Concentrations Calculated Using Superposition in Time and an Analytical Solution for an Instantaneous Line Source	
Table 3 - Typical Values for Aquifer Properties	39

INTRODUCTION

Relatively simple analytical methods can often be used to evaluate ground-water contamination problems, depending upon the complexity of the system and the availability of field data. Analytical models can also serve as valuable tools in developing parameters for more sophisticated numerical models. Although the numerical evaluation of an analytical solution to a ground-water problem may be mathematically complex, analytical models are well suited for interactive use on digital computers. Many analytical solutions to ground-water contamination problems can be coded on programmable hand-held calculators. In general, very few input parameters are required to define a given problem and numerical results can be calculated in a few seconds.

This report presents analytical solutions to two ground-water pollution problems -- two-dimensional plumes in uniform ground-water flow. An interactive computer code has been developed which enables the user to modify the definition of a given problem, and thus gain some insight into the effects of various parameters on the extent of a contaminant plume.

SECTION I

MATHEMATICAL DEVELOPMENT

The differential equation describing the conservation of mass of a component in a saturated, homogeneous aquifer with uniform, steady flow in the x-direction can be written as

$$\frac{\partial C_T}{\partial t} + V \frac{\partial (C)}{\partial x} = D_x \frac{\partial^2 (\Theta C)}{\partial x^2} + D_y \frac{\partial^2 (\Theta C)}{\partial y^2} + D_z \frac{\partial^2 (\Theta C)}{\partial z^2} - r_t$$
 (1)

where

	С	=	component mass per unit of fluid phase	M/L ³
	c_{T}	=	total component mass per unit volume of aquifer	M/L^3
	$D_{\mathbf{X}}$	=	dispersion coefficient in x-direction	L ² /t
	Dy	=	dispersion coefficient in y-direction	L ² /t
	Dz	=	dispersion coefficient in z-direction	L ² /t
	rt	=	rate of degradation of mass per unit volume	
			of aquifer	M/L ³ t
	٧	=	Darcy, or seepage, velocity in the x-direction	L/t
х,у	,z,	=	rectangular coordinates at the point of interest	L
	Θ	=	porosity of porous media	L^3/L^3

The total mass of a component per unit volume of aquifer is distributed as dissolved solute in the fluid phase and adsorbed solute on the solid matrix. Let

 C_S = component mass per unit mass of solid M/M and

 ρ_B = bulk density of the aquifer, or the mass of solids per unit volume of the aquifer M/L³.

The total component mass per unit volume of aquifer can be expressed

as

$$\frac{\text{Mass}}{\text{Unit Volume}} = \frac{\text{Volume of voids}}{\text{Unit Volume of aquifer}} \frac{\text{Component Mass}}{\text{Volume of voids}}$$

or

$$C_{T} = \Theta C + \rho_{R} C_{s}$$
 (2)

and, the rate of accumulation of mass in the aquifer becomes

$$\frac{\partial C_T}{\partial t} = \Theta \frac{\partial C}{\partial t} + \rho_B \frac{\partial C_S}{\partial t}$$
 (3)

In general, $C_S = f(C)$ and

$$\frac{\partial C_{S}}{\partial t} = \frac{dC_{S}}{dC} \frac{\partial C}{\partial t} \tag{4}$$

For a linear equilibrium adsorption isotherm,

$$\frac{dC_s}{dC} = K_d \frac{M/M}{M/L} 3 \tag{5}$$

where K_d is a distribution constant.

The change in concentration per unit volume of porous media, $\partial C_T/\partial t$, can be written in terms of fluid phase concentration, C, by substituting Equations 4 and 5 into Equation 3. Therefore,

$$\frac{\partial C_T}{\partial t} = \Theta \frac{\partial C}{\partial t} + \rho_B K_d \frac{\partial C}{\partial t}$$
or
$$\frac{\partial C_T}{\partial t} + (\Theta + \rho_B K_d) \frac{\partial C}{\partial t}$$
(6)

The rate of degradation of component mass per unit volume of porous media is also distributed between the solid and liquid phases, or

$$\frac{\text{Rate of mass degraded}}{\text{Unit volume of aquifer}} = \frac{\text{Rate of mass degraded}}{\text{Unit volume of fluid}} = \frac{\text{Volume of fluid}}{\text{Volume of aquifer}} + \frac{\text{Rate of mass degraded}}{\text{Unit mass of solid}} = \frac{\text{Mass of solid}}{\text{Volume of aquifer}}$$

Now, the rate of change in total mass per unit volume of aquifer due to reaction can be written as

$$r_{t} = \frac{\partial C_{T}}{\partial t} = \Theta \frac{\partial C}{\partial t} + \rho_{B} \frac{\partial C_{S}}{\partial t}$$
 (7)

The concentration on the solid, C_s , is related to the concentration in the liquid, C_s , through the linear adsorption isotherm assumed previously, and

$$r_{t} = \frac{\partial C}{\partial t} = (\Theta + \rho_{B} K_{d}) \frac{\partial C}{\partial t}$$
 (8)

Assuming first order decay kinetics, the rate of decrease in fluid phase and solid phase concentrations due to reaction can be expressed as

$$\frac{\partial C}{\partial t} = \lambda C \tag{9}$$

and -

$$\frac{\partial C_{S}}{\partial t} = \lambda C_{S}$$

respectively, where λ is a rate constant (1/t), and

$$r_{t} = (\Theta + \rho_{B} K_{d}) \lambda C \tag{10}$$

Equation 1 can now be written in terms of the fluid concentration. Substituting Equations 6 and 10 and recalling that for a homogeneous porous medium the porosity, θ , is constant, Equation 1 becomes

$$(1 + \frac{\rho_B}{\Theta} K_d) \frac{\partial C}{\partial t} + V^* \frac{\partial C}{\partial x} = D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_x \frac{\partial^2 C}{\partial z^2} - (1 + \frac{\rho_B}{\Theta} K_d) \lambda C$$
 (11)

where $V^* \equiv \frac{V}{\Theta}$ is the average interstitial, or pore, velocity. Defining a "retardation coefficient" as

$$R_{d} = 1 + \frac{\rho_{B}}{\Theta} K_{d} \tag{12}$$

the differential equation describing the conservation of mass in the aquifer becomes

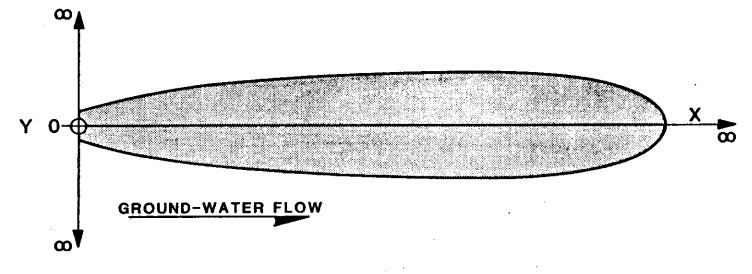


Figure 1. Coordinate system for vertically averaged solution.

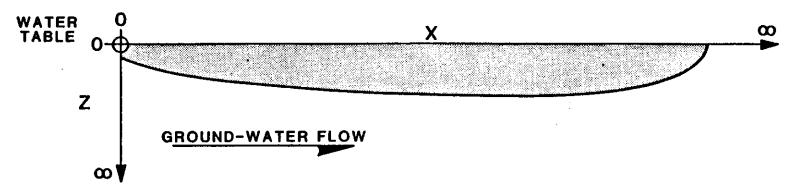


Figure 2. Coordinate system for horizontally averaged solution.

$$R_{d} \frac{\partial C}{\partial t} + V^{*} \frac{\partial C}{\partial x} = D_{x} \frac{\partial^{2} C}{\partial x^{2}} + D_{y} \frac{\partial^{2} C}{\partial y^{2}} + D_{z} \frac{\partial^{2} C}{\partial z^{2}} - R_{d} \lambda C$$
 (13)

Equation 13 is a linear partial differential equation which can be integrated analytically to yield an expression for concentration as a function of time and position.

Solutions of Equation 13 for two types of ground-water contamination problems are presented in the following paragraphs. The first is a vertically-averaged solution which describes a contaminant plume in the x-y plane (Figure 1). The second is a horizontally-averaged solution, describing a contaminant plume in the x-z plane (Figure 2).

Vertically-averaged solution. The vertically-averaged solution applies to a homogeneous aquifer of infinite aerial extent and finite depth. The contaminant is assumed to be well mixed over the saturated thickness. The source of contaminant is a vertical line source located at the origin of a coordinate system in the x-y plane. This conceptual model would apply to an injection well which fully penetates the saturated zone.

Wilson and Miller (1978) have also applied this solution downstream from a contaminant source at the surface of the water table. For a relatively thin saturated zone, vertical dispersion will result in mixing vertically. The concentration distribution can be considered as being two-dimensional in a horizontal plane at distances downstream of the source sufficient for the concentration distribution to become uniform with depth. Mathematically, the problem is treated as an infinite aquifer with a line source at the origin. The vertically-averaged formulation of Equation 13 is

$$R_{d} \frac{\partial C}{\partial t} + V^{*} \frac{\partial C}{\partial x} = D_{x} \frac{\partial^{2} C}{\partial x^{2}} + D_{y} \frac{\partial^{2} C}{\partial y^{2}} - R_{d} \lambda C$$
 (14)

The boundary conditions can be stated mathematically as follows

$$C(x,y,0) = 0$$
 (15a)

$$C(x,\pm\infty,t) = 0 \tag{15b}$$

$$C(\pm \infty, y, t) = 0 \tag{15c}$$

A solution to Equation 14 with the Equation 15 boundary conditions and a continuous source of strength C_0Q^* can be written as (Hunt, 1978; Wilson and Miller, 1978):

$$C = \frac{C_0 Q' EXP \left(\frac{v^* x}{2D_x}\right)}{4 \pi \Theta \left(D_x D_y\right)^{0.5}} W(U,B)$$
 (16)

where

$$U = \frac{\left(\frac{Vx}{D_x}\right)^2 + \frac{D_x}{D_y} \left(\frac{V^*y}{D_x}\right)^2}{\frac{4V^*2}{R_d} \frac{t}{D_x}}$$
(17)

and

$$B_{x} = \frac{1}{2} \left[\left(\frac{V^{*}x}{D_{x}} \right)^{2} + \frac{D_{x}}{D_{y}} \left(\frac{V^{*}y}{D_{x}} \right)^{2} \right]^{1/2} \left[1 + \frac{4D_{x}R_{d}\lambda}{V^{*2}} \right]^{1/2}$$
(18)

and C_0Q^+ (M/t/L) is the contaminant source rate per unit depth of the saturated zone.

The function W(U,B) is defined as

$$W(U,B) = \int_{U}^{\infty} \frac{1}{\xi} EXP \left(-\xi - \frac{B^2}{4\xi}\right) d\xi$$
 (19)

where ξ is a dummy integration variable. This function is often referred to as the "well function for leaky artesian aquifers" (Hantush; 1956, 1964).

The steady-state solution of Equations 14 and 15 can be obtained by noting as t $\rightarrow \infty$, U \rightarrow 0 and the well function (Hantush, 1956) can be expressed as

$$W(0,B) = 2K_{O}(B) \tag{20}$$

where $K_0(B)$ is the modified Bessel function of the second kind of order zero. At steady-state the vertically-averaged solution can be written as

$$C = \frac{C_0 Q' EXP \left(\frac{V^*x}{2D_x}\right)}{2\pi\theta \left(D_x D_y\right)^{0.5}} K_0(B)$$
 (21)

The units of the variables in Equations 16 and 21 can be eliminated by defining the following dimensionless groups:

Modified Peclet Numbers ~ Convective mass transport Dispersive mass transport

$$Pe_{\chi} = \frac{V^{*}\chi}{D_{\chi}}$$
 (22)

$$Pe_{y} = \frac{V^{*}y}{D_{x}}$$
 (23)

Damkohler Group II $\sim \frac{\text{Mass decay rate}}{\text{Mass dispersion rate}}$

$$D_{k} = \frac{D_{x}R_{d}^{\lambda}}{v^{*2}}$$
 (24)

Number of Pore Volumes Injected $\sim \frac{Mass\ transport\ rate}{Mass\ accumulation\ rate}$

$$I = \frac{V^{*2}t}{R_d D_x} \tag{25}$$

Dimensionless Source Term $\sim \frac{\text{Mass injection rate}}{\text{Mass diffusion rate}}$

$$\Gamma = \frac{Q'}{\Theta(D_X D_Y) O_{\bullet} 5} \tag{26}$$

Dimensionless Concentration

$$\gamma = \frac{C}{C_0} \tag{27}$$

Note that the number of pore volumes injected can be written as

$$I = \frac{V^2 t}{D_x R_d} = \left(\frac{V^* L}{D_x}\right)^2 = \frac{D_x t}{R_d L^2}$$
 (28)

where L is a characteristic length defined as

$$L^2 = x^2 + \frac{D_x}{D_y} y^2 \tag{29}$$

The first group on the right-hand-side of Equation 28 is the Modified Peclet number

$$Pe_{xy} = \left[\left(\frac{v^*x}{D_x} \right)^2 + \frac{D_x}{D_y} \left(\frac{v^*y}{D_x} \right)^2 \right]^{\frac{1}{2}}$$

or

$$Pe_{xy} = (Pe_x^2 + g Pe_y^2)^{1/2}$$
 (30)

where

$$\beta = \frac{D_x}{D_v}$$

The second group on the right-hand-side of Equation 28 is a dimensionless time variable,

$$\tau = \frac{D_x t}{R_d L^2} \tag{31}$$

The transient and steady-state solutions to Equations 14 which are given by Equations 16 and 21 can be written in terms of the dimensionless variables defined above. The transient solution is

$$\gamma = \frac{\Gamma}{4\pi} EXP(\frac{1}{2} Pe_{x}) W(U,B)$$
 (32)

and at steady state

$$\gamma = \frac{\Gamma}{2\pi} EXP \left(\frac{1}{2} Pe_{x}\right) K_{o}(B)$$
 (33)

with

$$U = \frac{Pe \times y}{4I} \tag{34}$$

and

$$B = \frac{1}{2} Pe_{xy} (1 + 4D_k)^{\frac{1}{2}}$$
 (35)

The values of dimensionless concentrations evaluated using Equation 32 or Equation 33 are valid for any consistent set of units. Using dimensionless variables also tends to "scale" numerical values when working in various systems of units.

Horizontally-averaged solution. Consider a homogeneous aquifer with a continuous line source of infinite length located at the water table and normal to the direction of ground-water flow as shown in Figure 2. In other words the tracer is assumed to be well mixed over the width of the aquifer. A problem which might fit this conceptual model is seepage from a trench perpendicular to the direction of ground-water flow.

The horizontally-averaged formulation of Equation 13 is

$$R_{d} \frac{\partial C}{\partial t} + V^{*} \frac{\partial C}{\partial x} = D_{x} \frac{\partial^{2} C}{\partial x^{2}} + D_{z} \frac{\partial^{2} C}{\partial z^{2}} - R_{d} \lambda C$$
 (36)

For an aquifer of infinite depth and a uniform continuous line source, the appropriate boundary conditions can be written as follows

$$C(x,z,0) = 0 (37a)$$

$$C(\pm \infty, z, t) = 0 \tag{37b}$$

$$C(x,\infty,t) = 0 (37c)$$

$$\frac{\partial C(x,0,t)}{\partial z} = 0 \tag{37d}$$

A solution to Equation 36 with the Equation 37 boundary conditions and a continuous line source of strength $C_{0}Q^{\prime}$ is

$$C = \frac{C_0 Q' EXP(\frac{V^*x}{2D_x})}{2\pi\Theta (D_x D_z)^{0.5}} W(U,B)$$
(38)

At steady state the horizontally-averaged solution can be written as

$$C = \frac{C_0Q' \text{ EXP } (\frac{\sqrt{x}}{2D_x})}{\pi\theta (D_xD_z)^{0.5}} K_0(B)$$
(39)

where

$$U = \frac{\left(\frac{V^*x}{D_x}\right)^2 + \frac{D_x}{D_z} \cdot \left(\frac{V^*z}{D_x}\right)^2}{\frac{4V^{*2}t}{R_dD_x}}$$
(40)

$$B = \frac{1}{2} \left[\left(\frac{V^*x}{D_x} \right)^2 + \frac{D_x}{D_z} \left(\frac{V^*z}{D_x} \right)^2 \right]^{1/2} \left[1 + \frac{4D_x R_d \lambda}{V^{*2}} \right]^{1/2}$$

$$(41)$$

and Q' $(L^3/t/L)$ is the volumetric contaminant source rate per unit width of the aquifer (or unit length of the line source).

Changing subscripts, the definition of the dimensionless groups leads to

$$Pe_{z} = \frac{v^{*}z}{v_{x}}$$
 (42)

and

$$\Gamma = \frac{Q'}{\Theta(D_{\mathbf{x}}D_{\mathbf{y}})0.5} \tag{43}$$

with

$$Pe_{xz} = (Pe_x^2 + \beta Pe_z^2)^{1/2}$$
 (44)

where

$$\beta = \frac{D_{x}}{D_{z}} \tag{45}$$

By substituting the dimensionless groups described in vertically-averaged solution and those defined above, Equations 38 through 41 can be written in terms of dimensionless variables.

The transient solution becomes

$$\gamma = \frac{\Gamma}{2\pi} EXP(\frac{1}{2} Pe_{x}) W(U,B)$$
 (46)

and at steady state, the horizontally-averaged solution is

$$\gamma = \frac{\Gamma}{\pi} EXP \left(\frac{1}{2} Pe_{x}\right) K_{0}(B) \tag{47}$$

where

$$U = \frac{Pe_{XZ}^2}{4I} \tag{48}$$

and

$$B = \frac{1}{2} Pe_{xz} (1 + 4D_k)^{\frac{1}{2}}$$
 (49)

The similarity of the solutions of the vertically-averaged and horizontally-averaged problems facilitates their numerical evaluation using a common computational algorithm. For the same numerical values of the independent variables, concentration values for the horizontally-averaged solutions are obtained by doubling the vertically-averaged solution values.

Assumptions and Limitations

Equations 32-33 and 46-47 can be used to calculate the concentrations in leachate plumes under the following assumptions and limitations:

- 1. The ground-water flow regime is completely saturated.
- 2. All aquifer properties are constant and uniform throughout the aquifer.
- 3. All ground-water flow is horizontal, continuous, and uniform throughout the aquifer.
- 4. The aquifer is infinite in extent for the vertically-averaged solution, or semi-finite in extent for the horizontally-averaged solution.
- 5. The leachate source is a line located at the origin of the coordinate system.
- 6. The mass flow rate of the source is constant.
- 7. At zero time the concentration of leachate in the aguifer is zero.

The assumptions of an infinite aquifer depth and a uniform source mass rate can be overcome by using the principles of superposition in space and time, respectively (Walton, 1962). Both of these provisions have been incorporated in the computer program described in the next section.

Superposition

The differential equation describing component mass concentration in a porous medium, Equation 1, is a linear partial differential equation. The principal of superposition can be used directly to solve complex ground-water contamination problems in terms of the simplier solutions described above. Unfortunately, the scattered applications of this principle are not explained in any single reference. Some texts indicate that superposition means that any sum of solutions is also a solution. Superposition is commonly used to generate a linear no-flow boundary condition through the use of "image wells"

or to simulate multiple sources and sinks (Walton; 1962, 1970). The principle of superposition is also complicated by referring to the "Duhamel theorem," the "Faltung integral," and/or "convolution integrals." These terms often have no apparent physical interpretation. For the purposes of this report, "superposition in space" will refer to the approximation of sources of finite area or volume as the sum of a finite number of point sources or the generation of no-flow boundaries using image wells. "Superposition in time" will refer to the approximation of a variable source rate of contamination as the sum of a finite number of constant source rates distributed in time.

Both the horizontally-averaged and vertically-averaged solutions can be used to simulate aquifers of finite width or depth, respectively, or plane sources of finite width. Applications of this type require a thorough understanding of the physical interpretation of the principal of superposition.

Some applications are relatively straight forward, and the computer program provides for the approximation of a non-uniform source rate using superposition in time. Multiple sources and aquifers of finite thickness are also included using superposition in space.

Consider the variable source of contamination shown in Figure 3. The solutions of the governing differential equation presented in this report are of the form

$$C(x,z,t) = C_0Q' f(x,z,t) = \dot{Q}' f(x,z,t)$$
 (50)

where \dot{Q} is the source mass rate per unit length. The principle of superposition in time can be written for any position as

$$C(x,z,t) = \sum_{i=1}^{n} \hat{Q}_{i}^{i} f(x,z,t_{i})$$
 (51)

Now, the variable rate schedule shown in Figure 3a can be decomposed into a series of positive and negative mass rates as shown in Figure 3b. The concentration at a point x,y,z at the end of the simulation, t_s , can be evaluated as

$$C(x,y,z,t) = \dot{Q}_{1}^{i} f(x,y,z,t_{1}) - \dot{Q}_{1}^{i} f(x,y,z,t_{2})$$

$$+ \dot{Q}_{2}^{i} f(x,y,z,t_{2}) - \dot{Q}_{2}^{i} f(x,y,z,t_{3})$$

$$+ \dot{Q}_{3}^{i} f(x,y,z,t_{3}) - \dot{Q}_{3}^{i} f(x,y,z,t_{4})$$

$$+ \dot{Q}_{4}^{i} f(x,y,z,t_{4}) \qquad (52)$$

In general terms

$$C(x,y,z,t_s) = \sum_{i=1}^{n} (\dot{Q}_i' - \dot{Q}_{i-1}') f(x,y,z,t_i)$$
 (53)

with $Q_0^{\dagger} = 0$

Note the time corresponding to a given source rate, t_i , is the period beginning with the start of the given rate to the end of the simulation period; time is not the duration of a given rate. For ease of application, Equation 53 can be rewritten as

$$C(x,y,z,t_s) = \sum_{k=1}^{n} (\dot{Q}'_k - \dot{Q}'_{k-1}) f(x,y,z,t_s-t_{k-1})$$
 (54)

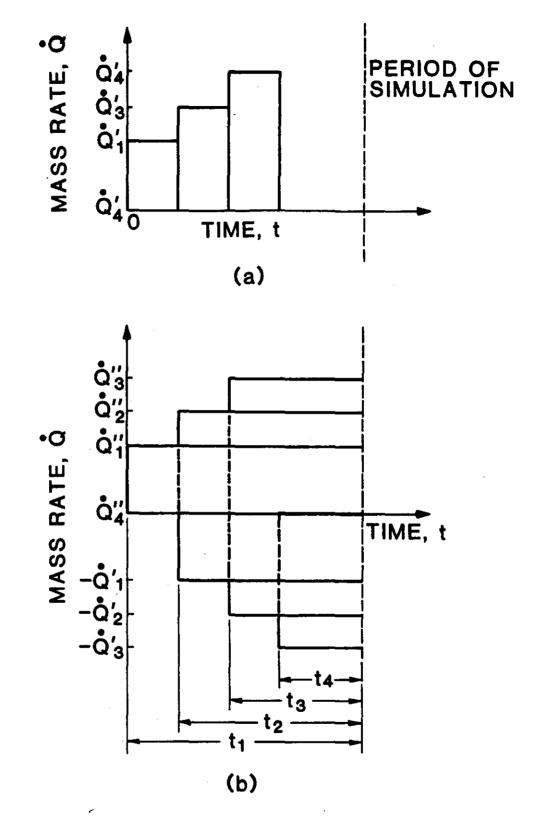
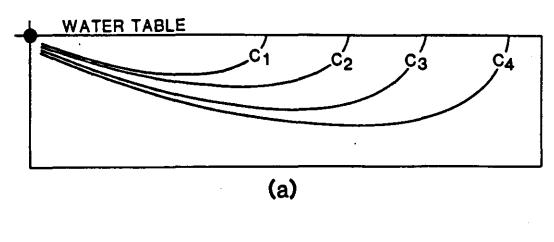
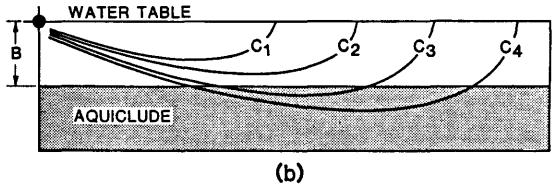


Figure 3. Decomposition of a variable source rate using superposition in time.

where t_{k-1} is the time corresponding to the end of mass rate Q_{k-1} or the beginning of rate Q_k with $Q_0=0$ and $t_0=0$.


A continuous non-uniform rate schedule may be approximated as closely as desired by increasing the number of discrete rates in the source rate schedule. In theory an infinite number of discrete rates would be required. An understanding of the physical problem and the assumptions incorporated in the mathematical model are the best guidelines for decomposing a continuous non-uniform source of contamination.


The influence of geohydrologic boundaries on the movement of a tracer is similar to the influence of these boundaries on the drawdown response of an aquifer to pumping. The applications of image well theory described by Walton (1962, 1970) can be extended to the horizontally-averaged solution to the solute transport problem considered in this report. The following discussion parallels Walton's examples of the use of image wells to account for barrier boundaries.

Consider the contaminant plume which would exist if the aquifer were of infinite depth as shown in Figure 4a. If the contaminant plume was to intersect an impermeable base of the aquifer as shown in Figure 4b, the vertical concentration gradient must change since there can be no transport of mass across the boundary as a result of dispersion. In mathematical terms

$$D_z \frac{\partial C}{\partial z} = 0$$

at z = B. Now, if an imaginary, or image, source were placed across the boundary at a distance equal to the depth of the aquifer, as shown in Figure 4c, this source would create a concentration gradient from the boundary to the image water table equal to the concentration gradient from the boundary

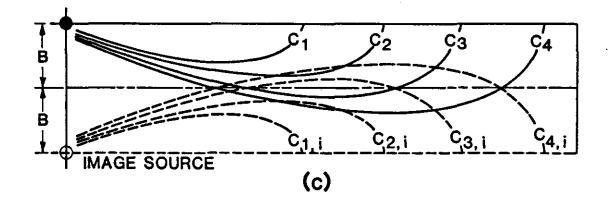


Figure 4. Use of image sources to account for aquifers of finite depth.

to the real water table. A "concentration divide" would be established at boundary, and the no-transport boundary condition ($\partial C/\partial z = 0$) would be satisfied.

The imaginary system of a contaminant source and its image in an aquifer of infinite depth satisfies the boundary conditions dictated by the finite depth system. The resultant concentration distribution is the sum of concentrations in both the real and image systems as shown in Figure 4d.

In theory an infinite number of image systems may be required. For example, if the plume in the infinite system intersects the water table in the image system, a second no-transport boundary is encountered as shown in Figure 5. This boundary can be handled by introducing another image system across the imaginary boundary and equidistant from the first image system. This process of adding image systems could be repeated indefinitely. In practice only a few image systems are required. The computer program automatically introduces an appropriate number of image systems.

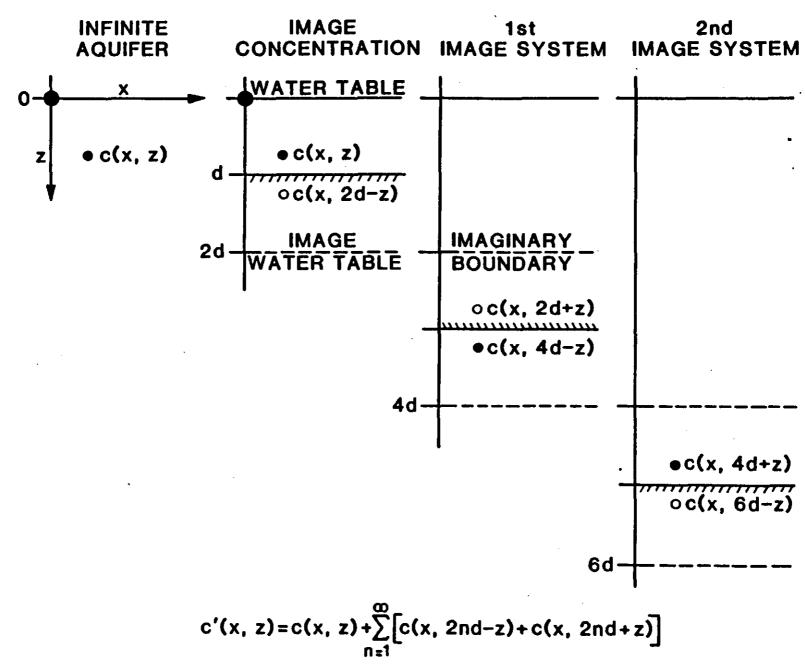


Figure 5. Superposition in space to account for barrier boundaries.

SECTION II

COMPUTER PROGRAM

The computer program evaluates the analytical solutions of the differential equation describing concentration distributions in two-dimensional plumes with uniform ground-water flow. The program has been designed for interactive use and requires input data under two modes of operation - "Basic Input Data" and "Edit."

Basic Input Data

Basic input data are required to initiate a new problem using the PLUME2D program. The user is prompted for the required data through a series of input commands described below. Numeric data may be entered through the keyboard with or without decimal points and multiple data entries should be separated by comma(s). The first basic input command is:

ENTER TITLE

Any valid keyboard characters can be used. The first 60 characters will be retained for further problem identification.

The second input command is used to select the vertically-averaged solution or the horizontally-averaged solution. The command is:

ENTER COORDINATE SYSTEM
XY FOR VERTICALLY-AVERAGED SOLUTION
XZ FOR HORIZONTALLY-AVERAGED SOLUTION
?

Either of the indicated responses is valid.

The next three input commands define the units for all variables used in the calculations. Any consistent set of units may be used.

ENTER UNITS FOR LENGTH (2 CHARACTERS)

Any valid keyboard characters can be used. The first two characters will be retained for identifying the units of the length dimensions which may be required for other input data or output listings.

ENTER UNITS FOR TIME (2 CHARACTERS)

Any valid keyboard characters can be used. The first two characters will be retained for identifying the units of the time dimensions which may be required for other input data or output listings.

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)

The first six characters of any valid keyboard entries will be retained for identifying the concentration units for data input and output.

The remaining input commands are used to initialize all variables for a given problem. They include both aquifer and contaminant parameters. Input data errors which may interrupt the computational sequence are detected by the program and a command is issued to reenter the data for the appropriate variable.

ENTER SATURATED THICKNESS, (O FOR INFINITE THICKNESS), L?

If horizontally-averaged solution was selected (x-z coordinate system) this request is issued. The saturated thickness must be entered in the units requested with dimensions of L. If a zero or negative value is entered, the calculations will be carried out assuming an aquifer of infinite depth. The program automatically includes up to 20 image wells for aquifers of finite depth.

ENTER AQUIFER POROSITY

Enter the volume void fraction.

ENTER SEEPAGE VELOCITY, L/t

The seepage, or interstitial, velocity must be entered with dimensions of L/t in the units requested. Numerical values must be greater than zero.

ENTER RETARDATION COEFFICIENT?

The retardation coefficient includes the effects of absorption of the tracer on the solid matrix (see Section I for discussion). The numerical value must be greater than 1.0, or equal to 1.0 if absorption is neglected.

ENTER X DISPERSION COEFFICIENT, SQ L/t

Dispersion coefficients have dimensions of L^2/t and must be entered in the units requested. Numerical values must be greater than zero.

If the X-Y coordinate system has been selected, the next command is:

ENTER Y DISPERSION COEFFICIENT, SQ L/t?

If, instead, the X-Z coordinate system has been selected, a command for the Z dispersion coefficient will be issued.

ENTER Z DISPERSION COEFFICIENT, SQ L/t?

The subsequent command will be:

ENTER DECAY CONSTANT, 1/t?

The first order decay constant has dimensions of 1/t and must be entered in the units requested. The decay constant must be greater than, or equal to, zero.

SELECT TRANSIENT OR STEADY-STATE SOLUTION TR FOR TRANSIENT SOLUTION SS FOR STEADY-STATE SOLUTION 2

Selection of the transient solution also allows the approximation of a nonuniform rate schedule by a series of uniform rates (see Section I for discussion). Approximation is accomplished through superposition of a series

of uniform rates. If steady-state solution is chosen, the steady state concentration will be evaluated.

ENTER THE NUMBER OF SOURCES (MAXIMUM OF N)?

The number of sources of contaminant should be entered. The value entered must be greater than zero.

MASS RATES HAVE UNITS OF (M/L^3) (L^3/t) TIME HAS UNITS OF t

This statement reminds the user of the units that will be used for mass rates and for time. All mass-rate and time values entered must be in these units.

The next series of commands will be repeated for each source.

The input units for the coordinates must be in the units requested. The Z-coordinate must be greater than or equal to zero. If, instead, the X-Y coordinate system has been selected, the following command is issued:

If the transient solution was chosen the following two commands will be issued.

ENTER THE NUMBER OF RATES FOR SOURCE I (MAXIMUM OF N)

The number of uniform rates used to approximate a nonuniform rate schedule for this source is entered. The value must be greater than zero.

SOURCE I, RATE J STARTS AT TIME t ENTER MASS RATE AND ENDING TIME

The source mass rate is entered in units of concentration times the volumetric rate. Note the actual source concentration and rate are not required, but the units must be consistent. The time units must also be consistent.

If the steady-state solution has been selected, the following command will be entered instead of the two previously listed commands.

ENTER STEADY-STATE MASS RATE I?

The next two basic input commands are used to define the matrix of observation points, or coordinates at which concentration will be evaluated.

ENTER XFIRST, XLAST, DELTAX (L) ?,?,?

The input units for the coordinates must also be in the units requested.

XFIRST and XLAST can be positive or negative values. A zero entry for DELTAX will result in a single X-coordinate observation. Results of calculations for multiple X-coordinates will be listed from XFIRST to XLAST.

ENTER YFIRST, YLAST, DELTAY (L) ?,?,?

Any of the numerical values used to define the Y-coordinates of observation points may be positive or negative. If the X-Z coordinate system has been selected, a command to enter the Z-coordinates, rather than the Y-coordinates, will be issued.

ENTER TFIRST, TLAST, DELTAT (t) ?,?,?

The beginning value and ending value of the time interval of contaminant transport being modeled is entered. Both TFIRST and TLAST must be positive values in the units requested. A zero entry for DELTAT will result in model output at a single value of time.

Edit Commands

Once the basic input data have been entered, the problem as currently defined is listed and the program enters the "edit" mode. The edit commands are listed in Table 1 and are also listed the first time the program enters the edit mode. The request for information is

ENTER NEXT COMMAND?

One of the reponses from Table 2 should be given. If the response is incorrect or improperly formulated the statement

ERROR IN LAST COMMAND -- REENTER?

is issued. Error messages for invalid numerical data will be issued as described under the Basic Input Commands. The request for information will be repeated until one of the responses MU, LI, RN, NP, or DN is entered.

MU will list the table of edit commands.

LI will list the problem as currently defined.

RN will initiate the calculation of concentrations and print the results.

NP will request a complete new problem using the "Basic Input Data" dialog.

DN will terminate the program.

A listing of the dialog and the results for the example problem discussed in Section III are included in Appendix A.

Although many tests for valid input data and properly formulated edit commands have been embedded in the program, the user is encouraged to correct "keyboard errors" before the data are transmitted. These precautions will serve to minimize the frustration of program termination as a result of fatal errors during execution of the numerical computations.

Table 1

EDIT COMMANDS

Command	Variable changed/Execution
ST	Saturated Thickness
P0	Porosity
VX	New Seepage Velocity
RD	Retardation Coefficient
DE	Decay Constant
DX	X-Dispersion Coefficient
DY	Y-Dispersion Coefficient
DZ	Z-Dispersion Coefficient
RT	Source Rate Schedule
ОВ	Observation Points
XC	X-Coordinates
YC	Y-Coordinates
ZC	Z-Coordinates
TC	Observation Times
CS	Change Solution/Sources
MU	Menu of Edit Commands
ri .	List input data
RN	Run
NP	New Problem
DN	Done

SECTION III

APPLICATIONS

The case history of ground-water contamination with hexavalent chromium in South Farmingdale, Nassau County, New York, (Perlmutter and Lieber, 1970), has been used as an example of the application of the two-dimensional plume model. The contaminant plume has been modeled numerically by Pinder (1973) and analytically by Wilson and Miller (1978). Details of the hydrologic system are described in the above references. A brief summary of the problem is presented in the following paragraphs.

The aquifer is assumed to have a saturated thickness of 33.52 m with a porosity of 0.35. Perlmutter and Lieber (1970) estimated the average seepage velocity to be approximately 0.366 m/dy. Using Pinder's (1973) values of dispersivity, $\alpha_{\rm X}$ = 21.3 m and $\alpha_{\rm y}$ = 4.27 m, and x and y dispersion coefficients are

$$D_x = (21.3 \text{ m}) (0.366 \text{ m/dy}) = 7.70 \text{ m}^2/\text{dy}$$

and

$$D_v = (4.27 \text{ m}) (0.366 \text{ m/dy}) = 1.56 \text{ m}^2/\text{dy}$$

The source of contamination consisted of three metal-plating-waste disposal ponds as shown in Figure 6. The mass rate of chromium entering the aquifer has been estimated at 23.6 kg/dy during the nine year period from 1941 through 1949 (Perlmutter and Lieber, 1970). Chromium is believed to be a conservative contaminant, thus absorption and degradation can be neglected. The vertically-averaged model parameters are summarized as follows:

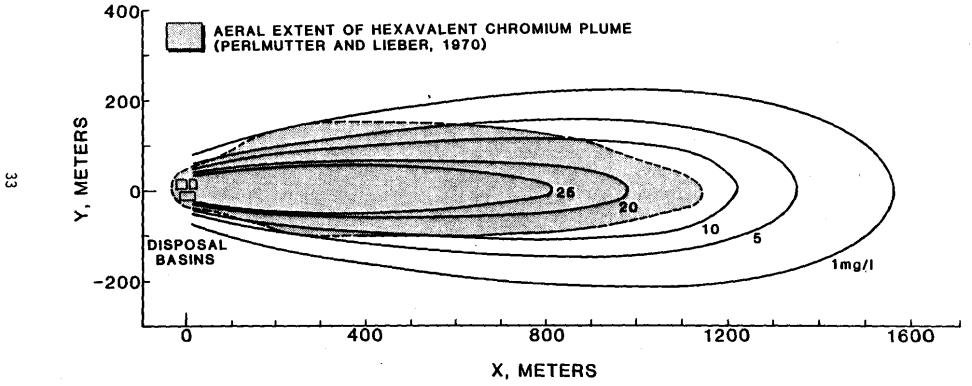


Figure 6. Results of hexavalent chromium plume simulation at 3280 days.

Aquifer porosity 0.35

Seepage velocity 0.366 m/dy

Retardation coefficient 1.0

x-Dispersion coefficient $7.79 \text{ m}^2/\text{dy}$

y-Dispersion coefficient 1.56 m²/dy

Decay constant 0.0 1/dy

The contaminant source rate is assumed to be constant, and only one rate period is required. The mass rate can be converted to units of concentration times volume rate per unit depth as

$$\frac{23.6 \text{ kg}}{\text{dy}} \frac{10^6 \text{ mg}}{\text{kg}} \frac{\text{m}^3}{10^{3_1}} \frac{1}{33.52 \text{ m}} = 704 \text{ (mg/1)} \text{ (m}^3/\text{dy})/\text{m}$$

for approximately nine years or 3280 days.

The numerical results for the vertically-averaged solution are summarized in Figure 6. The shape and general extent of the predicted plume are in fair agreement with the observed extent of contamination considering the availability of field data and the assumptions which have been made in characterizing the problem as two-dimensional uniform flow with a continuous line source.

Superposition in time will be illustrated using data for the aquifer contaminated with chromium described above. Rather than a continuous source of contamination from the disposal ponds, as "accidental spill" of high strength waste will be simulated. The contaminant source will be assumed to be an "instantaneous line source" of strength 704 (mg/1) (m^3/m). The source rate schedule for the vertically-averaged model is constructed as follows:

Rate 1: $704 \text{ (mg/1) (m}^3/\text{dy})/\text{m} \text{ from } 0 \text{ to } 1 \text{ day}$

Rate 2: $0 (mg/1) (m^3/dy)/m$ from 1 to 365 days

Other model parameters are identical to those used in the previous example. The results of the simulation are summarized in Figure 7, which shows the center of mass of the plume moving down-gradient at the seepage velocity and spreading longitudinally and transversely by diffusion.

The results of the simulation using superposition in time were compared with the concentrations calculated using

$$C = \frac{C_0 Q'}{4\pi \theta t (D_x D_y)^{0.5}} EXP \left(-\frac{(x - V^* t)^2}{4D_x t} - \frac{y^2}{4D_y t} - \lambda t\right)$$
 (54)

which is the solution of Equation 14 for an instantaneous line source of strength C_0Q^+ (m/L³) (L³/L). The values of concentration and errors in approximating the instantaneous source through superposition in time are presented in Table 2. Note that the finite duration of the source results is slightly higher concentrations up-gradient from the center of mass than concentrations down-gradient. For an instantaneous source the concentration distribution should be symmetrical about a y-z plane through the center of mass located as x = Vt. A better approximation can be obtained by injecting the same total mass of contaminant over a shorter period of time; but for purposes of illustrating superposition in time, the errors in the example problem are not significant.

The example problems presented above are intended to illustrate the application of the two-dimensional plume models developed in this report.

These models are tools which can aid in the analysis of ground-water contamination problems. The user must select the best tool for the problem at

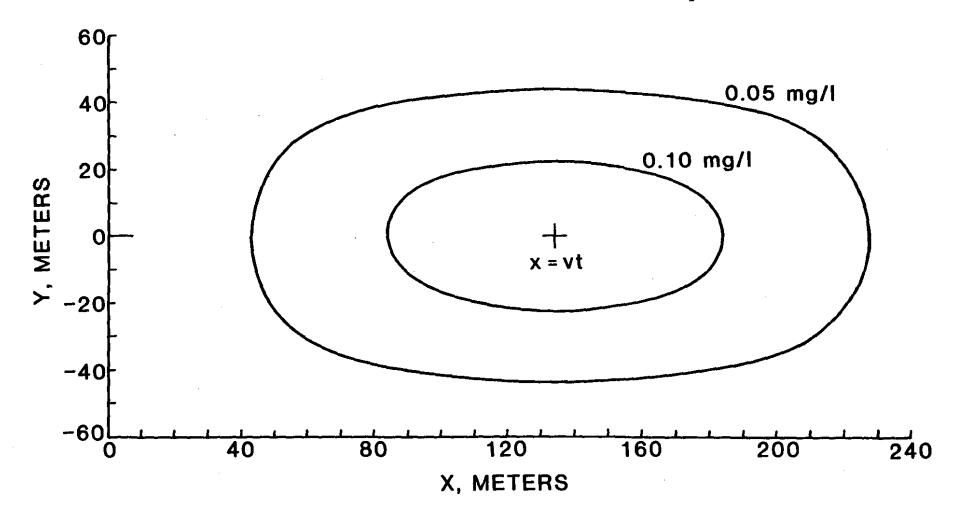


Figure 7. Results of hexavalent chromium spill simulation at 365 days.

hand, based on a sound understanding of the principles of ground-water hydrology, the physical problem, and the limitations of the mathematical model(s).

Perhaps the most difficult step in using any mathematical model is defining the problem to be solved. In addition to developing the physical boundaries of the problem domain, rock and fluid properties must also be quantified. Typical values of aquifer properties are listed in Table 3, but the user must accept the responsibility for developing the required model input data for the specific problem to be solved.

Table 2

COMPARISON OF CONCENTRATIONS CALCULATED USING SUPERPOSITION IN TIME AND AN ANALYTICAL SOLUTION FOR AN INSTANTANEOUS LINE SOURCE

MODEL PARAMETERS

Aquifer Porosity	0.35
Seepage Velocity	0.366 m/dy
Retardation Coefficient	1.0
x-Dispersion Coefficient	7.79 m ² /dy
y-Dispersion Coefficient	$1.56 \text{ m}^2/\text{dy}$
First-Order Decay Constant	0.0 1/dy
Source Strength	704.0 $(mg/1)$ (m^3/m)

Concentration at 365 days, mg/l

Superposition (Equation 54) % Error

			x(meters)		
y (meters)	73.59	103.59	133.59 (= Vt)	163.59	193.59
20.0	0.0919	0.1165	0.1259	0.1163	0.0916
	(.0917)	(.1162)	(.1258)	(.1162)	(.0917)
	.22	.26	.08	.01	11
10.0	0.0878	0.1115	0.1206	0.1113	0.0876
	(.0877)	(.1112)	(.1204)	(.1112)	(.0877)
	.11	.27	.17	.09	11
0.0	0.0771	0.0977	0.1057	0.0975	0.0768
	(.0769)	(.0975)	(.1055)	(.0975)	(.0769)
	.26	.21	.19	.0	13

Table 3

Typical Values of Aquifer Properties

(after Yeh, 1981)

Material

Parameter	C1 ay	Silt	Sand
Bulk density, lb/ft ³	87.36 - 137.2	80.50 - 112.3	73.63 - 98.59
Effective porosity	0.03 - 0.05	0.05 - 0.10	0.10 - 0.30
Hydraulic Conductivity,			
gal/day/ft ²	0.01 - 0.1	1 - 10	100 - 100,000
Dispersivity, ft			
Longitudinal	0.1 - 1.0	1 - 10	10 - 100
Transverse	0.01 - 0.1	0.1 - 1.0	1.0 - 10
Vertical 0.01 - 0.1	0.1 - 1.0	1 - 10	•

REFERENCES

- Abramowitz, M. and I. A. Stegan, 1966, <u>Handbook of Mathematical Functions with</u> Formulas, Graphs, and <u>Mathematical Tables</u>, National Bureau of Standards Applied Mathematics Series 55, U. S. Department of Commerce, 1046 pp.
- Hantush, M. S., 1956, "Analysis of Data from Pumping Tests in Leaky Aquifers," Transitions, American Geophysical Union, Vol. 37, No. 6, pp. 702-714.
- Hantush, M. S., 1964, "Hydraulics of Wells," Advances in Hydroscience, Vol. 1, pp. 281-432.
- Hantush, M. S. and C. E. Jacob, 1955, "Non-Steady Radial Flow in an Infinite Leaky Aquifer," <u>Transitions</u>, <u>American Geophysical Union</u>, Vol. 26., No. 1, pp. 95-100.
- Hunt, B., 1978, "Dispersive Sources in Uniform Ground-Water Flow," <u>Journal of The Hydraulics Division</u>, ASCE, Vol. 104, No. HY1, pp. 75-85.
- Perlmutter, N. M. and M. Lieber, 1970, "Dispersal of Plating Wastes and Sewage Contaminants in Ground Water and Surface Water, South Farmingdale-Massapequa Area, Nassau County, New York," U. S. Geological Survey Water-Supply Paper 1879-G, pp. G1-G67.
- Pinder, G. F., 1973, "A Galerkin Finite Element Simulation of Ground-water Contamination on Long Island," <u>Water Resources Research</u>, Vol. 9, No. 6, pp. 1657-1669.
- Walton, W. C., 1962, "Selected Analytical Methods for Well and Aquifer Evaluation," Bulletin 49, Illinois State Water Survey, Urbana, Illinois, 81 pp.
- Walton, W. C., 1970, <u>Groundwater Resource Evaluation</u>, Mc-Graw-Hill, New York, New York, 664 pp.
- Wilson, J. L. and P. J. Miller, 1978, "Two-Dimensional Plume in Uniform Ground-Water Flow," <u>Journal of the Hydraulics Division</u>, ASCE, Vol. 104, No. HY4, pp. 503-514.
- Wilson, J. L. and P. J. Miller, 1979, "Two-Dimensional Plume in Uniform Ground-Water Flow, Discussion," Journal of the Hydraulics Division, ASCE, Vol. 105, No. HY12, pp. 1567-1570.
- Yeh, G. T., 1981, "AT123D: Analytical Transient One-, Two-, and Three-Dimensional Simulations of Waste Transport in the Aquifer System," Publication No. 1439, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 83 pp.

APPENDIX A

Example Problems

The two example problems presented in the following pages are discussed in Section III of this report. The first demonstrates the application of PLUME2D to a continuous source of contamination. The second example approximates an instantaneous source using the principle of superposition in time as discussed in Section I.

ENTER TITLE ?HEXAVALENT CHROMIUM PLUME

ENTER COORDINATE SYSTEM
XY FOR VERTICALLY-AVERAGED SOLUTION
XZ FOR HORIZONTALLY-AVERAGED SOLUTION
?XY

ENTER UNITS FOR LENGTH (2 CHARACTERS)
? M

ENTER UNITS FOR TIME (2 CHARACTERS) ?DY

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS) ?MG/L

ENTER AQUIFER POROSITY ?0.35

ENTER SEEPAGE VELOCITY, M/DY ?0.366

ENTER RETARDATION COEFFICIENT ?1.0

ENTER X DISPERSION COEFFICIENT, SQ M/DY 27.79

ENTER Y DISPERSION COEFFICIENT, SQ M/DY ?1.56

ENTER DECAY CONSTANT, 1/DY ?0.0

SELECT TRANSIENT OR STEADY-STATE SOLUTION
TR FOR TRANSIENT SOLUTION
SS FOR STEADY-STATE SOLUTION
?TR

ENTER THE NUMBER OF SOURCES (MAXIMUM OF 10) ?1

MASS RATES HAVE UNITS OF (MG/L) (CU M/DY) TIME HAS UNITS OF DY

ENTER X AND Y COORDINATES OF SOURCE 1 (M) ?,?Ø.,Ø.

ENTER THE NUMBER RATES FOR SOURCE 1 (MAXIMUM ØF 10)

SOURCE 1, RATE 1 STARTS AT 0.0 DY ENTER MASS RATE AND ENDING TIME ?,?704.,3280.

ENTER XFIRST, XLAST, DELTAX (M) ?,?,?200.,1200.,200.

ENTER YFIRST, YLAST, DELTAY (M) ?,?,?200.,-200.,50.

ENTER TFIRST, TLAST, DELTAT (DY) ?,?,?3280.,0.,0.

- 13 · · ·

PLUME2D VERSION 2.01 PAGE 1

HEXAVALENT CHROMIUM PLUME

	SEEPAGE VELOCITY, (M/DY) X DISPERSION COEFFICIENT (M**2/DY) Y DISPERSION COEFFICIENT (M**2/DY) POROSITY					
,						1.0000 0.0000
SOUR	CE/RATE SCHE	DULE (MG/L)(CU M/D	Y)		
NO	SOUR X (M)	CE Y (M)	RATE NO	MASS RATE	TIME START	(DY) END
1	Ø.ØØ 6	3. ØØ	1	704.00	0.00	3280.00
	OBSERVATION	POINTS (M)				
	XFIRST = YFIRST =		XLAST = YLAST =		DELY =	
	OBSERVATION	TIMES (DY)				
	TFIRST :	= 3280.00	TLAST =	3280.00	DELT =	0.0000

MENU OF EDIT COMMANDS

RETARDATION COEFFICIENT	RD	OBSERVATION POINTS	OB
POROSITY	PO	X COORDINATES	ХC
SEEPAGE VELOCITY	VX	Y COORDINATES	YC
X DISPERSION COEFFICIENT	DX	MENU OF COMMANDS	MU
Y DISPERSION COEFFICIENT	DY	LIST INPUT DATA	LI
DECAY CONSTANT	DE	RUN CALCULATIONS	RN
SOURCE RATE SCHEDULE	RT	DONE	DN
NEW PROBLEM	NP	SATURATED THICKNESS	ST
CHANGE SOLUTION/SOURCES	CS	OBSERVATION TIMES	TC

ENTER NEXT COMMAND ?RN

PLUME2D VERSION 2.01 PAGE 2

HEXAVALENT CHROMIUM PLUME

CONCENTRATION DISTRIBUTION AT 3280.00 DY (MG/L)

π						
* X(M)						
*	200.00	400.00	600.00	800.00	1000.00	1200.00
Y(M) *						
*						
200.00	.Ø372	.2773	.8210	1.4371	1.6352	1.1380
150.00	.4289	1.8560	3.6177	4.8444	4.7217	3.0238
100.00	4.0806	8.8387	11.3609	11.9818	10.2348	6.1201
50.00	24.5165	25.3968	23.5539	20.9946	16.4014	9.3721
ø.øø	51.8245	37.0664	30.2812	25.3930	19.2190	10.8087
-50.00	24.5165	25.3968	23.5539	20.9946	16.4014	9.3721
-100.00	4.0806	8.8387	11.3609	11.9818	10.2348	6.1201
-150.00	•4289	1.8560	3.6177	4.8444	4.7217	3.0238
-200.00	.Ø372	.2773	.8210	1.4371	1.6352	1.1380

ENTER NEXT COMMAND ?DN

STOP

ENTER TITLE ?ACCIDENTAL HEXAVALENT CHROMIUM SPILL

ENTER COORDINATE SYSTEM
XY FOR VERTICALLY-AVERAGED SOLUTION
XZ FOR HORIZONTALLY-AVERAGED SOLUTION
?XY

ENTER UNITS FOR LENGTH (2 CHARACTERS)? M

ENTER UNITS FOR TIME (2 CHARACTERS)

ENTER UNITS FOR CONCENTRATION (6 CHARACTERS) ?MG/L

ENTER AQUIFER POROSITY ?0.35

ENTER SEEPAGE VELOCITY, M/DY ?0.366

ENTER RETARDATION COEFFICIENT ?1.0

ENTER X DISPERSION COEFFICIENT, SQ M/DY 27.79

ENTER Y DISPERSION COEFFICIENT, SQ M/DY ?1.56

ENTER DECAY CONSTANT, 1/DY ?0.0

SELECT TRANSIENT OR STEADY-STATE SOLUTION
TR FOR TRANSIENT SOLUTION
SS FOR STEADY-STATE SOLUTION
?TR

ENTER THE NUMBER OF SOURCES (MAXIMUM OF 10)

MASS RATES HAVE UNITS OF (MG/L) (CU M/DY)
TIME HAS UNITS OF DY

ENTER X AND Y COORDINATES OF SOURCE 1 (M) ?,?0.,0.

ENTER THE NUMBER RATES FOR SOURCE 1 (MAXIMUM ØF 10)

SOURCE 1, RATE 1 STARTS AT 0.0 DY ENTER MASS RATE AND ENDING TIME ?,?704.,1.

SOURCE 1, RATE 2 STARTS AT 1.0 DY ENTER MASS RATE AND ENDING TIME ?,?0.,365.

ENTER XFIRST, XLAST, DELTAX (M) ?,?,?73.59,193.59,30.

ENTER YFIRST, YLAST, DELTAY (M) ?,?,?20.,0.,10.

ENTER TFIRST, TLAST, DELTAT (DY) ?,?,?365.,0.,0.

PLUME2D VERSION 2.01 PAGE 1

ACCIDENTAL HEXAVALENT CHROMIUM SPILL

	SEEPAGE VE X DISPERSI Y DISPERSI POROSITY	ON COE	FFICIEN'	r (M**2/D			.366Ø 7.79ØØ 1.56ØØ .35ØØ
	RETARDATION FIRST ORDE			ANT (1/DY)			1.0000 0.0000
SOUF	RCE/RATE SCH	EDULE	(MG/L)(CU M/D	Y)		
МО	X (M)	RCE Y (M)	RATE NO	MASS RATE	TIME START	(DY) END
1	Ø . ØØ	0.00		1 2	704.00 Ø.00	Ø.ØØ 1.ØØ	1.ØØ 365.ØØ
	OBSERVATIO	N POIN	TS (M)				
	XFIRST YFIRST		73.59 20.00	XLAST = YLAST =	193.59 Ø.ØØ	DELX =	
	OBSERVATIO	N TIME	S (DY)				
	TFIRST	=	365.00	TLAST =	365.00	DELT =	0.0000

MENU OF EDIT COMMANDS

RETARDATION COEFFICIENT	RD	OBSERVATION POINTS	ОВ
POROSITY	PO	X COORDINATES	XC
SEEPAGE VELOCITY	VX	Y COORDINATES	YC
X DISPERSION COEFFICIENT	DX	MENU OF COMMANDS	MU
Y DISPERSION COEFFICIENT	DY	LIST INPUT DATA	LI
DECAY CONSTANT	DE	RUN CALCULATIONS	RN
SOURCE RATE SCHEDULE	RT	DONE	DN
NEW PROBLEM	NP	SATURATED THICKNESS	ST
CHANGE SOLUTION/SOURCES	CS	OBSERVATION TIMES	TC

ENTER NEXT COMMAND ?RN

PLUME2D VERSION 2.01 PAGE 2

ACCIDENTAL HEXAVALENT CHROMIUM SPILL

CONCENTRATION DISTRIBUTION AT 365.00 DY (MG/L)

X(M) 73.59 103.59 133.59 163.59 193.59 Y(M) * 20.00 .Ø771 .0977 .1Ø56 .0975 .Ø768 · 10.00 .Ø879 .1115 .12Ø4 .1113 .0876 .0919 $\emptyset.\emptyset\emptyset$.1165 .1260 .1163 .0916

ENTER NEXT COMMAND ?XC

ENTER XFIRST, XLAST, DELTAX (M) ?,?,?103.59,163.59,15.

ENTER NEXT COMMAND ?RN

PLUME2D VERSION 2.01 PAGE 3

ACCIDENTAL HEXAVALENT CHROMIUM SPILL

CONCENTRATION DISTRIBUTION AT 365.00 DY (MG/L)

* X(M)	103.59	118.59	133.59	148.59	163.59
Y(M) *					
20.00	.0977	.1036	.1Ø56	.1035	.0975
10.00	.1115	.1183	.1204	.1181	.1113
0.00	.1165	.1236	.1260	.1234	.1163

ENTER NEXT COMMAND ?DN

STOP

APPENDIX B

Description of Program PLUME2D

Program PLUME2D has been written in an unextended Fortran computer code in an effort to make the program transportable between computer systems. The computer code consists of a main program and several function subroutines which are required to evaluate the Hantush well function. The program has been documented "internally" through the liberal use of comment statements.

The main program has been divided into three sections. A listing of the computer code is presented in Appendix D. Section I provides for the "Basic Input Data" as described in Section II of this report. The numerical evaluation of concentration at specified grid coordinates is accomplished in Section II of the main program which calls subroutine SOL2D, the code for the analytical solution of the governing differential equations. Section III provides for problem redefinition and control of execution under the "Edit" mode discussed in the body of this report.

Ten function subroutines are used to evaluate the Hantush well function using the numerical methods described in Appendix C. Listings of the computer codes are presented in Appendix E. FUNCTION W(U,B) evaluates the Hantush well function for B < 20. For B > 20, the term $EXP(Pe_X/2)$ W(U,B) in Equation 45 is evaluated using FUNCTION WELPRD(U,B,PEX). This procedure is used to avoid taking the direct product of very large numbers, $EXP(Pe_X/2)$, and very small numbers W(U,B), for large values of B.

FUNCTION GAUSS is a 24-point Gauss-Legendre quadrature numerical integration scheme which is used to evaluate the Hantush well function using either Equation C-6 or Equation C-7. FUNCTION FUNCTN evaluates the integrand of Equations C-6 and C-7.

The six remaining function subroutines are used to evaluate mathematical functions using rational approximations or polynomial approximations. They are:

FUNCTION BIO(Z) FUNCTION BIOLOG(Z)	Modified Bessel function of the first kind of order zero and the natural logarithm of the function.
FUNCTION BKO(Z) FUNCTION BKOLOG(Z)	Modified Bessel function of the second kind of order zero and the natural logarithm of the function.

FUNCTION E1LOG(Z) Natural logrithm of the exponential integral.

FUNCTION ERFC(Z) Complimentary error function.

These six function subroutines are used to support FUNCTION W(U,B) and/or FUNCTION WELPRD (U,B,PEX). If system subroutines are available for these functions they may be substituted for the function subroutines provided with Program PLUME2D.

APPENDIX C

Numerical Evaluation of the Hantush Well Function

The Hantush well function can be defined as

$$W(U,B) = \int_{U}^{\infty} \frac{1}{\xi} EXP(-\xi - \frac{B^2}{4\xi}) d\xi$$
 (C-1)

or the reciprocal relation

$$W(U,B) = 2K_0(B) - \int_{B^2/4U}^{\infty} \frac{1}{\xi} EXP(-\xi - \frac{B^2}{4\xi}) d\xi$$
 (C-2)

where ξ is a dummy integration variable (Hantush, 1964). Using the identity

$$\int_{a}^{\infty} f(\xi) d\xi = \int_{0}^{\infty} f(\xi) d\xi - \int_{0}^{a} f(\xi) d\xi$$
 (C-3)

Equation C-1 can be rewritten as

$$W(U,B) = \int_0^\infty \frac{1}{\varepsilon} EXP(-\varepsilon - \frac{B^2}{4\varepsilon}) d\varepsilon - \int_0^u \frac{1}{\varepsilon} (-\varepsilon - \frac{B^2}{4\varepsilon}) d\varepsilon \qquad (C-4)$$

Now

$$\int_0^\infty \frac{1}{\xi} \, \mathsf{EXP} \left(-\xi - \frac{\mathsf{B}^2}{4\xi} \right) \, \mathrm{d}\xi = 2\mathsf{K}_0(\mathsf{B}) \tag{C-5}$$

where K_0 is the modified Bessel function of the second kind of order zero. Substituting Equation C-5 into Equation C-4, the well function becomes

$$W(U,B) = 2K_0(B) - \int_0^u \frac{1}{\xi} EXP(-\xi - \frac{B^2}{4\xi}) d\xi$$
 (C-6)

The reciprocal relation, Equation C-2, can also be written in terms of finite limits. Using the relationship given by Equations C-4 and C-5, the reciprocal relation can be expressed as

$$W(U,B) = \int_{0}^{B^{2}/4U} \frac{1}{\xi} EXP(-\xi - \frac{B^{2}}{4\xi}) d\xi$$
 (C-7)

For 0 < B < 20, values of W(U,B) for 0 < U < B/2 are obtained from Equation C-6 by first evaluating the value of the integrand using a 24-point Gauss-Legendre numerical integration scheme. For $B/2 < U < \infty$, the reciprocal relation, Equation C-7, is evaluated using the same numerical integration scheme.

For 0 < B < 0.1, values of W(U,B) are obtained from the series expansions presented by Hantush and Jacob (1955). For U < 1

$$W(U,B) = 2K_0(B) - I_0(B)E_1(\frac{B^2}{4U})$$

$$+ EXP(-\frac{B^2}{4U}) \left[0.57721566 + ln(U) + E_1(U) + \frac{U}{4} \frac{B^2}{4} (1 - \frac{U}{9}) \right]$$
 (C-8)

and for U > 1

$$W(U,B) = I_0(B)E_1(U) - EXP(-U) \frac{B^2}{4} \left[\left(\frac{1}{U} - \frac{1}{36U^2} \right) + \frac{B^4}{16} \left(\frac{1}{4U} - \frac{1}{4U^2} \right) \right]$$
(C-9)

where ${\rm I}_{\rm O}$ is the modified Bessel function of the first kind of order zero, ${\rm E}_{\rm 1}$ is the exponential integral, and 0.57721566 is Euler's constant.

For B > 20, the third order approximation for W(U,B) presented by Wilson and Miller (1979) is used to evaluate the well function. The approximation is

$$W(U,B) = \left(\frac{\pi}{2B}\right)^{1/2} EXP(-B) \left[\left(1 - \frac{1}{8B}\right) ERFC (-\beta) + \frac{\beta}{4B\pi^{1/2}} EXP(-\beta^2) \right]$$
 (C-10)

where

$$\beta = \frac{B-2U}{(4U)^{1/2}}$$

and ERFC is the complimentary error function.

Now, for large positive values of β ,

$$W(U,B) \simeq 2 \left(\frac{\pi}{2B}\right)^{1/2} EXP(-B) \left(1 - \frac{1}{8B}\right)$$
 (C-11)

and an asympotic expansion for $K_{\mathbf{O}}(\mathbf{B})$ can be written as

$$K_0(B) = \left(\frac{\pi}{2B}\right)^{1/2} EXP(-B) \left(1 - \frac{1}{8B} + \frac{9}{2(8B)^2} + \ldots\right)$$
 (C-12)

Thus for B > 20 and β > 7.5 the well function is approximated as

$$W(U,B) = 2K_O(B) \tag{C-13}$$

Note that this approximation is equivalent to the relationship

$$W(0,B) = 2K_0(B)$$
 (C-14)

Evaluations of the Hantush well function using the methods described in the previous paragraphs have been checked for both accuracy and continuity of the function between the various approximations. The Gauss-Legendre quadrature scheme was checked using up to 48 quadrature points. A maximum of 24 quadrature points yielded results accurate to four significant figures in the mantissa over the entire range of arguments which require numerical integration. The other approximations for W(U,B) are also accurate to four significant figures in the mantissa.

APPENDIX D
Listing of Program PLUME2D

```
PLUME2D
                                                                                PL2D001
      VERSION 2.02
                                                                                PL20002
      TWO-DIMENSIONAL PLUMES IN UNIFORM GROUND-WATER FLOW
С
                                                                                PL2D003
C
          JAN WAGNER
                                                                                PL2D004
          SCHOOL OF CHEMICAL ENGINEERING
С
                                                                                PL2D005
         OKLAHOMA STATE UNIVERSITY
C
                                                                                PL2D006
С
         STILLWATER, OK 74078
                                                                                PL2D007
         PHONE (405) 624-5280
С
                                                                                PL2D008
С
         JULY, 1981
                                                                                PL2D009
                                                                                PL2D010
С
      REVISIONS:
                    2.00
                               APR 84
                                                                                PL2D011
Ç
С
                     2.01
                            24 NOV 84
                                                                                PL2D012
                     2.02
                             9 DEC 84
                                                                                PL2D013
C
                                                                                PL2D014
      DIMENSION TITLE(30), IC(20), XS(10), YS(10), D(3), LBL(2,6),
                                                                                PL2D015
     1 NR(10), IS(4), NP(2), DEL(2), XL(2), XF(2), CON(7), COL(7)
                                                                                PL20016
      REAL LAMBDA
                                                                                PL2D017
      INTEGER TITLE
                                                                                PL2D018
      COMMON/IO/NI.NO
                                                                                PL2D019
      COMMON/RATE/Q(10,12),T(10,12),MT
                                                                                PL20020
      COMMON/PHYPRO/ALPHA.BETA.DX, LAMBDA.PE.RD.V
                                                                                PL2D021
     DATA IC/'DE','VX','RD','DX','DY','DZ','PO','OB','XC','YG','ZC',
1'RT','NP','RN','DN','LI','MU','ST','C$','TC'/
DATA KPRO1/'XY'/, KPRO2/'XZ'/, KHARY/'Y'/, KHARZ/'Z'/
                                                                                PL2D022
                                                                                PL2D023
                                                                                PL2D024
      DATA NPAGE/1/
                                                                                PL2D025
      DATA KSOL1, KSOL2/'TR', 'SS'/
                                                                                PL2D026
      DATA IS/'R','M','A','D'/
DATA IY/'Y'/
                                                                                PL2D027
                                                                                PL2D028
      DATA LBL/'
                   ','(C',' ','ON',' ','TI',' ','NU',' ','ED',
                                                                                PL2D029
                                                                                PL2D030
С
                                                                                PL2D031
      READ DEVICE: NI WRITE DEVICE: NO
                                                                                PL2D032
C
      NI = 5
                                                                                PL2D033
      N0=6
                                                                                PL2D034
C
                                                                                PL20035
       MAXIMUM NUMBER OF PRINTED COLUMNS PER PAGE IS SET TO MAXCOL
C
                                                                                PL2D036
¢
         DIMENSION COL(MAXCOL), CON(MAXCOL)
                                                                                PL2D037
                                                                                PL2D038
C
                                                                                PL20039
      MAXIMUM NUMBER OF PRINTED ROWS PER PAGE IS SET TO MAXROW
                                                                                PL2D040
C
      MAXROW = 40
                                                                                PL2D041
С
                                                                                PL2D042
       MAXIMUM NUMBER OF SOURCES IS SET TO MAXSOR
                                                                                PL2D043
         DIMENSION XS(MAXSOR), YS(MAXSOR), NR(MAXSOR)
C
                                                                                PL2D044
                                                                                PL2D045
       MAXSOR = 10
C
                                                                                PL20046
С
       MAXIMUM NUMBER OF SOURCE RATES FOR SUPERPOSITION IN TIME
                                                                                PL2D047
       IS SET TO MAXRT
                                                                                PL2D048
С
C
          COMMON/RATE/ Q(MAXSOR, MAXRT+2), T(MAXSOR, MAXRT+2)
                                                                                PL2D049
                                                                                PL2D050
C
                                                                                PL2D051
       MAXIMUM NUMBER OF IMAGE WELLS FOR SUPERPOSITION IN SPACE
С
                                                                                PL2D052
       IS SET TO MAXIMG
                                                                                PL2D053
С
       MAXIMG = 20
                                                                                PL2D054
C
                                                                                PL2D055
                                                                                PL2D056
                                                                                PL2D057
С
       INITIALIZE PROGRAM FLOW CONTROL VARIABLES
                                                                                PL2D058
С
     1 IEDIT = 1
                                                                                PL2D059
      KNTL = 1
                                                                                PL2D060
С
                                                                                PL2D061
                                                                                PL2D062
C **** SECTION I -- BASIC INPUT DATA
                                                                                PL2D063
                                                                                PL2D064
С
       READ TITLE
                                                                                PL2D065
       WRITE(NO,3)
                                                                                PL2D066
    3 FORMAT(1H1.2X, 'ENTER TITLE', /'
                                          ?')
                                                                                PL2D067
       READ(NI,5) (TITLE(I), I=1,30)
                                                                                PL2D068
     5 FORMAT(30A2)
                                                                                PL2D069
C
                                                                                PL2D070
```

```
С
      SELECT VERTICALLY OR HORIZONTALLLY AVERAGED SOLUTION
                                                                            PL20071
      KFLOW = 3
                                                                            PL2D072
      WRITE(NO,7)
                                                                            PL2D073
    7 FORMAT(3X, 'ENTER COORDINATE SYSTEM',/,
                                                                            PL2D074
     16X,'XY FOR VERTICALLY-AVERAGED SOLUTION',/.
                                                                            PL20075
     26X.'XZ FOR HORIZONTALLY-AVERAGED SOLUTION'./.'
                                                                            PL2D076
                                                                            PL2D077
    8 READ(NI,9) KNTL
    9 FORMAT(A2)
                                                                            PL2D078
      IF(KNTL.EQ.KPRO1) KFLOW=1
                                                                            PL2D079
      IF(KNTL.EQ.KPRO2) KFLOW=2
                                                                            PL2D080
      GO TO (12,12,10), KFLOW
                                                                            PL2D081
   10 WRITE(NO, 11)
                                                                            PL2D082
   11 FORMAT(3X, 'ERROR IN PROBLEM SELECTION -- REENTER'./.'
                                                                ?')
                                                                            PL2D083
      GO TO 8
                                                                            PL2D084
   12 CONTINUE
                                                                            PL2D085
      KHAR = KHARY
                                                                            PL2D086
      IF(KFLOW.EQ.2) KHAR=KHARZ
                                                                            PL20087
C
                                                                            PL2D088
      DEFINE UNITS
                                                                            PL2D089
      WRITE(NO. 15)
                                                                            PL2D090
   15 FORMAT(3X, 'ENTER UNITS FOR LENGTH (2 CHARACTERS)',/,'
                                                                            PL2D091
      READ(NI,25) IL
                                                                            PL2D092
   25 FORMAT(A2)
                                                                            PL2D093
      WRITE(NO.35)
                                                                            PL2D094
   35 FORMAT(3X, 'ENTER UNITS FOR TIME (2 CHARACTERS)',/,'
                                                                           - PL2D095
      READ(NI,25) IT
                                                                            PL2D096
                                                                            PL2D097
      WRITE(NO.45)
   45 FORMAT(3X, 'ENTER UNITS FOR CONCENTRATION (6 CHARACTERS)',/,'
                                                                        ?') PL2D098
      READ(NI, 26) IM1, IM2, IM3
                                                                            PL2D099
   26 FORMAT(3A2)
                                                                            PL20100
C
                                                                            PL2D101
C
      ENTER DATA FOR FIRST PROBLEM
                                                                            PL2D102
С
                                                                            PL2D103
С
      SATURATED THICKNESS
                                                                            PL2D104
      IF(KFLOW.EQ.1)GO TO 38
                                                                            PL2D105
   30 IMAGE = MAXIMG/2
                                                                            PL2D106
   44 WRITE(NO,46) IL
                                                                            PL2D107
   46 FORMAT(3X, 'ENTER SATURATED THICKNESS (O FOR INFINITE THICKNESS), ' PL2D108
               ?')
                                                                            PL2D109
     142,/,/
   36 .READ(NI, 37, ERR=44) ST
                                                                            PL2D110
   37 FORMAT(F10.0)
                                                                            PL2D111
      IF(ST.GT.O.O) GO TO 39
                                                                            PL2D112
   38 IMAGE = 1
                                                                            PL2D113
      ST = 1.0E32
                                                                            PL2D114
   39 CONTINUE
                                                                            PL2D115
      GO TO (50,400), IEDIT
                                                                            P1.2D116
                                                                            PL2D117
      POROSITY
                                                                            PL2D118
   50 WRITE(NO,55)
                                                                            PL2D119
   55 FORMAT(3X, 'ENTER AQUIFER POROSITY', /, ' ?')
                                                                            PL2D120
      READ(NI,56,ERR=50) P
                                                                            PL2D121
   56 FORMAT(F10.0)
                                                                            PL2D122
   57 IF(P.GT.O.O.AND.P.LT.1.0) GO TO 59
                                                                            PL2D123
   54 WRITE(NO,58)
                                                                            PL2D124
   58 FORMAT(3X, 'POROSITY MUST BE GREATER THAN ZERO'.
                                                                            PL2D125
     1' AND LESS THAN ONE -- REENTER',/,'
                                             2')
                                                                            PL2D126
      READ(NI,56,ERR=54) P
                                                                            PL2D127
      GO TO 57
                                                                            PL2D128
   59 GO TO (60,400), IEDIT
                                                                            PL2D129
                                                                            PL2D130
      SEEPAGE VELOCITY
                                                                            PL20131
   60 WRITE(NO,65) IL.IT
                                                                            PL2D132
   65 FORMAT(3X, ENTER SEEPAGE VELOCITY, 'A2,'/',A2,/,' ?')
                                                                            PL2D133
      READ(NI,56,ERR=60) V
                                                                            PL2D134
   66 IF(V.GT.O.O) GO TO 69
                                                                            PL2D135
   64 WRITE(NO.67)
                                                                            PL2D136
   67 FORMAT(3X, 'SEEPAGE VELOCITY MUST BE GREATER THAN ZERO'.
                                                                            PL2D137
      1' -- REENTER',/,' ?')
                                                                            PL2D138
      READ(NI,56,ERR=64) V
                                                                            PL2D139
      GO TO 66
                                                                            PL2D140
```

```
69 GO TO (70,400), IEDIT
                                                                             PL2D141
С
                                                                             PL2D142
      RETARDATION COEFFICIENT
                                                                             PL2D143
   70 WRITE(NO,75)
                                                                             PL2D144
   75 FORMAT(3X, 'ENTER RETARDATION COEFFICIENT',/,' ?')
                                                                             PL2D145
      READ(NI,56,ERR=70) RD
                                                                             PL2D146
   76 IF(RD,GE.1.0) GO TO 79
                                                                             PL20147
                                                                            PL2D148
   74 WRITE(NO,77)
   77 FORMAT(3X, 'RETARDATION COEFFICIENT MUST BE GREATER THAN OR',
                                                                             PL2D149
       ' EQUAL TO ONE',/,' -- REENTER',/,' ?')
                                                                            PL2D150
      READ(NI, 56, ERR=74) RD
                                                                            PL20151
      GO TO 76
                                                                            PL2D152
   79 GD TO (80,400), IEDIT
                                                                             PL2D153
С
                                                                            PL2D154
      X DISPERSION COEFFICIENT
                                                                             PL2D155
   80 WRITE(NO,81) IL,IT
                                                                            PL2D156
   81 FORMAT(3X, 'ENTER X DISPERSION COEFFICIENT, SQ ',A2, 1'/',A2,/.' ?')
                                                                            PL2D157
                                                                            PL2D158
   82 READ(NI.56.ERR=80) DX
                                                                            PL2D159
      IF(DX.GT.O.O) GO TO 85
                                                                            PL2D160
      WRITE(NO.83)
                                                                            PL2D161
   83 FORMAT(3X,'X DISPERSION COEFFICIENT MUST BE GREATER THAN ZERO',
                                                                            PL2D162
     1' -- REENTER',/,' ?')
                                                                            PL2D163
      GO TO 82
                                                                            PL2D164
   85 GD TO (86,400), IEDIT
                                                                            PL2D165
С
                                                                            PL20166
      Y OR Z DISPERSION COEFFICIENT
                                                                            PL2D167
   86 WRITE(NO.87) KHAR, IL, IT
                                                                            PL2D168
   87 FORMAT(3X, 'ENTER '.A1,' DISPERSION COEFFICIENT, SQ '.A2, 1'/',A2,/.' ?')
                                                                            PL20169
                                                                            PL2D170
   88 READ(NI.56.ERR=86) DY
                                                                            PL2D171
      IF(DY.GT.O.O) GD TO 90
                                                                            PL20172
       WRITE(NO,89) KHAR
                                                                            PL2D173
   89 FORMAT(3X,A1,' DISPERSION COEFFICIENT MUST BE GREATER THAN ZERO'.
                                                                            PL2D174
       -- REENTER',/,' ?')
                                                                            PL2D175
      GO TO 88
                                                                            PL2D176
   90 GO TO (91,400), IEDIT
                                                                            PL2D177
С
                                                                            PL2D178
      FIRST-ORDER DECAY CONSTANT
                                                                            PL2D179
   91 WRITE(NO,95) IT
                                                                            PL2D180
   95 FORMAT(3X, 'ENTER DECAY CONSTANT, 1/',A2,/,' ?')
                                                                            PL2D181
      READ(NI,56,ERR=91) DECAY
                                                                            PL2D182
      GO TO (1320,400), IEDIT
                                                                            PL2D183
C
                                                                            PL2D184
      SOURCE RATE SCHEDULE
                                                                            PI 20185
C
C
                                                                            PL2D186
¢
                                                                            PL2D187
      DEFINE LOCATIONS AND RATES OF SOURCES
C
                                                                            PL2D188
      INITIALIZE SOURCE/RATE ARRAYS
                                                                            PL2D189
 1320 MAXRT2 = MAXRT + 2
                                                                            PL2D190
      DO 1330 I=1, MAXSOR
                                                                            PL2D191
        DO 1330 J=1,MAXRT2
                                                                            PL2D192
            Q(I,J) = 0.0
                                                                            PL2D193
                                                                            PL2D194
            T(I,J) = 0.0
 1330 CONTINUE
                                                                            PL2D195
                                                                            PL2D196
      JFLOW = 3
 1340 WRITE(NO. 1345)
                                                                            PL2D197
 1345 FORMAT(3X, 'SELECT TRANSIENT OR STEADY-STATE SOLUTION', /,

    PL2D198

     16X, 'TR FOR TRANSIENT SOLUTION',/,
                                                                            PL2D199
     26X, 'SS FOR STEADY-STATE SOLUTION', /, ' ?')
                                                                            PL2D200
 1350 READ(NI,25) KSOL
                                                                            PL2D201
       IF(KSQL.EQ.KSQL1) JFLQW=1
                                                                            PL2D202
       IF(KSOL.EQ.KSOL2) JFLOW=2
                                                                            PL2D203
       GD TO (1370,1370,1360), JFLOW
                                                                            PL 20204
 1360 WRITE(NO, 1365)
                                                                            PL2D205
 1365 FORMAT(3X, 'ERROR IN SELECTION -- REENTER'/,' ?')
                                                                            PL2D206
      GD TO 1350
                                                                            PL2D207
                                                                            PL2D208
 1370 WRITE(NO.1375) MAXSOR
                                                                            PL2D209
 1375 FORMAT(3X, 'ENTER THE NUMBER OF SOURCES (MAXIMUM OF', 13, ' )',/,
                                                                            PL2D210
```

```
PL2D211
1380 READ(NI, 1385, ERR=1370) FDUM
                                                                                   PL2D212
1385 FORMAT(F10.0)
                                                                                   PL2D213
     NS=FDUM
                                                                                   PL20214
     IF(NS.GT.O.AND.NS.LE.MAXSOR) GD TD 1400
                                                                                   PL2D215
     WRITE(NO, 1395) MAXSOR
                                                                                   PL2D216
1395 FORMAT(3X, 'NUMBER OF SOURCES MUST BE GREATER THAN ZERO '
                                                                                   PL2D217
    1'AND LESS THAN', 13,' -- REENTER', /,' ?')
                                                                                   PL2D218
     GD TO 1380
                                                                                   PL2D219
1400 WRITE (NO, 1405) IM1, IM2, IM3, IL, IT, IL, IT
                                                                                   PL20220
1405 FORMAT(3X, 'MASS RATES HAVE UNITS OF (',3A2,') (CU ',A2,'/',A2, 1')/',A2,/,3X,'TIME HAS UNITS OF ',A2,/)
                                                                                   PL2D221
                                                                                   PL2D222
     DO 1540 I=1.NS
                                                                                   PL2D223
     IF(KFLOW.EQ.2) GO TO 1414
1406 WRITE(NO, 1410) I,IL
                                                                                   PL2D225
1410 FORMAT(3X, 'ENTER X AND Y COORDINATES OF SOURCE', 12, 1' (', A2, ')', /, ' ?,?')
                                                                                   PL2D226
     READ(NI, 1425, ERR=1406) XS(I), YS(I)
                                                                                   PL2D228
     GD TO 1440
                                                                                   PL2D229
1414 WRITE(NO.1415) I.IL
1415 FORMAT(3X, 'ENTER X AND Z COORDINATES OF SOURCE',12,
                                                                                   PL2D231
    1' (',A2,')',/,' ?,?')
                                                                                   PL2D232
     READ(NI, 1425, ERR=1414) XS(I), YS(I)
1425 FORMAT(2F10.0)
                                                                                   PL2D234
1430 IF(YS(I).GE.O.O.AND.YS(I).LE.ST) GD TO 1440
                                                                                   PL2D235
1434 WRITE(NO.1435) ST, IL
1435 FORMAT(3X, 'Z-COORDINATE MUST BE GREATER THAN OR EQUAL TO ZERO'.
                                                                                   PL2D237
    1' AND',/,3X,'LESS THAN OR EQUAL TO SATURATED THICKNESS ('. 2F10.4.A3,')',/,3X,' -- REENTER',/,' ?')
                                                                                   PL2D238
                                                                                   PL2D239
     READ(NI, 37, ERR=1434) YS(I)
                                                                                   PL2D240
     GD TD 1430
                                                                                   PL2D241
1440 IF(JFLDW.EQ.2) GD TD 1530
                                                                                   PL2D242
     Q(I,1) = 0.0
                                                                                   PL2D243
     T(I,1) = 0.0
                                                                                   PL2D244
1450 WRITE(NO, 1455) I, MAXRT
                                                                                   PL2D245
1455 FORMAT(3X,'ENTER THE NUMBER RATES FOR SOURCE', I2.

1' (MAXIMUM OF', I3,')', /,' ?')

1460 READ(NI, 1465, ERR=1450) FDUM
                                                                                   PL2D246
                                                                                   PL2D247
                                                                                   PL20248
1465 FORMAT(F10.0)
                                                                                   PL2D249
     NR(I)=FDUM
                                                                                   PL2D250
     IF(NR(I).GT.O.AND.NR(I).LE.MAXRT) GO TO 1480
     WRITE(NO.1475) MAXRT
                                                                                   PL2D252
1475 FORMAT(3X, 'NUMBER OF RATES MUST BE GREATER THAN ZERO AND '.
                                                                                   PL2D253
    1'LESS THAN', I3,' -- REENTER', /,' ?')
                                                                                   PL2D254
     GO TO 1460
                                                                                   PL2D255
1480 CONTINUE
                                                                                   PL2D256
     NRT = NR(I)
     DD 1520 J=1,NRT
M = J + 1
                                                                                   PL2D258
                                                                                   PL2D259
         WRITE(NO, 1485) I, J, T(I, M-1), IT
         FORMAT(3X, 'SOURCE '.I2.', RATE '.I2,' STARTS AT', F8.1,A3,/, 3X, 'ENTER MASS RATE AND ENDING TIME './,' ?,?')
READ(NI, 1495, ERR=1484) Q(I, M), T(I, M)
                                                                                   PL2D261
1485
                                                                                   PL2D262
                                                                                   PL20264
1495
         FORMAT(2F10.0)
         IF(T(I,M).GT.T(I,M-1)) GO TO 1510
1500
                                                                                   PL2D265
1504
         WRITE(NO, 1505)
1505
         FORMAT(3X, 'ENDING TIME MUST BE GREATER THAN STARTING TIME '
                                                                                   PL2D267
         ' -- REENTER',/,' ?')
                                                                                   PL2D268
         READ(NI, 37, ERR=1504) T(I, M)
                                                                                   PL2D269
         GO TO 1500
                                                                                   PL2D270
1510
         CONTINUE
                                                                                   PL2D271
1520 CONTINUE
                                                                                   PL2D272
      GO TO 1540
                                                                                   PL2D273
1530 WRITE(NO.1535) I
                                                                                   PL2D274
1535 FORMAT(3X, 'ENTER STEADY-STATE MASS RATE', 12, /, '
                                                               2')
                                                                                   PL20275
      READ(NI, 37, ERR=1530) Q(I, 1)
                                                                                   PL2D276
      NR(I) = 0
                                                                                   PL2D277
1540 CONTINUE
                                                                                   PL2D278
      IF(IEDIT.EQ.2.AND.JFLOW.EQ.1.AND.TF.LE.1.0E-06) GO TO 720
                                                                                   PL2D279
 123 GO TO (124,400), IEDIT
                                                                                   PL2D280
```

```
PL2D281
      COORDINATES OF THE OBSERVATION POINTS
                                                                             PL2D282
  124 WRITE(NO, 125) IL
                                                                             PL2D283
  125 FORMAT(3X, 'ENTER XFIRST, XLAST, DELTAX ('.A2,')' ,/,' ?.?.?')
                                                                            PL2D284
      READ(NI, 126, ERR=124) XF(1), XL(1), DEL(1)
                                                                             PL20285
  126 FORMAT(3F10.0)
                                                                            PL2D286
      DEL(1) = ABS(DEL(1))
                                                                            PL2D287
      IF(DEL(1), LE.1.0E-06) XL(1)=XF(1)
                                                                             PL2D288
                                                                             PL2D289
      IF(KNTL.LE.O) GD TO 400
  133 IF(KFLOW.EQ.2) GO TO 136
                                                                             PL2D290
  134 WRITE(NO, 135) IL
                                                                             PL2D291
  135 FORMAT(3X, 'ENTER YFIRST, YLAST, DELTAY (',A2,')',/,'
                                                                ?,?,?')
                                                                            PL2D292
      READ(NI, 126, ERR=134) XF(2), XL(2), DEL(2)
                                                                            PL2D293
      DEL(2) = ABS(DEL(2))
                                                                            PL2D294
      IF(DEL(2).LE.1.OE-O6) \times L(2)=XF(2)
                                                                            PL 2D295
      GD TO 145
                                                                            PL2D296
  136 WRITE(NO. 137) IL
                                                                            PL2D297
  137 FORMAT(3X, 'ENTER ZFIRST, ZLAST, DELTAZ (',A2,')',/,'
                                                                ?,?,?').
                                                                            Pt.20298
                                                                            PL2D299
      READ(NI, 126, ERR=136) XF(2), XL(2), DEL(2)
      DEL(2) = ABS(DEL(2))
  138 IF(XF(2).GE.O.O.AND.DEL(2).LE.1.OE-06) GO TO 144
                                                                            PL2D301
      IF(XF(2).GE.O.O.AND.XF(2).LE.ST) GO TO 142
                                                                            PL2D302
      WRITE(NO, 139)
                                                                            PL2D303
  139 FORMAT(3X, 'ZFIRST MUST BE GREATER THAN OR EQUAL TO ZERO')
                                                                            PL2D304
      IF(IMAGE.GT.1) WRITE(NO,140) ST,IL
                                                                            PL2D305
  140 FORMAT(3X, ' AND LESS THAN OR EQUAL TO SATURATED THICKNESS
                                                                            PL2D306
     1 (',F10.4,A3,')')
                                                                            PL2D307
  130 WRITE(NO, 141)
                                                                            PL2D308
  141 FORMAT(3X,' -- REENTER',/,'
                                                                            PL2D309
      READ(NI,56,ERR+130) XF(2)
                                                                            PL2D310
      GO TO 138
                                                                            PL20311
  142 IF(XL(2).GE.O.O.AND.XL(2).LE.ST) GO TO 145
                                                                            PL2D312
      WRITE(NO, 143)
                                                                            PL2D313
  143 FORMAT(3X, 'ZLAST MUST BE GREATER THAN OR EQUAL TO ZERO ')
                                                                            PL2D314
      IF(IMAGE.GT.1) WRITE(NO,140) ST,IL.
                                                                            PL2D315
  131 WRITE(NO, 141)
                                                                            PL2D316
      READ(NI,56,ERR=131) XL(2)
                                                                            PL2D317
      GO TO 142
                                                                            PL2D318
  144 \times L(2) = \times F(2)
                                                                            PL20319
  145 GO TO (720,400), IEDIT
                                                                            PL2D320
С
                                                                            PL2D321
      OBSERVATION TIMES
                                                                            PL2D322
  720 IF(JFLOW.EQ.2) GO TO 770
                                                                            PL2D323
  724 WRITE(NO,725) IT
                                                                            PL2D324
  725 FORMAT(3X, 'ENTER TFIRST, TLAST, DELTAT (',A2,')',/,' ?,?,?')
                                                                            PL20325
  730 READ(NI,735, ERR=724) TF, TL, DELT
                                                                            PL2D326
  735 FORMAT(3F10.0)
      DELT = ABS(DELT)
                                                                            PL2D328
  740 IF(TF.GT.O.O.AND.DELT.LE.1.0E-06) GD TD 760
                                                                            PL2D329
      IF(TF.GT.O.O) GO TO 750
                                                                            PL2D330
  744 WRITE(NO,745)
                                                                            PL2D331
  745 FORMAT(3X, TFIRST MUST BE GREATER THAN ZERO -- REENTER'. /. /
                                                                      ?1) PL20332
      READ(NI,37,ERR=744) TF
                                                                            PL2D333
      GO TO 740
                                                                            PL2D334
  750 IF(TL.GT.O.O) GD TO 770
                                                                            PL2D335
  754 WRITE(NO,755)
                                                                            PL2D336
  755 FORMAT(3X, 'TLAST MUST BE GREATER THAN ZERO -- REENTER',/,'
                                                                            PL2D337
      READ(NI, 37, ERR=754) TL
                                                                            PL2D338
      GO TO 750
                                                                            PL2D339
  760 TL = TF
  770 GO TO (146,780), IEDIT
                                                                            PL2D341
  780 IF(JFLOW.EQ.2) WRITE(NO.785)
                                                                            PL2D342
  785 FORMAT(3X, 'TIME IS NOT A PARAMETER IN STEADY-STATE SOLUTION')
                                                                            PL2D343
      GO TO 400
                                                                            Pt 20344
                                                                            PL2D345
      LIST PROBLEM DEFINITION
                                                                            PL2D346
  146 WRITE(NO.147) NPAGE, (TITLE(I).I=1.30)
                                                                            PL2D347
  147 FORMAT(1H1,/,3X,'PLUME2D',/,3X,'VERSION 2.02', 1/,3X,'PAGE ',13,///,3X,30A2,///)
                                                                            PL2D348
                                                                            PL2D349
      NPAGE = NPAGE + 1
                                                                            PL2D350
```

```
IF(IMAGE.GT.1) WRITE(NO,148) IL,ST
                                                                                          PL2D351
  148 FORMAT (1HO, 7X, 'SATURATED THICKNESS, (',A2,') ',24X,F10.4)
                                                                                          PL2D352
       WRITE(NO, 149) IL, IT, V, IL, IT, DX, KHAR, IL, IT, DY, P
                                                                                          PL2D353
  149 FORMAT(8X, 'SEEPAGE VELOCITY, (',A2,'/',A2,') ',25X,F10.4./, PL2D354
18X, 'X DISPERSION COEFFICIENT (',A2,'**2/',A2,') ',13X,F10.4./, PL2D355
28X,A1,' DISPERSION COEFFICIENT (',A2,'**2/',A2,') ',13X,F10.4./, PL2D356
      38X. 'POROSITY ',42X,F10.4)
                                                                                          PL2D357
       WRITE(NO, 150) RD, IT, DECAY
                                                                                          PL2D358
  150 FORMAT(//,8X, 'RETARDATION CDEFFICIENT',28X,F10.4,/,
18X, 'FIRST ORDER DECAY CONSTANT (1/',A2,')',18X,F10.4)
                                                                                          PL2D359
                                                                                          PL2D360
       GO TO (159.151), JFLOW
                                                                                          PL2D361
  151 WRITE(NO, 153) KHAR, IL, IL, IM1, IM2, IM3, IL, IT, IL
                                                                                          PL2D362
  153 FORMAT(//,3X,'STEADY-STATE SOURCE RATES',//,
                                                                                          PL2D363
     13X.'SOURCE',6X,'X',11X,A1,17X,'RATE',/,
25X,'NO',6X,'(',A2,')',8X,'(',A2,')',6X,'(',3A2,
3')(CU'',A2,'/',A2,')/',A2,/)
                                                                                          PL2D364
                                                                                          PL2D365
                                                                                          PL2D366
      DO 157 I=1.NS
                                                                                          PL 20367
       WRITE(NO, 155) I.XS(I), YS(I), Q(I, 1)
                                                                                          Pt 20368
  155 FORMAT(5X, I2, F10.2, 2X, F10.2, 6X, F16.4)
                                                                                          PL2D369
  157 CONTINUE
                                                                                          PL 20370
                                                                                          PL2D371
       GO TO 171
  159 WRITE(NO.160) IM1, IM2, IM3, IL, IT, IL, IT, IL, KHAR, IL
                                                                                          PL2D372
  160 FDRMAT(//,3x,'SOURCE/RATE SCHEDULE (',3A2,')(CU ',A2,'/',A2,
1')/',A2,//,15x,'SOURCE',13x,'RATE',4x,'MASS',8x,'TIME (',A2,')',
2/,3x,'NO x (',A2,') ',A1,' (',A2,')',9x,' NO',5x,'RATE',
                                                                                          Pt 20373
                                                                                          PL2D374
                                                                                          PL2D375
      35X, 'START', 7X, 'END', /)
                                                                                          PI 2D376
       DO 170 I=1,NS
                                                                                          PL2D377
                                                                                          PL2D378
       WRITE(NO, 165) I, XS(I), YS(I)
  165 FORMAT(/,3X,12,2F9.2)
                                                                                          PL2D379
       NRT = NR(I)
                                                                                          PL2D380
                                                                                          PL2D381
       DO 170 J=1,NRT
           M = d + 1
                                                                                          PL 20382
           WRITE(NO,167) J.Q(I,M),T(I,M-1),T(I,M)
                                                                                          PL2D384
           FORMAT(34X,12,F12.2,2F9.2)
  170 CONTINUE
                                                                                          Pt 20385
  171 WRITE(NO.175) IL,XF(1),XL(1),DEL(1),KHAR,XF(2),KHAR,XL(2),KHAR,
                                                                                          PL20386
                                                                                          PL2D387
      1 DEL(2)
  175 FORMAT(//.8X,'OBSERVATION POINTS (',A2,')',//,
                                                                                          Pt.2D388
      112X, 'XFIRST =', F10.2,3X, 'XLAST =', F10.2,3X, 'DELX =', F10.4, /,
                                                                                          PL2D389
      212X,A1,'FIRST =',F10.2,3X,A1,'LAST =',F10.2,3X,'DEL',A1,' =',
                                                                                          PL2D390
                                                                                          PL2D391
       IF(JFLOW.EQ.1) WRITE(NO.177) IT,TF,TL,DELT
                                                                                          PL2D392
  177 FORMAT(/,8X,'OBSERVATION TIMES (',A2,')',//,
1 12X,'TFIRST =',F10.2,3X,'TLAST =',F10.2,3X,'DELT =',F10.4)
                                                                                          PL2D393
                                                                                          PL2D394
  180 CONTINUE
                                                                                          Pt.20395
                                                                                          PL2D396
       GO TO 400
C
                                                                                          PL2D397
                                                                                          PL2D398
                                                                                          PL2D399
C ***** SECTION II -- NUMERICAL EVALUATION OF CONCENTRATION AT
                                                                                          PL2D400
                          SPECIFIED GRID COORDINATES
                                                                                          PL2D401
C
                                                                                          PL2D402
       NUMBER OF OBSERVATION POINTS IN EACH COORDINATE DIRECTION
                                                                                          PL2D403
 2000 CONTINUE
                                                                                          PL2D404
       DO 2020 L=1.2
                                                                                          PL20405
           NP(L) = 1
                                                                                          PL2D406
           DEL(L) = ABS(DEL(L))
                                                                                          PL2D407
           IF(DEL(L).LE.1.0E-03) GD TO 2020
                                                                                          PL2D408
           DIF = XL(L) - XF(L)
                                                                                          PL2D409
           IF(ABS(DIF).LE.1.0E-03) GO TO 2020
                                                                                          PL2D410
           IF(DIF.LE.O.O) DEL(L)=-DEL(L)
                                                                                          PL2D411
           NPTS = ABS(DIF/DEL(L))
                                                                                          PL2D412
           REM = DIF - DEL(L)*FLOAT(NPTS)
                                                                                          PL2D413
           NPTS = NPTS + 1
                                                                                          PL20414
                                                                                          PL2D415
           NP(L) = NPTS
           IF(ABS(REM).LT.1.0E-03) GO TO 2020
                                                                                          PL2D416
           NP(L) = NP(L) + 1
                                                                                          PL2D417
 2020 CONTINUE
                                                                                          PL2D418
       MAXRW = NP(2)
                                                                                          PL2D419
       MAXCL = NP(1)
                                                                                          PL2D420
```

```
PL2D421
С
      TIME COORDINATES
                                                                           PL2D422
      NTIME = 1
                                                                           PL2D423
      IF(DELT.LE.1.0E-06) GO TO 2110
                                                                           PL2D424
      NTIME = ABS(TL-TF)/DELT + 1.0
                                                                           PL2D425
      IF(TF.GT.TL) DELT=-DELT
                                                                           PL2D426
                                                                           PL2D427
 2110 TSOL = TF
      MTIME . NTIME
                                                                           PL2D428
                                                                           PL2D429
C
С
                                                                           PL2D430
      DAMK = DX*DECAY*RD/(V*V)
                                                                           PL2D431
      ALPHA=SQRT(1.0+4.0*DAMK)
                                                                           PI 2D432
      PE=V/DX
                                                                           PL2D433
      BETA = DX/DY
                                                                           PL2D434
      LAMBDA = 1.0/(12.566731*P*SQRT(DX*DY))
                                                                           PL2D435
                                                                           PL2D436
С
                                                                           PL2D437
      DO 2660 NT=1,NTIME
                                                                           PL2D438
C
                                                                           PL2D439
 2120 LPRT = 1
                                                                           PL2D440
      LP = 1
                                                                           PL2D441
      NCFLG = 1
                                                                           PL2D442
 2140 NROW1 = 1
                                                                           PL2D443
      NROW2 = MAXROW
                                                                           PL2D444
 2160 IF(NROW2.GT.MAXRW) NROW2=MAXRW
                                                                           PL2D445
      DO 2580 NROW=NROW1, NROW2
                                                                           PL2D446
      GO TO (2180,2220,2200), NCFLG
                                                                           PL2D447
 2180 NCOL1 = 1
                                                                           PL2D448
      NCOL2 = MAXCOL
                                                                           PL2D449
 2200 IF(NCOL2.GT.MAXCL) NCOL2=MAXCL
                                                                           PL2D450
      NCOL = MAXCOL
                                                                           PL2D451
      IF(NCOL2.EQ.MAXCL) NCOL=NCOL2-NCOL1+1
                                                                           PL20452
 2220 IX1 = NCOL1
                                                                           PL2D453
      IX2 = NCOL2
                                                                           PL2D454
                                                                           PI.20455
C
      DO 2300 L=1, MAXCOL
                                                                           PL2D456
         CON(L) = 0.0
                                                                           PL2D457
 2300 CONTINUE
                                                                           PL2D458
                                                                           PL2D459
      DC 2440
               N=1,NS
                                                                           PL2D460
         D(1) = ST - YS(N)
                                                                           PI 2D461
         IF($T.GE.O.9E32) D(1)=0.0
                                                                           PL2D462
         D(2) = YS(N)
                                                                           PL2D463
         D(3) = D(1)
                                                                           PI 20464
         COEF = 1.0
                                                                           PL2D465
         IF(D(1).LT.1.0E-03.DR.D(2).LT.1.0E-03) COEF=2.0
                                                                           PL2D466
         DO 2440 I=IX1,IX2
                                                                           PL2D467
            X = XF(1) + FLOAT(I-1)*DEL(1)
                                                                           PL2D468
            IF(I.EQ.NP(1)) X=XL(1)
                                                                           PL2D469
            XXS = X - XS(N)
                                                                           PL 2D470
            PEX = PE*XXS
                                                                           PL2D471
            Y = XF(2) + FLOAT(NROW-1)*DEL(2)
                                                                           PL2D472
            IF(NROW.EQ.NP(2)) Y=XL(2)
                                                                           PI 20473
            YYS = Y - YS(N)
                                                                           PL2D474
            PEY = PE*YYS
                                                                           PL2D475
            L = I - IX1 + 1
                                                                           PI 20476
            IF(CON(L).LT.O.O) GO TO 2430
                                                                           PL2D477
            IF(ABS(XXS).LT.1.0.AND.ABS(YYS).LT.1.0)G0 TO 2330
                                                                           PL2D478
            CALL SOL2D(C,PEX,PEY,TSOL,N,NR(N))
                                                                           PL2D479
            CXYT # COEF*C
                                                                           PL2D480
            IF(IMAGE.EQ.1) GO TO 2325
                                                                           PL2D481
C
                                                                           PL2D482
            DO 2320 LM=1,2
                                                                           PL2D483
               ZM = ((-1.0)**(LM+1))*YYS
                                                                           PL2D484
                IF(D(LM).LT.1.0E-03) GO TO 2320
                                                                           PL2D485
                ZIMAGE = 2.0*D(LM) - ZM
                                                                           PL2D486
               PEZ = PE*ZIMAGE
                                                                           PL2D487
               CALL SOL2D(C,PEX,PEZ,TSOL,N,NR(N))
                                                                           PL2D488
               CXYT = CXYT + CDEF*C
                                                                           PL2D489
               DO 2310 IM = 1, IMAGE
                                                                           PL2D490
```

```
ZIMAGE' = (2.0*D(LM)+ZM) + 2.0*FLOAT(IM)*D(LM+1)
                                                                                  PL2D491
                            + FLDAT(2*IM-2)*D(LM)
     1
                                                                                 PL2D492
                   PEZ = PE*ZIMAGE
                                                                                  PL2D493
                   CALL SOL2D(C,PEX,PEZ,TSOL,N,NR(N))
                                                                                 PL2D494
                   IF(C.LT.1.0E-06) GD TD 2312
                                                                                 PL2D495
                   CXYT = CXYT + COEF*C
                                                                                  PL2D496
                CONTINUE
 2310
                                                                                  PL2D497
 2312
                CONTINUE
                                                                                  PL2D498
                DO 2314 IM=1.IMAGE
                                                                                 PL2D499
                   ZIMAGE = (2.0*D(LM)-ZM) + 2.0*FLOAT(IM)*D(LM+1)
                                                                                 PL2D500
                            + FLOAT(2*IM)*D(LM)
                                                                                 PL2D501
                   PEZ = PE*ZIMAGE
                                                                                 PL 20502
                   CALL SOL2D(C,PEX,PEZ,TSOL,N,NR(N))
                                                                                 PL2D503
                   IF(C.LT.1.0E-06) GO TO 2320
                                                                                  PL2D504
                   CXYT = CXYT + CDEF*C
                                                                                 PL20505
 2314
                CONTINUE
                                                                                 PL2D506
                WRITE(NO, 2315) MAXIMG, X, Y
                                                                                 PL2D507
                FORMAT(3X, '****** WARNING -- SOLUTION DID NOT', 'CONVERGE USING', /, 9X. I2, 'IMAGE WELLS AT X =',
                                                                                 PL2D508
 2315
                                                                                 PL2D509
                F10.4,' Z =',F10.4)
                                                                                 PL20510
         CONTINUE
 2320
                                                                                 PL2D511
         IF(KFLOW.EQ.1) CXYT=CXYT/2.0
 2325
                                                                                 PL2D512
         CON(L) = CON(L) + CXYT
                                                                                 PL2D513
         GD TO 2340
                                                                                 PL2D514
 2330
         CON(L) = -9.9999
                                                                                 PL2D515
 2340
         ROW = Y
                                                                                 PL2D516
         CDL(L) = X
                                                                                 PL2D517
 2430
         CONTINUE
                                                                                 PL2D518
 2440 CONTINUE
                                                                                  PL2D519
C
                                                                                 PL2D520
¢
                                                                                 PL2D521
      PRINT CONCENTRATION DISTRIBUTION
                                                                                 PL2D522
      GO TO (2460,2560), LPRT
                                                                                 PL2D523
 2460 WRITE(ND, 147) NPAGE, (TITLE(I), I=1,30)
                                                                                 PL2D524
      NPAGE = NPAGE + 1
                                                                                 PL2D525
      IF(JFLOW.EQ.2) GD TD 2500
WRITE(ND.2465) TSDL,IT,IM1,IM2,IM3,
                                                                                 PL20526
                                                                                 PL2D527
     1(LBL(LP,L),L=1,6),IL
                                                                                 PL2D528
 2465 FORMAT(13X, 'CONCENTRATION DISTRIBUTION AT ',F10.2,

11X,A2,' (',3A2,') ',//,13X,3X,6A2,//,

2' *',/,' * X(',A2,')')
                                                                                 PL20529
                                                                                 PL2D530
                                                                                 PL2D531
      GD TD 2520
                                                                                 PL2D532
 2500 WRITE(NO.2505) IM1, IM2, IM3, (LBL(LP, L), L=1,6),
                                                                                 PL2D533
                                                                                 PL2D534
                                                                                 PL2D535
 2505 FORMAT(13X, 'CONCENTRATION DISTRIBUTION AT STEADY STATE',
     1' (',3A2,') ',//13X,3X,6A2,//,
2' *',/,' * X(',A2,')')
                                                                                 PL2D536
                 * X(',A2,')')
                                                                                 PL2D537
 2520 CONTINUE
                                                                                 PL2D538
      WRITE(N0,2525) (COL(L),L=1,NCOL)
FORMAT(' =',4X,7F10.2)
                                                                                 PL2D539
 2525 FORMAT( '
                                                                                 PL2D540
      WRITE(NO, 2545) KHAR, IL
                                                                                 PL2D541
 2545 FORMAT(1X,A1,'(',A2,') *',/,9X,'*')
                                                                                 PL2D542
C
                                                                                 PL20543
 2560 WRITE(NO, 2565) ROW, (CON(L), L=1, NCOL)
                                                                                 PL2D544
 2565 FORMAT(2X,F8.2,7F10.4)
                                                                                 PL2D545
      LPRT = 2
                                                                                 PL2D546
 2580 CONTINUE
                                                                                 PL2D547
      IF(NROW2.EQ.MAXRW) GO TO 2600
                                                                                 PL2D548
       NROW1 = NROW1 + MAXROW
                                                                                 PL2D549
      NROW2 = NROW2 + MAXROW
                                                                                 PL2D550
      LPRT = 1
                                                                                 PL2D551
       LP = 2
                                                                                 PL2D552
      NCFLG = 2
                                                                                 PL2D553
       GO TO 2160
                                                                                 PL2D554
 2600 IF(NCOL2.EQ.MAXCL) GD TO 2640
                                                                                 PL20555
       NCOL1 = NCOL1 + MAXCOL
                                                                                 PL2D556
      NCOL2 = NCOL2 + MAXCOL
                                                                                 PL20557
       LPRT = 1
                                                                                 PL2D558
      LP = 2
                                                                                 PL2D559
       NCFLG = 3
                                                                                 PL2D560
```

```
GD TO 2140
                                                                                  PL2D561
 2640 CONTINUE
                                                                                  PL2D562
      TSOL = TSOL + DELT
                                                                                  PL2D563
      IF(NT.EQ.MTIME) TSOL=TL
                                                                                  PL2D564
 2660 CONTINUE
                                                                                  PL20565
 ***** SECTION III -- PROBLEM REDEFINITION AND CONTROL OF EXECUTION
                                                                                 PL2D566
C
                                                                                  PL20567
                                                                                  PL2D568
C
  400 CONTINUE
                                                                                  PL2D569
      IF(IEDIT.EQ.2)G0 TO 401
                                                                                  PL2D570
      WRITE(NO, 1001)KHAR, KHAR, KHAR, KHAR
                                                                                  PL2D571
                                                                                  PL2D572
      IEDIT = 2
  401 KNTL = 0
                                                                                 PL2D573
      WRITE(NO.405)
                                                                                 PL20574
  405 FORMAT(//,3X,'ENTER NEXT COMMAND',/,' ?')
                                                                                 PL2D575
  410 READ(NI,415) NEXT
                                                                                 PL2D576
  415 FORMAT(A2)
                                                                                  PL20577
                                                                                  PL2D578
      DO 420 I=1.20
                                                                                 PL2D579
          IF(NEXT.EQ.IC(I)) GD TO 430
                                                                                  PL2D580
  420 CONTINUE
                                                                                  PL2D581
      WRITE(NO, 425)
                                                                                 PL2D582
  425 FORMAT(3X, 'ERROR IN LAST COMMAND -- REENTER',/,' ?')
                                                                               PL2D583
      GD TD 410
                                                                                 PL2D584
  430 GO TO (91.60.70.80,86,86,50,450,124,133,133,3060,1,
                                                                                 PL2D585
     12000,700,146,1000,602,1320,720),I
                                                                                 PL2D586
С
                                                                                 PL2D587
      NEW SET OF X AND Y OBSERVATIONS
                                                                                  PL2D588
  450 KNTL # 1
                                                                                  PL 20589
      GO TO 124
                                                                                  PL20590
С
                                                                                  PL2D591
                                                                                  PL2D592
C
      NEW SOURCE/RATE SCHEDULE
                                                                                 PL2D593
 3060 WRITE(ND.3065)
                                                                                 PL2D594
 3065 FORMAT(3X, 'ADD(A), DELETE(D), MODIFY(M) A SOURCE OR RETURN(R)'
                                                                                  PL2D595
     1' TO EDIT ?')
                                                                                  PL20596
                                                                                  PL2D597
 3070 READ(NI,3075) ISK
 3075 FORMAT(A1)
                                                                                  PL2D598
      DD 3080 I=1,4
                                                                                  PI 20599
         IF(ISK.EQ.IS(I)) GO TO 3090
                                                                                  PL2D600
 3080 CONTINUE
                                                                                  PL2D601 -
      WRITE(NO,3085)
                                                                                 PL20602
 3085 FORMAT(3X, 'ERROR IN SELECTION -- REENTER ?')
                                                                                 PL2D603
      GD TD 3070
                                                                                  PL2D604
 3090 GD TO (400,3100,3450,3490).I
                                                                                  PL2D605
С
                                                                                  PL2D606
      MODIFY SOURCE
                                                                                  PL2D607
                                                                                 PL2D608
 3100 WRITE(NO, 3105) NS
                                                                                 PL2D609
 3105 FORMAT(3X,12,' SOURCES IN CURRENT SCHEDULE',/,
                                                                                 PL2D610
     13X, 'ENTER SOURCE TO MODIFY', /, ' ?')
                                                                                 PL2D611
      READ(NI, 1465, ERR=3100) FDUM
                                                                                 PL2D612
       JS=FDUM
                                                                                 PL2D613
       IF(JS.GT.O.AND.JS.LE.NS) GO TO 3220
                                                                                 PL2D614
       WRITE(NO, 3215) JS
                                                                                 PL2D615
 3215 FORMAT(3X, 'SOURCE', I4, ' NOT IN SCHEDULE')
                                                                                 PL2D616
       GD TD 3060
                                                                                 PL2D617
 3220 GD TO (3230,3260), JFLOW
                                                                                  PL2D618
 3230 WRITE(ND,3235) JS,XS(JS),IL,KHAR,YS(JS),IL,IT,
                                                                                 PL2D619
     1IM1, IM2, IM3, IL, IT, IL
                                                                                 PL2D620
 3235 FORMAT(3X, 'SOURCE ', I2, ': X =', F8.2, A3, 2X, ', ', A1, ' =', 1F8.2, A3, ', ', A1, ' =', 1F8.2, A3, ', ', AX, 'RATE', 7X, 'MASS RATE', 14X, 'TIME (', 2A2, ')', ', AX, 'NO', 3X, '(', 3A2, ')(CU', A2, '/', A2, ')/', A2, '')
                                                                                 PL2D621
                                                                                 PL2D622
                                                                                 PL2D623
      35X, 'START', 7X, 'END', /)
                                                                                  PL2D624
      NRT = NR(US)
                                                                                 PL2D625
      DO 3250 J=1,NRT
M = J + 1
                                                                                 PL2D626
                                                                                  PL2D627
          WRITE(NO,3245) J,Q(JS,M),T(JS,M-1),T(JS,M)
                                                                                 PL2D628
 3245
          FORMAT(4X, I2, 5X, F14.2, 7X, F8.3, 3X, F8.2)
                                                                                 PL2D629
 3250 CONTINUE
                                                                                 PL2D630
```

```
GO TO 3270
                                                                                   PL2D631
3260 WRITE(NO, 3265) US, XS(US), IL, KHAR, YS(US), IL, Q(US, 1),
                                                                                   PL2D632
1IM1, IM2, IM3, IL, IT, IL
3265 FORMAT(3X, 'SOURCE '.I2.': X =',F8.2,A3,2X,',',A1,' =',
                                                                                   PL2D633
                                                                                   PL2D634
     1F8.2,A3,/.3X,'STEADY-STATE MASS RATE =',F16.4.
                                                                                   PL2D635
     2' (',3A3,')(CU ',A2,'/',A2,')/',A2,/)
                                                                                   PL20636
3270 WRITE(NO.3275)
                                                                                   PL2D637
 3275 FORMAT(3X, 'CHANGE COORDINATES (Y/N)?')
                                                                                   PL2D638
      READ(NI, 3075) JC
                                                                                   PL2D639
      IF(JC.NE.IY) GD TD 3290
IF(KFLOW.EQ.2) GO TO 3277
3276 WRITE(NO.1410) JS,IL
                                                                                   PL2D641
                                                                                   PL2D642
      READ(NI, 1425, ERR = 3276) XS(JS), YS(JS)
      GO TO 3290
                                                                                   PL2D644
3277 WRITE(NO.1415) JS.IL
                                                                                   PL2D645
      READ(NI, 1425, ERR=3277) XS(JS), YS(JS)
3280 IF(YS(JS).GE.O.O.AND.YS(JS).LE.ST) GO TO 3290
                                                                                   PL20647
3281 WRITE(NO.1435) ST.IL
                                                                                   PL2D648
      READ(NI, 37, ERR = 3281) YS(JS)
                                                                                   PL2D649
GO TO 3280
3290 GO TO (3300,3430), JFLOW
                                                                                   PL2D650
                                                                                   PL2D651
      TRANSIENT SOURCES
                                                                                   PI 20653
3300 WRITE(NO, 3305) US
                                                                                   PL2D654
 3305 FORMAT(3X, 'MODIFY RATE SCHEDULE FOR SOURCE', 13, ' (Y/N) ?')
                                                                                   PL2D655
      READ(NI,3075) JY
                                                                                   PL2D656
      IF(JY.NE.IY) GO TO 3060
                                                                                   PL2D657
 3310 WRITE(NO,3315)
 3315 FORMAT(3X, 'ENTER RATE TO BE CHANGED'./,
13X, '(ENTER O TO CHANGE ALL RATES)',/,'
                                                                                   PL2D659
                                                     ?')
                                                                                   PL2D660
       READ(NI, 1465, ERR=3310) FDUM
       JR=FDUM
                                                                                   PL2D662
       IF(JR.LE.O) GO TO 3350
                                                                                   PL2D663
       IF(JR.LE.NR(JS)) GO TO 3330
      WRITE(NO.3325) JR
                                                                                   PL2D665
 3325 FORMAT(3X, 'RATE ', 12, ' NOT IN CURRENT SCHEDULE')
                                                                                   PL20666
       GD TO 3300
3330 WRITE(NO,3335) JS,JR,T(JS,JR),T(JS,JR+1),IT
3335 FORMAT(3X,'SOURCE ',I2,', RATE ',I2,' STARTS AT',F8.2,
1' AND ENDS AT',F8.2,A3,/,3X,'ENTER NEW MASS RATE',/,' ?')
                                                                                   PL2D668
                                                                                   Pt.20669
                                                                                   PL2D670
      M = JR + 1
                                                                                   PL2D671
      READ(NI,3345, ERR=3330) Q(JS,M)
                                                                                   PL2D672
 3345 FORMAT(F10.0)
                                                                                   PL2D673
       GD TD 3300
                                                                                   PL2D674
C
                                                                                   PI 2D675
 3350 NRT = NR(JS)
                                                                                   PL2D676
      DO 3360 J=1,NRT
M = J + 1
                                                                                   PL2D677
                                                                                   PI 2D678
          Q(JS,M) = 0.0
                                                                                   PL2D679
          T(JS,M) = 0.0
                                                                                   PL2D680
 3360 CONTINUE
                                                                                   PL2D681
 3370 WRITE(NO, 1455) JS, MAXRT
                                                                                   PL2D682
 3380 READ(NI, 1465, ERR=3370) FDUM
                                                                                   PL2D683
       NR(JS)=FDUM
                                                                                   PL2D684
       IF(NR(JS).GT.O.AND.NR(JS).LE.MAXRT) GO TO 3390
                                                                                   PL2D685
       WRITE(NO, 1475) MAXRT
                                                                                   PL2D686
       GO TO 3380
                                                                                   PL20687
 3390 CONTINUE
                                                                                   PL2D688
       NRT = NR(JS)
                                                                                   PL2D689
       DO 3420 J=1,NRT
                                                                                   PL2D690
          M = J + 1
                                                                                   PL2D691
 3394
          WRITE(NO, 1485) JS, J, T(JS, M-1), IT
                                                                                   PL2D692
          READ(NI,1495,ERR=3394) Q(US,M),T(US,M)
                                                                                   PL2D693
 3400
          IF(T(JS,M).GT.T(JS,M-1)) GO TO 3410
                                                                                   PL2D694
 3404
          WRITE(NO, 1505)
                                                                                   PL2D695
          READ(NI, 37, ERR=3404) T(JS, M)
                                                                                   PL2D696
          GO TO 3400
                                                                                   PL2D697
          CONTINUE
 3410
                                                                                   PL2D698
 3420 CONTINUE
                                                                                   Pt 20699
       GO TO 3060
                                                                                   PL2D700
```

```
PL2D701
      STEADY-STATE SOURCES
                                                                             PL2D702
 3430 WRITE(NO, 3435) US
                                                                             PL2D703
 3435 FORMAT(3X, CHANGE STEADY-STATE RATE FOR SOURCE '. 12.' (Y/N) ?')
                                                                             PL2D704
      READ(NI,3075) JC
                                                                             PL2D705
      IF(JC.NE.IY) GO TO 3060
                                                                             PL20706
 3444 WRITE(NO.3445) JS
                                                                             PL2D707
 3445 FORMAT(3X, 'ENTER NEW STEADY-STATE MASS RATE FOR SOURCE ',12,/,
                                                                             PL2D708
    11
                                                                             PL2D709
      READ(NI, 3345, ERR=3444) Q(JS, 1)
                                                                             PL2D710
      GD TD 3060
                                                                             PL2D711
C
                                                                             PL2D712
C
      ADD A NEW SOURCE
                                                                             PL2D713
                                                                             PL2D714
C
 3450 NS = NS + 1
                                                                             PL2D715
      JS = NS
                                                                            PL2D716
      IF(KFLOW.EQ.2) GO TO 3455
                                                                            PL2D717
 3454 WRITE(NO, 1410) US, IL
                                                                             PL2D718
      READ(NI, 1425, ERR=3454) XS(JS), YS(JS)
                                                                            PL2D719
      GO TO 3470
                                                                            PL2D720
 3455 WRITE(NO.1415) JS,IL
                                                                            PL2D721
      READ(NI, 1425, ERR=3455) XS(JS), YS(JS)
                                                                            PL2D722
 3460 IF(YS(JS).GE.O.O.AND.YS(JS).LE.ST) GO TO 3470
                                                                            Pt 2D723
 3464 WRITE(NO.1435) ST.IL
                                                                            PL2D724
      READ(NI, 37, ERR=3464) YS(JS)
                                                                            PL2D725
      GD TO 3460
                                                                            PL2D726
 3470 GO TO (3370,3480), JFLOW
                                                                            PL2D727
                                                                            PL2D728
      STEADY-STATE SOURCES
                                                                            PL2D729
 3480 WRITE(NO, 3485) JS
 3485 FORMAT(3X, 'ENTER STEADY-STATE MASS RATE FOR SOURCE '.I2.
                                                                            PL2D731
                                                                            PL2D732
      READ(NI, 3345, ERR=3480) Q(JS.1)
                                                                            PL2D733
      NR(JS) = 0
                                                                            PL2D734
      GD TD 3060
                                                                            PL2D735
С
                                                                            PL2D736
      DELETE A SOURCE
                                                                             PL2D737
                                                                            PL20738
 3490 IF(NS.GT.1) GO TO 3500
                                                                            PL2D739
      WRITE(NO, 3495)
                                                                            PL2D740
 3495 FORMAT(3X, 'ONLY ONE SOURCE IN SCHEDULE -- CAN NOT DELETE',/)
                                                                            Pt 2D741
      GD TD 3060
 3500 WRITE(NO.3505) IL.IL.IL
                                                                             PL2D743
 3505 FORMAT(3X,'SOURCE',6X,'X (',A2,')',3X,'Y (',A2,')',3X,
1'Z (',A2,')',/)
                                                                            PI 20744
                                                                            PL2D745
      DO 3520 I=1,NS
                                                                            PL2D746
         WRITE(NO,3515) I,XS(I),YS(I)
                                                                            Pl.2D747
 3515
         FORMAT(5X, 12, 3X, F8.2, 3X, F8.2)
                                                                            PL2D748
 3520 CONTINUE
                                                                            PL2D749
 3530 WRITE(NO.3535)
                                                                            PL20750
 3535 FORMAT(3X, 'ENTER SOURCE TO DELETE', /,
                                                                            PL2D751
     13X, (ENTER O TO CANCEL) .... ?')
                                                                            PL2D752
      READ(NI, 1465, ERR=3530) FDUM
                                                                            PL2D753
      JS=FDUM
                                                                            PL2D754
      IF(JS.LE.O) GO TO 3060
                                                                            PL 2D755
      IF(JS.LE.NS) GO TO 3550
                                                                            PL2D756
      WRITE(NO, 3545) JS
                                                                            PL2D757
 3545 FORMAT(3X, 'SOURCE ', 12, ' NOT IN CURRENT SCHEDULE')
                                                                            PL2D758
      GD TO 3530
                                                                            PL2D759
 3550 WRITE(NO,3555) JS
                                                                            PL2D760
 3555 FORMAT(3X, 'DELETE SOURCE ', 12, ' (Y/N)?')
                                                                            PL2D761
      READ(NI,3075) JC
                                                                            PL2D762
                                                                            PL2D763
      IF(JC.NE.IY) GO TO 3530
      NSD = NS - 1
                                                                            PL 20764
      GO TO (3560,3590), JFLOW
                                                                            PL2D765
                                                                            PL2D766
      TRANSIENT SOURCES
                                                                            PL2D767
 3560 IF(JS.EQ.NS) GO TO 3575
                                                                            PL2D768
      DO 3570 J≃JS,NSD
                                                                            PL2D769
         XS(J) = XS(J+1)
                                                                            PL2D770
```

```
YS(J) = YS(J+1)
                                                                                               PL2D771
          NR(J) = NR(J+1)
                                                                                               PL2D772
          NRT = NR(J)
                                                                                               PL2D773
              DD 3570 K=1.NRT
                                                                                               PI 20774
              M = K + 1
                                                                                               PL20775
              Q(J,M) = Q(J+1,M)
                                                                                               PL2D776
              T(J,M) = T(J+1,M)
                                                                                               PL2D777
3570 CONTINUE
                                                                                               PL2D778
                                                                                               PL2D779
3575 NRT = NR(NS)
      DO 3580 K=1,NRT
M = K + 1
                                                                                               PL2D780
                                                                                               PL2D781
          Q(NS,M) = 0.0
                                                                                               PL2D782
          T(NS.M) = 0.0
                                                                                               PL2D783
3580 CONTINUE
                                                                                               PL2D784
                                                                                               PL2D785
      NR(NS) = 0
                                                                                               PL2D786
      NS = NSD
      GD TO 3060
                                                                                               PL 20787
                                                                                               PL2D788
      STEADY-STATE SOURCES
                                                                                               PL2D789
3590 IF(JS.EQ.NS) GO TO 3605
                                                                                               PL2D790
      D0 3600 J=JS,NSD
                                                                                               PL2D791
          Q(J,1) = Q(J+1,1)
                                                                                               PL2D792
          XS(J) = XS(J+1)
                                                                                               PL2D793
          YS(J) = YS(J+1)
                                                                                               PL2D794
3600 CONTINUE
                                                                                               PL2D795
3605 Q(NS.1) = 0.0
                                                                                               PL2D796
      NS = NSD
                                                                                               PL2D797
      GD TD 3060
                                                                                               PL2D798
                                                                                               PL2D799
      CONFIRM WHETHER SATURATED THICKNESS IS A VARIABLE
                                                                                               PL2D800
 602 IF(KFLOW, EQ. 2)GO TO 30
                                                                                               PL2D801
      WRITE(NO,605)
                                                                                               PL 20802
 605 FORMAT(3X, 'SATURATED THICKNESS IS NOT A VARIABLE IN',/,
                                                                                               PL2D803
     13X.'X-Y COORIDINATE SYSTEM (VERTICALLY AVERAGED SOLUTION)')
                                                                                               PL2D804
      GD TD 400
                                                                                               PL2D805
                                                                                               PL2D806
      MENU OF EDIT COMMANDS FOR PLUMES VERSION 2.02
                                                                                               PL2D807
1000 WRITE(NO, 1001)KHAR, KHAR, KHAR, KHAR
                                                                                               PL2D808
1001 FORMAT(1H1,/,3X,'MENU OF EDIT COMMANDS',//,
                                                                                               PL2D809
     PORMAT(THT, /, 3X, 'MEND OF EDIT COMMANDS , //.

1' RETARDATION COEFFICIENT RD OBSERVATION POINTS OB', /,

2' POROSITY PO X COORDINATES XC', /,

3' SEEPAGE VELOCITY VX', 6X, A1, 'COORDINATES', 7X, A1'C', /,

4' X DISPERSION COEFFICIENT DX MENU OF COMMANDS MU', /,
                                                                                               PL2D810
                                                                                               PL2D811
                                                                                               PL2D812
                                                                                               PL2D813
     4' X DISPERSION COEFFICIENT DX MENU UP COMMANUS MO ,/, 52X,A1.' DISPERSION COEFFICIENT D',A1.6X.'LIST INPUT DATA LI', 6/.' DECAY CONSTANT DE RUN CALCULATIONS RN'./. 7' SOURCE RATE SCHEDULE RT DONE DN'./. 8' NEW PROBLEM NP SATURATED THICKNESS ST'./.
                                                                                               PL2D814
                                                                                               PL2D815
                                                                                               PL2D816
                                                                                               PL2D817
                                                      OBSERVATION TIMES TC')
     9' CHANGE SOLUTION/SOURCES CS
                                                                                               PL20818
      GD TD 400
                                                                                               PL2D819
                                                                                               PL2D820
 700 STOP
                                                                                               PL2D821
       END
                                                                                               PL2D822
```

APPENDIX E

Listing of Utility Function Subroutines

```
FUNCTION BIO(Z)
                                                                           BIO 001
С
      JAN WAGNER
                                                                           BIO 002
      SCHOOL OF CHEMICAL ENGINEERING
C
                                                                           BIO 003
      OKLAHOMA STATE UNIVERSITY
                                                                           BIO 004
Ç
      STILLWATER, OK 74078
                                                                           BIO 005
Ċ
      TELEPHONE: (405) 624-5280
                                                                           BIO 006
                                                                           BIO 007
C
С
      REVISED: 6 JANUARY 1983
                                                                           BIO 008
č
                                                                           BIO 009
      EVALUATION OF MODIFIED BESSEL FUNCTION OF THE FIRST KIND
                                                                           BIO 010
C
      OF ORDER ZERO
                                                                           BIO 011
      POLYNOMIAL APPROXIMATIONS ARE USED FOR IO(Z)
                                                                           BIO 012
C
      SEE SECTION 9.8 OF ABRAMOWITZ AND STEGUN (1966)
                                                                           BIO 013
c
                                                                           BIO 014
      DIMENSION A(9)
                                                                           BIO 015
      COMMON/ID/NI.NO
      DATA A/O.9189385,4.32105045,6.09540829,6.45308739,4.6926023,
                                                                           BIO 016
                                                                           BIO 017
     13.88357842,3.63608323,4.10583047,5.540702353/
Ċ
                                                                           BIO 018
                                                                           BIO 019
      IF(Z.LE.O.O) GO TO 200
                                                                           BIO 020
      T = Z/3.75
      IF(Z.GT.3.75) GO TO 100
                                                                           BIO 021
                                                                           BIO 022
      T2 = T*T
      T4 = T2*T2
                                                                           BIO 023
      T6 = T2*T4
                                                                           BIO 024
      T8 = T2*T6
                                                                           BIO 025
      T10 = T2*T8
                                                                           BIO 026
      T12 = T2*T10
                                                                           BIO 027
      BIO = 1.0 + 3.5156229*T2 + 3.0899424*T4 + 1.2067492*T6
                                                                           BIO 028
       + 0.2659732*T8 + 0.0360768*T10+ 0.0045813*T12
                                                                           BIO 029
      RETURN
                                                                           BIO 030
  100 CONTINUE
                                                                           BIO 031
      SUM = 0.0
                                                                           BIO 032
      DD 150 I=1,9
                                                                           BIO 033
      SIGN = (-1.0)**(I+1)
                                                                           BIO 034
      IF(I.EQ.2) SIGN=1.0
                                                                           BIO 035
      ARG = -1.0*A(I) - 0.5*ALOG(Z) - FLOAT(I-1)*ALOG(T)
                                                                           BIO 036
      SUM = SUM + SIGN*EXP(ARG)
                                                                           BIO 037
  150 CONTINUE
                                                                           BIO 038
      BIOLOG = ALOG(SUM) + Z
                                                                           BIO 039
      BIO = EXP(BIOLOG)
                                                                           BIO 040
      RETURN
                                                                           BIO 041
  200 CONTINUE
                                                                           BIO 042
      IF(Z.LT.O.O) GD TO 300
                                                                           BIO 043
      BIO = 1.0
                                                                           BIO 044
      RETURN
                                                                           BIO 045
  300 WRITE(NO,305) Z
                                                                           BIO 046
  305 FORMAT(6X, 'ARGUMENT OF BESSEL FUNCTION IO(Z) IS NEGATIVE',/,
                                                                           BIO 047
     16X, 'Z = ',E12.6,' -- PROGRAM TERMINATED')
                                                                           BIO 048
      STOP
                                                                           BIO 049
      END
                                                                           BIO 050
```

```
FUNCTION BIOLOG(Z)
                                                                            BIOLO01
С
      JAN WAGNER
                                                                            BIOLOO2
      SCHOOL OF CHEMICAL ENGINEERING
С
                                                                            BIOL003
      OKLAHOMA STATE UNIVERSITY
C
                                                                            BIOLOO4
      STILLWATER, OK 74078
TELEPHONE: (405) 624-5280
¢
                                                                            BIOLO05
С
                                                                            BIOL006
                                                                            BIOLO07
C
      REVISED: 6 JANUARY 1983
                                                                            BIOL008
C
                                                                            BIOLO09
      EVALUATION OF THE NATURAL LOG OF A MODIFIED BESSEL
                                                                            BIOLO10
С
      FUNCTION OF THE FIRST KIND OF ORDER ZERO
С
                                                                            BIOL011
C
      POLYNOMIAL APPROXIMATIONS ARE USED FOR IO(Z)
                                                                            BIOL012
      SEE SECTION 9.8 OF ABRAMOWITZ AND STEGUN (1966)
                                                                            BIOLO13
C
      DIMENSION A(9)
                                                                            BIOLO14
      COMMON/IO/NI,NO
                                                                            BIOL015
      DATA A/O.9189385,4.32105045,6.09540829,6.45308739,4.6926023,
                                                                            BIOL016
     13.88357842,3.63608323,4.10583047,5.540702353/
                                                                            BIOL017
Ç
                                                                            BIOL018
      IF(Z.LE.O.O) GD TO 200
                                                                            BIOLO19
      T = Z/3.75
                                                                            BIOLO20
      IF(Z.GT.3.75) GD TD 100
                                                                            BIOLO21
      T2 = T*T
                                                                            BIOL022
      T4 = T2*T2
                                                                            BIOLO23
      T6 = T2*T4
                                                                            BIOLO24
      T8 = T2*T6
                                                                            BIOLO25
      T10 = T2*T8
                                                                            BIOLO26
      T12 = T2*T10
                                                                            BIOLO27
      BIO = 1.0 + 3.5156229*T2 + 3.0899424*T4 + 1.2067492*T6
                                                                            BIOLO28
                  + 0.2659732*T8 + 0.0360768*T10 + 0.0045813*T12
                                                                            BIOL029
      BIOLOG = ALOG(BIO)
                                                                            BIOLO30
      RETURN
                                                                            BIOLO31
                                                                            BIOLO32
  100 CONTINUE
      SUM = 0.0
                                                                            BIOL033
      DD 150 I=1.9
                                                                            BIOLO34
      SIGN = (-1.0)**(I+1)
                                                                            BIOLO35
      IF(I.EQ.2) SIGN=1.0
                                                                            BIOL036
      ARG = -1.0 + A(I) - 0.5 + ALOG(Z) - FLOAT(I-1) + ALOG(T)
                                                                            BIOL037
      SUM = SUM + SIGN*EXP(ARG)
                                                                            BIOLO38
  150 CONTINUE
                                                                            BIOLO39
      BIOLOG = ALOG(SUM) + Z
                                                                            BIOLO40
                                                                            BIOLO41
      RETURN
  200 CONTINUE
                                                                            BIOLO42
      IF(Z.LT.O.O) GO TO 300
                                                                            BIOLO43
      BIO = 1.0
                                                                            BIOLO44
      RETURN
                                                                            BIOLO45
  300 WRITE(NO.305) Z
                                                                            BIOLO46
  305 FORMAT(6X, 'ARGUMENT OF BESSEL FUNCTION IO(Z) IS NEGATIVE', /,
                                                                            BIOLO47
     16X, Z = ',E12.6,' -- PROGRAM TERMINATED')
                                                                            BIOL048
      STOP
                                                                            BIOLO49
      END
                                                                            BIOLO50
```

```
FUNCTION BKO(Z)
                                                                              BKO 001
C
      JAN WAGNER
                                                                              BKO 002
¢
      SCHOOL OF CHEMICAL ENGINEERING
                                                                              BKO 003
      OKLAHOMA STATE UNIVERSITY
                                                                              BKO 004
C
      STILLWATER, OK 74078
                                                                              BKO 005
Ç
      TELEPHONE: (405) 624-5280
                                                                              BKO 006
С
                                                                              BKO 007
C
      REVISED: 6 JANUARY 1983
                                                                              BKO 008
С
                                                                              BKO 009
¢
      EVALUATION OF MODIFIED BESSEL FUNTION OF SECOND KIND
                                                                              BKO 010
      OF ORDER ZERO
                                                                              BKO 011
C
      POLYNOMIAL APPROXIMATIONS ARE USED FOR KO(Z)
С
                                                                              BKO 012
      SEE SECTION 9.8 OF ABRAMOWITZ AND STEGUN (1966)
                                                                              BKO 013
                                                                              BKO 014
      COMMON/IO/NI,NO
С
                                                                              BKO 015
                                                                              BKO 016
      IF(Z.LE.O.O) GD TO 200
                                                                              BKO 017
      T = Z/2.0
      T2 = T*T
                                                                              BKO 018
      T4 = T2*T2
                                                                              BKO 019
                                                                             BKO 020
      T6 = T2*T4
      IF(Z.GT.2.0) GO TO 100
                                                                              BKO 021
      T8 = T2*T6
                                                                              BKO 022
                                                                              BKO 023
      T10 = T2*T8
      T12 = T2*T10
                                                                              BKO 024
      BKO = -1.0*ALOG(T)*BIO(Z) - 0.57721566
                                                                              BKO 025
           + 0.42278420*T2 + 0.23069756*T4 + 0.03488590*T6
                                                                             BKO 026
           + 0.00262698*T8 + 0.00010750*T10+ 0.0740E-04*T12
                                                                              BKO 027
      RETURN
                                                                              BKO 028
  100 CONTINUE
                                                                              BKO 029
      SUM = (1.25331414 - 0.07832358/T + 0.02189568/T2)
                                                                              BKO 030
         - 0.01062446/(T*T2) + 0.00587872/T4
- 0.00251540/(T*T4) + 0.00053208/T6)
                                                                              BKO 031
                                                                              BKO 032
      BKOLOG = ALDG(SUM) - Z - 0.5*ALOG(Z)
                                                                              BKO 033
      BKO = EXP(BKOLOG)
                                                                              BKO 034
      RETURN
                                                                              BKO 035
  200 CONTINUE
                                                                              BKO 036
      WRITE(NO, 205) Z
                                                                              BKO 037
  205 FORMAT(6X, 'ARGUMENT OF BESSEL FUNCTION KO(Z) IS LESS THAN',
                                                                              BKO 038
     1' OR EQUAL TO ZERO', /, 6X, /Z = ', E12.6, -- PROGRAM TERMINATED').
                                                                              BKO 039
      STOP
                                                                              BKO 040
      END
                                                                              BKO 041
```

```
FUNCTION BKOLOG(Z)
                                                                           BKOL001
C
      JAN WAGNER
                                                                           BKOL002
      SCHOOL OF CHEMICAL ENGINEERING
С
                                                                           BKOL003
Ç
      OKLAHOMA STATE UNIVERSITY
                                                                            BKOL004
      STILLWATER, OK 74078
C
                                                                            BKOLO05
Ċ
      TELEPHONE: (405) 624-5280
                                                                           BKOLOO6
¢
                                                                           BKOLO07
Ċ
      REVISED: 6 JANUARY 1983
                                                                           BKOL008
                                                                           BKOLO09
C
C
      NATURAL LOG OF MODIFIED BESSEL FUNTION OF SECOND KIND
                                                                           BKOLO10
      OF ORDER ZERO
                                                                           BKOLO11
      POLYNOMIAL APPROXIMATIONS ARE USED FOR KO(Z)
¢
                                                                           BKOLO12
Ċ
      SEE SECTION 9.8 OF ABRAMOWITZ AND STEGUN (1966)
                                                                           BKOLO13
                                                                           BKOLO14
      COMMON/ID/NI,NO
С
                                                                           BKOLO15
      IF(Z.LE.O.O) GO TO 200
                                                                           BKOLO16
                                                                           BKOL017
      T = Z/2.0
      T2 = T*T
                                                                           BKOLO18
      T4 = T2*T2
                                                                           BKOLO19
      T6 = T2*T4
                                                                           BKOL020
      IF(Z.GT.2.0) GO TO 100
                                                                           BKOL021
      T8 = T2*T6
                                                                           BKQLQ22
      T10 := T2*T8
                                                                           BKOL023
      T12 = T2*T10
                                                                           BKOL024
      BKO = -1.0*ALOG(T)*BIO(Z) - 0.57721566
                                                                           BKQL025
          + 0.42278420*T2 + 0.23069756*T4 + 0.03488590*T6
                                                                           BKOLO26
          + 0.00262698*T8 + 0.00010750*T10+ 0.0740E-04*T12
                                                                           BKOL027
      BKOLOG * ALOG(BKO)
                                                                           BKOL028
      RETURN
                                                                           BKOLO29
  100 CONTINUE
                                                                           BKOL030
      SUM = (1.25331414 - 0.07832358/T + 0.02189568/T2
                                                                           BKOLO31
           - 0.01062446/(T*T2) + 0.00587872/T4
                                                                           BKOL032
           -0.00251540/(T*T4) + 0.00053208/T6)
                                                                           BKOL033
      BKOLOG = ALOG(SUM) - Z - 0.5*ALOG(Z)
                                                                           BKOL034
      RETURN
                                                                           BKOL035
  200 CONTINUE
                                                                           BKOL036
      WRITE(NO, 205) Z
                                                                           BKOLO37
  205 FORMAT(6X, 'ARGUMENT OF BESSEL FUNCTION KO(Z) IS LESS THAN'.
                                                                           BKOL038
     1' OR EQUAL TO ZERO', /, 6X, 'Z = ', E12.6,' -- PROGRAM TERMINATED')
                                                                           BKOL039
      STOP
                                                                           BKOLO40
      END
                                                                           BKOLO41
```

```
FUNCTION ERFC(Z)
                                                                           ERFC001
C
      JAN WAGNER
                                                                           ERFC002
      SCHOOL OF CHEMICAL ENGINEERING
                                                                           ERFCOO3
      OKLAHOMA STATE UNIVERSITY
C
                                                                           ERFC004
      STILLWATER, OK 74078
                                                                           ERFC005
      TELEPHONE: (405) 624-5280
C
                                                                           ERFC006
C
                                                                           ERFC007
      REVISED: 6 JANUARY 1983
                                                                           ERFC008
                                                                           ERFC009
С
      RATIONAL APPROXIMATION OF THE COMPLIMENTARY ERROR FUNCTION
                                                                           ERFC010
      SEE SECTION 7.1 OF ABRAMOWITZ AND STEGUN (1966)
                                                                           ERECO11
      THE FOLLOWING IDENTITIES ARE USED TO HANDLE NEGATIVE ARGUMENTS
¢
                                                                           ERFC012
       ERFC(Z) = 1 - ERF(Z)
                                                                           ERFC013
       ERF(-Z) = -ERF(Z)
C
                                                                           ERECO14
С
                                                                           ERFC015
      REAL*8 COEFLG.DERFC.DI.FX.TERMI.TERMO.SUM.X
                                                                           ERFC016
      COMMON/ID/NI,NO
                                                                           ERFC017
                                                                           ERFC018
С
      X = ABS(Z)
                                                                           ERFC019
      IF (X.GT.3.0D00) GO TO 50
                                                                           ERFC020
С
                                                                           ERFC021
С
      FOR X<3 A RATIONAL APPROXIMATION OF THE COMPLIMENTARY ERROR
                                                                           ERFC022
      FUNCTION IS USED.
С
                                                                           ERFC023
С
                                                                           ERFC024
      DERFC = 1.0D00/((1.0D00 + 7.05230784D-02*X + 4.22820123D-02*(X**2) ERFC025
     1 + 9.2705272D-03*(X**3) + 1.520143D-04*(X**4)
                                                                           ERFC026
         + 2.76572D-04*(X**5) + 4.30638D-05*(X**6))**16)
                                                                           ERFC027
      GD TO 100
                                                                           ERFC028
С
                                                                           ERFC029
      FOR X>3 AN ASYMPTOTIC EXPANSION OF THE COMPLIMENTARY ERROR
                                                                           ERFC030
      FUNCTION IS USED.
                                                                           ERFC031
   50 COEFLG = X*X + DLOG(X) + 0.57236494D00
                                                                           ERFC032
      FX = 2.0D00*X*X
                                                                           ERFC033
      SUM = 1.0D00
                                                                           ERFC034
      TERMO = 1.0000
                                                                           ERFC035
      DO 60 I=2,50
                                                                           ERFC036
      DI = I
                                                                           ERFC037
      TERMI = -TERMO*(2.0DOO*DI - 3.0DOO)/FX
                                                                           ERFC038
      IF(DABS(TERMI).GT.DABS(TERMO)) GO TO 70
                                                                           ERFC039
      SUM = SUM + TERMI
                                                                           ERFC040
      TEST = TERMI/SUM
                                                                           ERFCO41
      IF(ABS(TEST).LT.1.0E-16) GD TD 70
                                                                           ERFC042
      TERMO = TERMI
                                                                           ERFC043
   60 CONTINUE
                                                                           ERFC044
      WRITE(NO.65)
                                                                           ERFC045
   65 FORMAT(6X, '*** WARNING -- ASYMPTOTIC EXPANSION FOR ERFC DID NOT'
                                                                           ERFC046
                              CONVERGE WITH 50 TERMS IN THE SUMMATION')
                                                                           ERFC047
   70 SUM = DLOG(SUM) - CDEFLG
                                                                           ERFC048
      IF(SUM.LT.-72.0D00) SUM=-72.0D00
                                                                           ERFC049
      DERFC = DEXP(SUM)
                                                                           ERFC050
  100 CONTINUE
                                                                           ERFC051
C
                                                                           ERFC052
      FOR Z<0, ERFC(-Z) = 2-ERFC(Z)
                                                                           ERFC053
      ERFC = DERFC
                                                                           ERFC054
      IF(Z.LT.O.O) ERFC=2.0D00-DERFC
                                                                           ERFC055
      RETURN
                                                                           ERFC056
      END
                                                                           ERFC057
```

```
FUNCTION E1LOG(Z)
                                                                           E1LG001
С
      JAN WAGNER
                                                                           E1LG002
Ċ
      SCHOOL OF CHEMICAL ENGINEERING
                                                                           E1LG003
      OKLAHOMA STATE UNIVERSITY
č
                                                                           E1LG004
C
      STILLWATER, OK 74078
                                                                           E1LG005
C
      TELEPHONE: (405) 624-5280
                                                                           E1LG006
C
                                                                           E11G007
CC
      REVISED: 6 JANUARY 1983
                                                                           E1LG008
                                                                           E1LG009
      EVALUATION OF THE NATURAL LOG OF THE EXPONENTIAL INTEGRAL
C
                                                                           E1LG010
      POLYNOMIAL APPROXIMATIONS ARE USED FOR E1(Z)
Ċ
                                                                           E1LG011
      SEE SECTION 5.1 OF ABRAMOWITZ AND STEGUN (1966)
                                                                           E1LG012
Ç
      COMMON/IO/NI,NO
                                                                           E1LG013
С
                                                                           E1LG014
                                                                           E1LG015
      IF(Z.LE.O.O) GO TO 200
      Z2 = Z*Z
Z3 = Z*Z2
                                                                           E1LG016
                                                                           E1LG017
      IF(Z.GT.1.0) GO TO 100
                                                                           E1LG018
      ARGUMENTS LESS THAN UNITY
С
                                                                           E1LG019
      E1 = - 0.57721566 + 0.99999193*Z - 0.24991055*Z2
                                                                           E1LG020
                                                                           E1LG02.1
         + 0.05519968*Z3 - 0.00976004*Z2*Z2 + 0.00107857*Z2*Z3
          - ALOG(Z)
                                                                           E1LG022
      E1LOG = ALOG(E1)
                                                                           E1LG023
                                                                           E1LG024
      RETURN
  100 CONTINUE
                                                                           E1LG025
      ARGUMENTS GREATER THAN UNITY
                                                                           E1LG026
      E1LOG = ALOG(Z2*Z2 + 8.5733287401*Z3 + 18.0590169730*Z2
                                                                           E1LG027
            + 8.6347608925*Z + 0.2677737343 )
                                                                           E1LG028
             - ALOG(Z2*Z2 + 9.5733223454*Z3 + 25.6329561486*Z2
                                                                           E1LG029
            + 21.0996530827*Z + 3.9584969228 )
                                                                           E1LG030
     4
             - ALOG(Z) - Z
                                                                           E1LG031
      RETURN
                                                                           E1LG032
  200 WRITE(NO, 205) Z
                                                                           E1LG033
  205 FORMAT(6X, 'ARGUMENT OF EXPONENTIAL INTEGRAL IS LESS THAN',
                                                                           E1LG034
     1' OR EQUAL TO ZERO',/,6X,'Z = ',E12.6,3X,' -- PROGRAM',
                                                                           E1LG035
     2' TERMINATED')
                                                                           E1LG036
      STOP
                                                                           E1LG037
      END
                                                                           E1LG038
```

	FUNCTION FUNCTN(Z)	FUNCOO1
¢	INTEGRAND OF HANTUSH WELL FUNCTION	FUNCO02
	REAL*8 DB,Z,ARG,FUNCTN	FUNCO03
	COMMON BF	FUNCO04
	DB=BF	FUNCO05
	ARG = DLOG(Z) + Z + DB*DB/(4.0D00*Z)	FUNCO06
	FUNCTN = DEXP(-ARG)	FUNCO07
	RETURN	· FUNCOO8
	END	FUNCO09

```
FUNCTION GAUSS(A,B,FUNCTN)
                                                                                   GAUSO01
С
                                                                                   GAUSO02
      NUMERICAL INTEGRATION BY 24 POINT GAUSS-LEGENDRE QUADRATURE ZEROS AND WEIGHTING FACTORS ARE FROM TABLE 25.4, P916, OF
С
                                                                                   GAUS003
¢
                                                                                   GAUSO04
      ABRAMOWITZ AND STENGUN(1966)
С
                                                                                   GAUS005
С
                                                                                   GAUSOO6
      REAL*8 A.B.C.D.FUNCTN.GAUSS,SUM.W.Z
                                                                                   GAUSO07
      DIMENSION Z(12), W(12)
                                                                                   GAUSO08
C
                                                                                   GAUSO09
                                                                                   GAUSO10
С
C
                                                                                   GAUSO11
      DATA Z/0.064056892862065,0.191118867473616.0.315042679696163,
                                                                                   GAUSO12
               0.433793507626045.0.545421471388839.0.648093651936975.
                                                                                   GAUSO13
                0.740124191578554,0.820001985973902,0.886415527004401,
                                                                                   GAUSO14
                0.938274552002732,0.974728555971309,0.995187219997021/
                                                                                   GAUSO15
¢
                                                                                   GAUSO16
      DATA W/O.127938195346752,0.125837456346828,0.121670472927803,
                                                                                   GAUSO17
                \verb|O.115505668053725, O.107444270115965, O.097618652104113, \\
                                                                                   GAUSO18
                0.086190161531953,0.073346481411080,0.059298584915436,
                                                                                   GAUSO19
                0.044277438817419.0.028531388628933.0.012341229799987/
                                                                                   GAUSO20
C
                                                                                   GAUSO21
                                                                                   GAUS022
C....SET UP INITIAL PARAMETERS
                                                                                   GAUS023
      C = (B-A)/2.0000
                                                                                   GAUS024
      D = (B+A)/2.0000
                                                                                   GAUSO25
                                                                                   GAUSO26
C....ACCUMULATE THE SUM IN THE 24-POINT FORMULA
                                                                                   GAUS027
      SUM = 0.0
D0 5 J = 1, 12
                                                                                   GAUS028
                                                                                   GAUS029
    IF(Z(J).EQ.O.O) SUM = SUM + W(J)*FUNCTN(D)
IF(Z(J).NE.O.O) SUM = SUM + W(J)*(FUNCTN(Z(J)*C + D)
+ FUNCTN(-Z(J)*C + D))
                                                                                   GAUS030
                                                                                   GAUSO31
                                                                                   GAUSO32
   5 CONTINUE
                                                                                   GAUSO33
C
                                                                                   GAUSO34
C.... MAKE INTERVAL CORRECTION AND RETURN
                                                                                   GAUS035
       GAUSS = C*SUM
                                                                                   GAUSO36
       RETURN
                                                                                   GAUSO37
       END
                                                                                   GAUSO38
```

```
SUBROUTINE SOL2D(C, PEX, PEY, TSOL, N, NR)
                                                                            S0L2001
      NUMERICAL EVALUATION OF ANALYTICAL SOLUTION
Ċ
                                                                            S0L2002
C
                                                                            SDL 2003
С
      REVISED: 18 APRIL 1984
                                                                            S0L2004
C
                                                                            SQL2005
      REAL LAMBDA
                                                                            SDL2006
      COMMON/RATE/Q(10,12),T(10,12)
                                                                            S0L2007
      COMMON/PHYPRO/ALPHA.BETA.DX.LAMBDA.PE.RD.V
                                                                            SDL 2008
C
                                                                            S0L2009
      PEXY = SQRT(PEX**2 + BETA*(PEY**2))
                                                                            S0L2010
      MT = NR + 1
                                                                            SQL2011
      IF(MT.GT.1) GO TO 10
                                                                            S0L2012
                                                                            S0L2013
C
      STEADY-STATE SOLUTION
                                                                            S0L2014
c
                                                                            SQL2015
      S = Q(N,1)
                                                                            S0L2016
      B = 0.5*PEXY*ALPHA
                                                                            S0L2017
      C = 2.0*LAMBDA*S*EXP(PEX/2.0 + BKOLOG(B))
                                                                            SQL2018
                                                                           S0L2019
      GC TO 50
                                                                           S0L2020
      TRANSIENT SOLUTION
                                                                            S0L2021
   10 C = 0.0
                                                                            SOL2022
      IF(T(N,MT).LT.TSQL) MT=MT+1
                                                                           SDL2023
      DD 40 K=2.MT
                                                                            S0L2024
          IF(T(N,K-1).GT.TSOL) GO TO 50
                                                                           S0L2025
          S = Q(N,K) - Q(N,K-1)
                                                                           S0L2026
          PINJ = V*V*(TSOL-T(N,K-1))/(DX*RD)
                                                                           S0L2027
          TAU = PINU/(PEXY*PEXY)
                                                                           SDL2028
          U = 0.25/TAU
                                                                           S0L2029
          B = 0.5*PEXY*ALPHA
                                                                           S0L2030
          IF (B.GT.20.0) GO TO 20
                                                                           SDL 2031
          WF = W(U,B)
                                                                           S0L2032
          SUMLOG = PEX/2.0 + ALDG(WF)
                                                                            S0L2033
          TERM = EXP(SUMLOG)
                                                                           SDL2034
          GD TO 30
                                                                            S0L2035
С
                                                                            SDL2036
                                                                           SOL2037
Ċ
        FOR LARGE VALUES OF B USE THE THIRD ORDER APPROXIMATION
                                                                           SQL2038
        OF WILSON AND MILLER (1979) JOUR. HYDRAULICS DIV., ASCE.
                                                                            SOL2039
        VOL 105, NO HY12, P 1565.
                                                                           SDL2040
                                                                           S0L2041
        NOTE: THE TERM EXP(PEX/2) IS INCLUDED IN THE NUMERICAL
                                                                           SOL2042
        APPROXIMATION FOR W(U,B) TO AVOID COMPUTATIONAL DIFFICULTIES
                                                                           S0L2043
        IN TAKING THE PRODUCT EXP(PEX/2)*W(U,B)
С
                                                                           S0L2044
                                                                           S0L2045
                                                                           S0L2046
              TERM = WELPRD(U,B,PEX)
                                                                            SDI 2047
   20
   30
              IF(TERM.LE.1.OE-32) TERM=O.O
                                                                           SQL2048
              C = C + LAMBDA*S*TERM
                                                                            S0L2049
   40 CONTINUE
                                                                           SOL2050
   50 RETURN
                                                                           S0L2051
      END
                                                                           S0L2052
```

```
FUNCTION W(U,B)
                                                                                  WELLOO1
C
                                                                                  WELLOO2
C
      JAN WAGNER
                                                                                  WELLOO3
      SCHOOL OF CHEMICAL ENGINEERING
                                                                                  WELLOO4
      OKLAHOMA STATE UNIVERSITY STILLWATER, OK 74078
C
                                                                                  WELLOO5
                                                                                  WELLOO6
      TELEPHONE: (405) 624-5280
C
                                                                                  WELLOO7
С
                                                                                  WELLOO8
¢
      REVISED: 6 JANUARY 1983
                                                                                  WELLOO9
¢
                                                                                  WELLO10
      EVALUATION OF THE WELL FUNCTION FOR LEAKY ARTESIAN AQUIFERS
                                                                                  WELLO11
      THIS VERSION HANDLES ARGUMENTS OVER THE ENTIRE RANGE
                                                                                  WELLO12
      REAL *8 A1, A2, FUNCTN, GAUSS, DZ
                                                                                  WELL013
       EXTERNAL FUNCTN
                                                                                  WELLO14
       COMMON BF
                                                                                  WELLO15
      RF*R
                                                                                  WELLO16
       IF(B.GT.O.1) GO TO 200
                                                                                  WELLO17
       IF(U.GT.1.0) GD TD 100
                                                                                  WELLO18
                                                                                  WELLO19
      FOR B < 0.1 USE APRROXIMATIONS PRESENTED BY
                                                                                  WELLO20
      HANTUSH, M.S. AND C.E. JACOB (1955)
TRANSACTIONS AMERICAN GEOPHYSICAL UNION,
C
                                                                                  WELLO21
C
                                                                                  WELLO22
       VOL 36, NO. 1 PP. 95 - 100.
С
                                                                                  WELLO23
C
                                                                                  WELLO24
С
                                                                                  WELLO25
      IF(U.LE.1.0E-10) GO TO 50
                                                                                  WELLO26
Ç
                                                                                  WELLO27
C
                                                                                  WELLO28
      EQUATION 12, FOR U < 1.0
                                                                                  WELLO29
                                                                                  WELLO30
                                                                                  WELLO31
       CON = B*B/(4.0*U)
                                                                                  WELL032
       TERM1 = 2.0*BKO(B)
                                                                                  WELLO33
       TERM2 = EXP(BIOLOG(B) + E1LOG(CON))
                                                                                  WELLO34
       E1U = EXP(E1LOG(U))
                                                                                  WELLO35
       SUM = 0.57721566 + ALOG(U) + E1U + (U*B*B/16.0)*(1.0 - U/9.0)
                                                                                  WELLO36
       SUMLOG = ALOG(SUM)
                                                                                  WELLO37
       TERM3 = EXP(SUMLOG - CON)
                                                                                  WELLO38
       W = TERM1 - TERM2 + TERM3 -
                                                                                  WELLO39
       RETURN
                                                                                  WELLO40
   50 W = 2.0*BKO(B)
                                                                                  WELLO41
       RETURN
                                                                                  WELLO42
                                                                                  WELLO43
С
       RECIPROCAL RELATION, EQUATION 17, FOR U > 1.0
                                                                                  WELLO44
С
                                                                                  WELLO45
                                                                                  WELLO46
  100 TERM1 = EXP(BIOLOG(B) + E1LOG(U))
                                                                                  WELLO47
       SUM = (B*B/4.0)*(1.0/U - 1.0/(36.0*U*U))
                                                                                  WELLO48
              +((B*B/4.0)**2)*(1.0/(4.0*U) - 1.0/(4.0*U*U))
                                                                                  WELLO49
       SUMLOG = ALOG(SUM)
                                                                                  WELLO50
       TERM2 = EXP(SUMLOG - U)
                                                                                  WELLOS 1
       W = TERM1 - TERM2
                                                                                  WELLO52
       RETURN
                                                                                  WELLO53
C
                                                                                  WELLO54
С
                                                                                  WELLOSS
  200 CONTINUE
                                                                                  WELLOS6
       FOR 0.1 < B < 20.0 USE NUMERICAL INTEGRATION
FOR U < B/2, W(U,B) = 2KO(B)-INT(0--U) FUNCTION
FOR U > B/2 W(U,B) = INT(O--B**2/4U) FUNCTION
¢
                                                                                  WELLO57
                                                                                  WELLOSS
                                                                                  WELLO59
C
                                                                                  WELLOGO
                                                                                  WELLOG1
       A1 = 0.0
                                                                                  WELLO62
       A2 = U
                                                                                  WELLO63
                                                                                  WELLO64
       B2 = B/2.0000
       IF(U.GE.B2) A2=B2*B2/U
                                                                                  WELLO65
       DZ = GAUSS(A1,A2,FUNCTN)
                                                                                  WELLO66
       Z = DZ
                                                                                  WELLOG7
       W = 2.0*BKO(B) - Z
                                                                                  WELLO68
       IF(U.GE.B2) W=Z
                                                                                  WELLO69
       RETURN
                                                                                  WELLO70
```

END WELLO71

```
FUNCTION WELPRD(U,B,PEX)
                                                                             WELPOO1
                                                                             WELPOO2
      JAN WAGNER
      SCHOOL OF CHEMICAL ENGINEERING
C
                                                                             WELPOO3
      OKLAHOMA STATE UNIVERSITY
C
                                                                             WELPOO4
      STILLWATER, OK 74078
С
                                                                             WELPOO5
C
      TELEPHONE: (405) 624-5280
                                                                             WELPOO6
C
                                                                             WELPOO7
¢
      REVISED: 6 JANUARY 1983
                                                                             WELPOO8
С
                                                                             WELPOO9
      THIS FUNCTION SUBROUTINE EVALUATES EXP(PEX/2) *W(U,B)
                                                                             WELPO10
C
      USING THE THIRD-ORDER APPROXIMATION FOR W(U,B) PRESENTED
C
                                                                             WELPO11
      BY WILSON AND MILLER (1979) JOUR. HYDRAULICS DIV., ASCE,
C
                                                                             WELPO12
      VOL 105,NO HY12, P 1565.
                                                                             WELPO13
C
С
                                                                             WELPO14
      REAL*8 DI, FZ, TERMI, TERMO, SUM, Z
                                                                             WELPO15
      COMMON/ID/NI.NO
                                                                             WELPO16
С
                                                                             WELPO17
      PAR = (B-2.0*U)/((4.0*U)**0.5)
                                                                             WELPO18
      IF(ABS(PAR).GT.3.0) GO TO 50
                                                                             WELPO19
      TERM1 = (1.0 - 1.0/(8.0*B))*ERFC(-PAR)
TERM2 = (PAR/(7.0898154*B))/EXP(PAR**2)
                                                                             WELPO20
                                                                             WELPO21
      W = ((1.5707963/B)**0.5)*EXP(-B)*(TERM1+TERM2)
                                                                             WELPO22
      WELPRD = EXP(PEX/2)*W(U.B)
С
                                                                             WELPO23
       * ((1.5707963/B)**0.5)*EXP(PEX/2 - B)*(TERM1+TERM2)
                                                                             WELPO24
      SUMLOG = ALOG(TERM1 + TERM2)
                                                                             WELPO25
      WELOG = 0.5*(0.45158271 - ALOG(B)) + (PEX/2.0 - B) + SUMLOG
                                                                             WELPO26
      IF(WELOG.LT.-72.0) GD TO 20
                                                                             WELPO27
      WELPRD = EXP(WELOG)
                                                                             WELPO28
      RETURN
                                                                             WELPO29
   20 CONTINUE
                                                                             WELP030
      WELPRD = 1.0E-32
                                                                             WELPO31
      RETURN
                                                                             WELPO32
   50 CONTINUE
                                                                             WELPO33
      IF(PAR.LT.O.O) GO TO 100
                                                                             WELPO34
С
      FOR B>20 AND PAR>3.0 W(U,B)=2KO(B)
                                                                             WELPO35
      WELOG = PEX/2.0 + BKOLOG(B) + 0.69314718
                                                                             WELPO36
      WELPRD = EXP(WELOG)
                                                                             WELPO37
      RETURN
                                                                             WELPO38
  100 CONTINUE
                                                                             WELP039
      FOR PAR<-3.0 AN ASYMPTOTIC EXPANSION FOR ERFC(-PAR) IS UTILIZED
                                                                             WELPO40
      SEE SECTION 7.1 OF ABRAMOWITZ AND STEGUN (1966)
                                                                             WELPO41
      COEFLG = PEX/2.0 - B - PAR*PAR - ALOG(-PAR) - 0.5*ALOG(2.0*B)
                                                                             WELPO42
              + ALOG(1.0 - 0.1250/B)
                                                                             WELPO43
      IF(COEFLG.LT.-72.0) GD TO 200
                                                                             WELPO44
      Z = -PAR
                                                                             WELPO45
      FZ = 2.0000*Z*Z
                                                                             WELPO46
      SUM = 1.0000
                                                                             WELPO47
      TERMO = 1.0000
                                                                             WELPO48
      DO 120 I=2,50
                                                                             WELPO49
          DI = I
                                                                             WELPOSO
          TERMI = -TERMO*(2.0D00*DI-3.0D00)/FZ
                                                                             WELPO51
          IF(DABS(TERMI).GT.DABS(TERMO)) GO TO 150
                                                                             WELPO52
          SUM = SUM + TERMI
                                                                             WELPO53
          TEST = TERMI/SUM
                                                                             WELPO54
          IF(ABS(TEST).LT.1.0E-16) GO TO 150
                                                                             WELPOSS
          TERMO - TERMI
                                                                             WELPO56
  120 CONTINUE
                                                                             WELPO57
      WRITE(NO.500)
                                                                             WELPOSS
  500 FORMAT(6X, '** WARNING -- ASYMPTOTIC APPROXIMATION FOR ERFC IN',/,
                                                                            WELPOSS
                               FUNCTION WELPRO DID NOT CONVERGE WITH ', / WELPOGO
           6X. '
            6X,'
                                50 TERMS IN THE SUMMATION')
                                                                             WELPO61
  150 SUMLOG = DLOG(SUM)
                                                                             WELPO62
      WELOG = COEFLG + SUMLOG
                                                                             WELPO63
      WELPRD = EXP(WELOG)
                                                                             WELPO64
      RETURN
                                                                             WELPO65
  200 CONTINUE
                                                                             WELPO66
      FOR LARGE NEGATIVE VALUES OF PAR, ERFC(-PAR) -> 2
                                                                             WELPO67
       WELPRD = 0.0
                                                                             WELPO68
      RETURN
                                                                             WELPO69
      END
                                                                             WELPO70
```