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LITERATURE REVIEW

Conventional soil sampling techniques employ a method of random selection in
which the relationship between samples is not considered. Each sample removed from
a field is independent, and the variability between that sample and neighboring samples
is usually not examined. Samples are usually averaged, providing a mean for a field or
area of interest, a value that may not adequately describe the behavior of the nutrient
across the area of interest. By contrast, geostatistical techniques explore spatial
relationships between samples, examining the changes in sample values over both
distance and direction.

Relatively new methods for assessing the spatial variability of soil characteristics
are the geostatistical techniques of variogram construction, coupled with the estimation
of values by kriging. Variogram construction provides an illustration of the behavior of the
soil characteristic across a field, while kriging estimates unknown values within and,
possibly, beyond the site. Variograms and kriging are not the only geostatistical
procedures for describing variability and estimating values, but they are two commonly
found in the soil science literature.

Variograms can be constructed from many types of data sets, and the technique
is adaptable to different soil characteristics and sampling schemes.

The general equation for variogram calculation is:

vi = = ¥ (x- eeh))’

where: x = variable at location x
h = distance between samples (lag distance)
(Journel and Huijbregts, 1978)

This equation may be modified (Cressie and Hawkins,1980; Cressie, 1985), but the basic
procedure of squaring the difference between two values usually remains.

Variograms are usually shown as line diagrams, with the variogram value at a
given lag (g(h)) plotted against that lag distance, h. The “one-half* term in the equation
divides the symmetrical curve of the variogram in half, so that the plotted information is
most accurately called a semivariogram. Semivariograms can be created both
omnidirectionally and directionally. Omnidirectional semivariograms offer an initial picture
of spatial variability--a preview of possible complications that may arise within directional



semivariograms. Directional variograms illustrate variations in spatial relationship as the
sampling direction changes across the site.

Variograms are created from available data points, and a model is fit to this
experimental variogram. The model is often initially fit to an omnidirectional
semivariogram, providing the best fit to a smooth "average" semivariogram. Directional
semivariograms are then used to indicate the presence of anisotropies, where spatial
relationships difter over various directions. The presence of anisotropies can affect the
accuracy of models fit to the semivariogram, which will in turn alter the kriging estimates.

A modeled variogram provides several pieces of information about the sampled
site. First, the model can supply an estimate of the nugget, that portion of the
semivariogram attributable to pure random error. Second, some models will estimate the
sill, where the semivariogram may level. Third, the distance at which samples are no
longer spatially related to each other can be found. This distance is called the range.
Figure 1 (p. 11) illustrates a typical variogram shape, with the nugget, sill, and range
marked by a,b, and ¢, respectively.

The choice of the model and the accuracy of the model's fit to the semivariogram
is important, as the coefficients derived from the model are used in the estimation
procedure of kriging. Kriging calculates estimates using weighted linear combinations of
available data. It is both an unbiased and best estimation method in that kriging attempts
to have the mean error equal zero and the variance of these errors minimized (Isaaks
and Srivastava, 1989). Kriging can be used to estimate an unknown point, as with
ordinary kriging, or the kriging procedure may be modified to provide an average estimate
for a small local area of interest, a technique called block kriging. This paper will use
block kriging to produce average estimated values throughout the sampled agricultural
site.

Detailed and informative discussions about the theories and methodologies of
semivariogram construction and kriging can be found in many sources, including Isaaks
and Srivastava (1989); Journel and Huijbregts (1978); Hamlett, Horton, and Cressie
(1986); and Warrick and Myers (1987).

The soil science literature that examines the spatial variability of soil characteristics
is relatively small and new, though increasing rapidly. Geostatistical techniques were first
developed for estimating the depth and size of ore reserves, and the theories were not
widely available until Matheron’s (1963) publication. The methods then began to make
their way from mining into other research areas, including soil science.

Often, soil scientists used semivariogram construction to study the spatial variation
of soil physical properties. Among these properties were sand content (Campbeli, 1978;
Tabor,1985; Nash,1988), infiltration rate (Vieria,1881) and soil-water pressure potential
(Hamlett,1986). Other examined physical properties include clay content (Tabor, 1985;



Nash,1988; Ovalles and Collins, 1988}, soil temperature (Mulla,1988; Yates, 1988), depth
to mottles (Di,1989) and soil heat flux (Wolif and Rogowski, 1991).

Analyses of soil chemical properties through the use of geostatistics have centered
upon properties such as pH (Campbell, 1978; Tabor,1985; Laslett and McBratney, 1990)
and organic carbon content {(Ovalles and Collins, 1988; West,1989). Fewer papers have
explored the spatial variability of fertility nutrients such as phosphorus, potassium and
nitrogen (Tabor, 1985; West,1989). In these studies measured K was as the exchangeable
form, while analyzed P content was either Total or extractable P. The form of N that was
examined varied, including Total-N (West, 1989), solution-NO3 (Flaig, 1986}, petiole-N, and
nitrate-N (Tabor,1985).

Although the creation of semivariograms is a fairly standard technique, data sets
are sometimes manipulated prior to semivariogram construction. Transformations
included a logarithmic conversion, creating soil nitrate and phosphorus data that followed
a normal distribution (Tabor, 1985), and a logarithmic conversion followed by median
subtraction, removing trend in a soil-water tension data set (Hamlett, 1986). By
comparison, surface measurements of extractable P, exchangeable K, and Total N were
employed in semivariogram construction without initial transformations (West, 1989).

As an estimation process, kriging of soil characteristics produced varying degrees
of success. Point kriging of CaCO3, clay, and sand found promise as an estimation
method, but dense sampling would be needed to lessen large nugget effects (Nash,1988).
In another paper, kriged values of extractable P, exchangeable K, total N, and organic
C from grazed pastures estimated zones of accumulated P and K near drinking water
sources. It was felt that kriging could illustrate zones of nutrient enhancement that could
be sampled separately for more effective fertilizer recommendations (West,1989).
Estimation of field-measured infiltration rates by kriging provided a mean estimation error
that was close to zero, coupled with a low variance of the estimation errors (Vieria,1981).
A small mean estimation error and a low variance of the estimation errors indicates
reliable kriged estimates.

Block kriging is often found to provide more accurate estimates, when that
procedure is compared to punctual kriging. Estimated sodium content from block kriging
contained much lower estimation variances than sodium contents estimated by punctual
kriging (Burgess and Webster,1980). Block kriging was used o estimate electrical
conductivity (ECe) and soil nitrate (Tabor, 1985). It was found that soil nitrate was well
correlated with ECe, exhibiting similar spatial structure over the sampled site. The kriging
error variance was small, indicating that the block kriging procedure was estimating
unknown values well.

The spatial variability of soil nitrate remains largely undocumented. The spatial

variability of nitrate might be large, a function of large fluctuations in soil nitrate content,
or, by contrast, the spatial variation of soil nitrate may decrease as this mobile form of N
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is removed (Biggar,1978). An examination of the spatial structure of soil nitrate both
horizontally and vertically in a field may provide a clearer picture of the spatial behavior
of this mobile nutrient. The need for the spatial description and estimation of soil nitrate
values is both economic and environmental. Identifying the degree and type of spatial
relationships that exist for soil nitrate may help increase the accuracy of soil sampling and
testing, affecting the quantity and placement of fertilizer and lime applications.
Additionally, the estimation of nitrate values at unsampled regions may place focus upon
areas of the field that contain higher levels of nitrate, areas that contain the potential for
nitrate leaching to occur. The objective of this research project was to describe the
spatial variability of soil nitrate across a long-term agricultural soil, examining the spatial
relationships as they change within a 1.2-m depth. These spatial relationships could then
be used in the estimation procedure of block kriging, predicting soil nitrate concentrations
at unsampled regions within the field.

MATERIALS AND METHODS

A 3.0-ha field, measuring 200-m by 150-m, which had been cropped to continuous
winter wheat (Triticum aesivitum L.) since 1979, was sampled across a regular grid
pattern. The soil at this site was classified as a Pond Creek silt loam (fine-siity, mixed,
mesic Pachic Ustoll). A large scale grid covered the entire 3.0-ha, and the soil was
sampled at 25-m intervals within this large grid. A smaller .06-ha grid was located at the
center of the large grid, and this smaller grid was sampled at 5-m intervals. A total of 99
samples were removed, with 63 and 36 removed from the large and small grids,
respectively.

All samples were removed to a depth of 1.2-m, using a Giddings hydraulic soil
probe. One soil core (4.5-cm i.d.) was removed at each sampling point and extruded into
a plastic sleeve that was sealed and refrigerated until processing. At processing, each
core was sectioned into six depths: 0-15, 15-30, 30-45, 45-60, 60-90, and 90-120-cm.
All samples were air-dried and ground to pass a 2-mm sieve before further analysis.

Each sample was analyzed for soil NO,, NH,” and pH content. Soil nitrate and
ammonium content were determined from 2M KCI extracts (Keeney and Nelson,1982),
using colorimetric analysis via a Lachat Flow injection analyzer. Soil pH was determined
in a 1:1 soil:H20 solution, using a standard pH electrode. All sample determinations were
duplicated, and the duplicate results averaged.

Statistical Analyses

Ali data were initially analyzed by classical statistical methods, providing estimates
of each variable’s mean, standard deviation, skew, and coefficient of variation.



Geostatistical analyses were used to describe the spatial variability of soil nitrate
content. All classical and geostatistical analyses were performed using the GEOEAS (v
1.1) geostatistical package (Englund and Sparks, 1988). Spatial relationships were
described through the use of omnidirectional and directional semivariograms, employing
the use of relative semivariograms, as described by Cressie (1985). Relative
semivariograms are created when ordinary semivariograms are divided by the square of
the mean of the sample values used in the semivariogram calculation. These types of
semivariograms are useful when correcting a simple nonstationarity, when the local
variance is proportional to the squared local mean (Cressie, 1985). This "proportional
effect” is often found in data sets that contain a log-normal distribution (Clark, 1979).

Omnidirectional semivariograms were calculated from every pair of data points
within one-half of the total sampled distance, considering every direction at each selected
lag distance. Directional semivariograms were calculated over 4 directions: 0, 45, 90, and
135 degrees, each with an angular tolerance of 22.5 degrees. At a given lag distance,
all points located within 22.5 degrees of the selected direction were included in the
semivariogram calculation, again limited to a final lag length of one-half the total sampled
distance. In effect, the four directional semivariograms with an angular tolerance of 22.5
degrees divided the total area described by the omnidirectional semivariogram into four
sections.

Directional semivariograms were used to determine if anisotropy existed within the
data set. Anisotropies are said to occur if the semivariograms change over varying
directions. Semivariograms were calculated over a variety of directions, and the range
for a particular semivariance was determined for each semivariogram. These ranges
were plotted on a rose diagram, and the major and minor axes of continuity were
identified. A rose diagram is a circular or elliptical plot of ranges of directional
semivariograms, and the direction and relative size of the ellipse provides information
about major and minor axes of continuity within the sampled site.

Models fit to the experimental semivariograms were used in the estimation process
of block kriging. Cross-validation was used to check the accuracy of the chosen model(s)
intended for the block kriging procedure. Known values at each sampled location were
estimated by kriging, and those estimated values were compared to actual. Kriging error,
mean of the estimation error and variance of the estimation error was used to determine
the accuracy of the chosen model.

Block kriging was used to estimate unknown values across the sampled site. A
total of forty-eight 2x2 blocks were estimated throughout the experimental area.



RESULTS AND DISCUSSION

Table 1 (p. 12) lists statistical summaries for soil nitrate values at the six depth
increments. There was a wide range in measured soil nitrate at all the depths, indicated
by large coefficient of variations {(CV) and variances. In an effort to reduce large kriging
variances, the two largest outliers from each data set were removed. Although this
editing did lessen the presence of extreme outliers, the resulting CVs, variances, and
skews shown in Table 1 were still large. This indicated data sets that could be difficult
to model and employ in the estimation process of kriging.

The largest measured soil nitrate values were located predominately in the
southeast comer of the sampled field, and this region of elevated soil nitrate values was
found throughout the entire 1.2-m sampled depth, as shown in Figure 2 (p. 13). There
were no obvious drainage patterns or tillage practices that could explain the wide variation
in soil nitrate values found within the sampled site. The region of high nitrate did appear
to drift slightly southward as soil depth increased, possibly a result of nitrate leaching
coupled with the lateral movent of this mobile nutrient.

Constructed semivariograms provided information about the spatial variability of
soil nitrate. Omnidirectional semivariograms were fairly well-behaved, usually fitting a
spherical model and rising to a well-defined range, as shown in Table 2 (p. 14) and
Figure 3 (p. 15). The semivariograms shown and modeled in this figure and table
represent general relative semivariograms, or the semivariogram value at each lag divided
by the square of the mean of the values used in producing that semivariogram value:

Ky -

mean (m*

{Isaaks and Srivastava, 1989)

It is important to realize that the semivariogram values on the y-axis and the
resulting sill and nugget values shown in Figure 3 are relative values; they must be
multiplied by that lag’s mean value in order to achieve actual semivariogram values. This
leads to an unfortunate situation: the use of relative semivariograms nicely compensates
for a proportional effect, yet produced semivariograms are a function of the squared
mean of the values. For example, the apparent low sills found in the semivariograms of
the 0-15 and 15-30-cm depth increments are a function of the high squared means that
were the divisor at each lag interval. In reality, the sills for both these depths were higher
than the remaining soil increments, a reality that is difficult to discemn in the relative
semivariograms. The benefit of relative semivariograms is apparent in the relatively clean
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spatial structure found in the semivariograms, allowing precise model fits for the final
kriging procedures.

For comparison, traditional semivariograms are shown in Figure 4 (p. 16). These
semivariograms demonstrate the higher sill and nugget effects found in the 0-15 and 15-
30-cm semivariograms that were hidden by the relative semivariograms. The
semivariogram created from the surface soil nitrate values contains the largest nugget
and sill, reflecting the larger variability found within this data set. Deeper semivariograms
were linear, and it was thought that linear models fit to these semivariograms couid be
used in the kriging process. However, the cross-validation criteria for these models (not
shown) was not as satisfactory as those calculated from the spherical models fit to the
relative semivariograms.

Directional semivariograms were created to determine the angles of anisotropy,
those directions over which samples were most and least related to each other. As
shown in Table 3 (p. 17), the direction in which samples were least related was, at all
depths, N135°W. The direction in which soil nitrate was most related changed with depth,
moving from directly N at 0-15-cm to a general NW direction deeper in the soil. The
direction of greatest relationship found at the soil surface could be developed, in part,
from factors such as the direction of tillage and fertilizer-applicator travel. Natural
landscape and soil factors such as direction of drainage and impeding layers within the
soil would also be a consideration, and it may be that the varying anisotropic axes reflect
such a changing soil profile.

The anisotropic ratio is the range of the major axis divided by the range of the
minor; an anisotropic ratio of 1.0 signals an isotropic condition, and the spatial variability
is the same in all directions. With the exception of the 60-90-cm depth the anisotropic
ratio was close to 1.0, as there was not a large difference in the ranges of the directional
semivariograms, as shown in Table 2. The larger ranges found in the 90-120-cm depth
indicate that soil nitrate is spatially related for a greater distance at that depth. This may
be a function of 1) less rooting volume to alter soil nitrate values, 2) limited impact from
the surface, such as leached nitrate, and 3) beginning of a relatively continuous parent
material.

Spherical models were fit to both the omnidirectional and directional
semivariograms. Other model fits, including Gaussian, linear, and nested spherical
models, were attempted, but cross-validation indicated that a combination of the
omnidirectional semivariograms coupled with the anisotropic angle and major and minor
ranges provided a reliable model fit.

Criteria for the cross-validation procedure are found in Table 4 (p. 18). The mean
of the estimation errors should be close to zero, and the variance of the errors minimized
and equal to the kriging variance. The dimensionless mean square error (DMSE) should
equal 1, while the mean normalized error (ME) should be close to zero. There can be



other criteria for checking the accuracy of the cross-validation procedure, but these are
four commonly used techniques (Samper and Numan, 1989; Unlu, et al.,1990). Although
the variance of the estimation errors did equal the kriging variance (P>.05) the variances
were not particularly small, a result of the wide variation in measured soil nitrate values.

Figures 4, 5, and 6 indicate the results of the block kriging procedure for three of
the soil depths: 0-15, 30-45 and 60-90-cm. Block kriging at all depths was performed at
25-m intervals for a total of 48 estimated blocks across the sampled site. Each figure
provides a contour plot of both the estimated soil nitrate values and the kriging standard
deviation. Kriging standard deviations help pinpoint those areas that may contain less
reliable estimates.

in general, kriged estimates produced reliable maps of estimated soil nitrate
contents. In all cases, the kriging standard deviation was smallest at the center of the
sampled site, a function of the centered small sampling grid. Kriged estimates in this
region would likely come from a larger number of closely spaced samples, which would
most likely lower the kriging variance. Likewise, the largest kriging standard deviations
were consistently found in the regions of elevated soil nitrate values and those regions
where the outliers had been removed. These regions were most likely to contain a large
nitrate value in close proximity to a small value, a situation that could create greater error
in the estimation process. Kriging standard deviations with the two outliers included in
each data set were even larger than those shown in Figures 4, 5, and 6.

It appears that geostatistical methods have applications in exploring the spatial
variability of mobile nutrients such as soil nitrate. It does seem, however, that both the
data and resultant semivariograms should be viewed with a knowledge of the fields’
cultural treatments, particularly in the surface depth. This could be especially true with
fertility nutrients--those added to and incorporated into the soil in measurable amounts.
Field spatial variability as it is affected by reduced-tillage, erosion control structures such
as terraces, or irrigation is another research area that could help explain the spatial
variability of soil nitrate and other fertility nutrients.

A geostatistical analysis works well when there are sample numbers adequate to
describe the spatial variability of the region of interest. It may be that mobile nutrients
such as soil nitrate may require a more intensive sampling scheme than comparable soil
physical properties. In this research project, kriging variances were sensitive to regions
that were less sampled and highly variable in soil nitrate content. Research will be
needed on many sites and soils to determine the minimum number of samples required
to accurately describe a region’s spatial variability. A spatial description of soil nitrate
content within an agricultural field could easily be used in the new computer-aided
precision-application fertilizer technologies, eliminating over-fertilization and assisting in
the protection of environmental quality.
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Table 1. Statistical summary for soil nitrate at varying depths

Depth
__cm.--

0-15
15-30
30-45
45-60
60-90

90-120

Mean Var
mg/kg
229 39.7
8.9 15.0
3.5 85
2.8 8.2
2.3 53
2.2 7.3

Max Min
393 11.2
30.9 3.7
221 1.2
15.5 4
154 5
16.0 5

CvV
—9—-

27.5
43.3
84.6
101.6
98.5

126.1

skew

2.3

3.9

2.8
3.2
3.4

kurtosis

2.4
12.4
22.1
10.6
15.4

14.7
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Table 2. Semivariogram parameters relative nugget ,relative sill,

range and model type for soil nitrate

Depth
_-cm._
0-15

15-30

30-45

45-60

60-80

90-120

Direction

Omnidirect.

N
Nas
NodPw

N135%W

Omnidirect.

N
N4sW
NoOW

N1359W

Omnidirect.
N
N45W
NOPW
N135 W

Omnidirect.
N
N4sWw
N9CcPw
N135%W

Omnidirect.
N
N4gPW
NIPW
N1358W

Omnidirect.

N
N45%W
NadPw
N135°W

Relative
Nugget
—(m

BR&EBS8

gr838

10
.20
10
10
15

Jd0
J10

.20
.20

Relative
2 Sil
Q)

1
.02
14
g4
.05

1.7
1.2
1.8
1.9
1.2

1.7
1.2
1.9
20
1.4

14

1.2
1.2

1.8
2.0
1.9
1.8
1.3

Range
U | —
90
90
90
90
60

80
90
90
90
85

85
85
85
95
60

80
80
90
90
70

80
95
90
90
60

115
115
115
125
g5

Model

Spherical
Spherical
Spherical
Spherical
Spherical

Spherical
Spherical
Spherical
Spherical
Spherical

Spherical
Spherical
Spherical
Spherical
Spharical

Spherical
Spherical
Spherical
Spherical
Spherical

Spherical
Spherical
Spherical
Spherical
Spherical

Spherical
Spherical
Spherical
Spherical
Spherical

H

i



Relative Semivariance

Relative Semivariance

Relative Semivariance

Figure 3. Relative omnidirectional semivariograms

for soil nitrate at all soil depths
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Figure 4. Omnidirectional semivariograms for soil nitrate
at all soil depths
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Table 3. Direction of anisotropy as determined
by directional semivariograms.

Depth Major Axis Minor Axis Anisotropic
Ratio
——CM—
0-15 NEPW N135° W 15
15-30 N5’ w N135°W 1.1
30-45 N4s°W N135°W 1.5
45-60 N45°W N135° W 1.3
60-90 N30°W N1385° W 1.9
90-120 N45CW N135° W 1.2
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Table 4. Cross-validation criteria for the best-fit models
for soil nitrate content at varying depths

Depth Mean Est. Errors  Var. Est. Errors 02 DMSE* ME
—-OIM—- K

0-15 -.04 423 471 .94 -.005
15-30 02 11.6 12.3 .97 005
30-45 -.02 7.4 6.4 11 -.006
45-60 006 4.0 4.0 1.1 003
60-90 -.01 2.3 2.2 1.0 -.009
90-120 001 2.6 2.2 1.1 .001

-z 2 n
% Dimensioniess Mean Square Emor = (T:—Z C_'é_‘))
K

e omatmatns + (371 )
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Figure 5. Kriged Values and Kriging Standard Deviations
for Soil Nitrate
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Figure 6. Kriged Values and Kriging Standard Deviations
for Soil Nitrate
30-45-cm
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Figure 7. Kriged Values and Kriging Standard Deviations
for Soil Nitrate
60-90-cm
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