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INTRODUCTION

Statement of problem

Soil erosion and subsequent deposition are significant nonpoint pollution sources.
They adversely affect the quality of our fluvial system by changing the aquatic life in
streams and rivers, reducing the storage capacity of reservoirs and lakes, clogging navigable
waterways, and transporting land-applied chemicals which otherwise would not enter the
stream ecosystem. The movement of toxic chemicals in surface flows is often linked to the
movement of eroded soil particles.

The most cost effective and environmentally safe method for solving sedimentation
problems is to control erosion at its source, primarily upland erosion processes. An impor
tant component in upland erosion is the transport of eroded particles in rills. Usually the
net delivery of soil to a waterway is less than that detached because of deposition in the
upslope area. The net amount of soil to enter a stream's system is then determined by the
transport rate. However, because of the tremendous variability in soil and runoff charac
teristics, it is difficult to extrapolate empirical transport rates obtained from one site to
predict the response at a different site. An alternative to this approach is to model the
transport rate theoretically.

Flows in rills and other erodible channels are frequently predicted by extending
concepts developed for rigid or fixed boundary channels. Theoretically, flows in rigid
channels can be solved using the equation of motion, the continuity equation and appropriate
boundary conditions. As an example, consider uniform flow in a trapezoidal, concrete
(fixed boundary) channel for a specified flow rate and known Manning's n and bed slope.
Flow velocity and depth can be obtained by solving Manning's and continuity equations. A
solution is possible because Manning's n, bed slope and channel cross sectional shape are
considered independent of flow rate. This allows the effects of different flow parameters
to be easily evaluated. For instance, the effects of changing bed slope can be predicted by
simply using a different slope in Manning's equation.

Flows in erodible channels are considerably more complex than those in rigid channels.
Erodible channels have the freedom to change their roughness, shape and bed slope with flow
conditions. Hydraulic response is then dependent on sediment movement in the channel.
These interactions make flow predictions more difficult. Consider, for example, the effects
of changing bed slope on flow conditions in erodible channels. Such a change would affect
the sediment response, which in turn, would alter hydraulic parameters such as Manning's n
or cross sectional shape (e.g., trapezoidal to rectangular). If these parameters change
significantly, additional relationships are needed to interrelate hydraulic and sediment
responses.

Workers in fluvial hydraulics have proposed a number of empirical approaches to
interrelate hydraulic and sediment responses (Leopold et aI., 1964; Graf, 1971; Simons and
Senturk, 1976). More intriguing, however, are those studies that have hypothesized an
additional flow mechanism to supplement standard relationships of conservation of mass,
force-momentum and/or energy. Many of these mechanisms are based on some minimiza
tion or maximization principle. Examples include various forms of minimum energy
dissipation rate (Leopold and Langbein, 1962; Brebner and Wilson, 1967; Yang, 1971a; Chang
and Hill, 1977 and others), minimum variance theory (Langbein and Leopold,1966),
maximum sediment transport rate (White et aI., 1982), and maximum friction factor (Davies
and Sutherland, 1983). Based on the work of Song and Yang (1980) and Yang (1983),
minimum energy dissipation rate appears to have the strongest theoretical base and to
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explain a larger range of fluvial responses. This minimization principle is the focus of this
study.

Objectives

The overall objective of this project is to gain a better understanding and to quantify
the interactions between the hydraulic and sediment response in rills. To fullfill this
objective, both theoretical and experimental work will be conducted. The specific objec
tives are given below:

1. To develop a predictive model for the erosion process in rills using minimum rate of
energy concepts;

2. To gather data on the interactions between the flow rates, sediment loads, and rill
geometry in a carefully controlled laboratory;

3. To conduct erosion runs in the field to quantify the geometry characteristics of these
rills.
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METHODOLOGY; THEORETICAL

DEFINITION OF ENERGY DISSIPATION RATE

Introduction

Minimum rate of energy dissipation has been proposed as an additional physical prin
ciple to describe flows in erodible channels. Originally this work was based on an analogy
between fluvial and thermodynamic systems where an equivalent form of the Second Prin
ciple of Thermodynamics was developed for fluvial systems (Leopold and Langbein, 1962;
Yang, 1971). This resulted in a hypothesis that a fluvial system will adjust itself to mini
mize the rate of potential energy dissipation per unit mass. Alternative formulations
include minimum unit stream power (Yang, 1972), minimum total stream power (Chang and
Hill, 1977) and minimum total stream power per unit length (Chang, 1979).

Important theoretical support for using minimum rate of energy dissipation in fluvial
systems is given by Yang and Song (1979) and Song and Yang (1980). In these papers,
minimum rate of energy dissipation is applied to open channel flows with rigid boundaries.
They demonstrated that the equation of motion for steady, irrotational flows can be obtained
by minimizing the rate of energy dissipation. Here energy dissipation rate is defined as the
rate in which the mechanical energy of mean motion is lost either to viscous dissipation or to
turbulent motion. Song and Yang (1979) showed that this approach can be used to predict
velocity profiles for both laminar and turbulent flows. The true strength of this work,
however, is that it provides theoretical support for using an analogy between open channel
systems and thermodynamic systems. This basic definition, modified for two-phase flow,
will be used in the proposed rill erosion algorithm.

Song and Yang (1980) assumed steady, irrotational, fixed boundary, single-phase fluid
flow with zero velocity or zero shear along the channel boundaries in their theoretical
development. The energy dissipation function in this paper will be written for two-phase
flow of water and sediment. Unfortunately, rigorous development of this function is long.
Only the key points will be given. A limited number of draft copies of the complete
derivation (more than 100 typed pages) is available from the author.

Two-phase flow concepts

Sediment-laden flows are composed of water and sediment components. Each of these
components can have different characteristics such as different velocities and densities.
Emphasis in this study is on the properties of the bulk movement rather than those of its
individual components as sometimes formulated (e.g., Standart, 1964; Whitaker, 1973; Gray,
1975).

It is desirable to treat the water-sediment mixture as a continuum so that continuous
values can be assigned to each point in the flow field. Strictly speaking, the properties of
the flow field are not continuous. Discontinuities exist at the interfaces between solid and
liquid phases. This problem is handled by considering th.e point value as the average value
over a given volume which encompasses enough particles to remove irregularities (Whitaker,
1969). If the length scale associated with the sediment particle is d, the length scale
associated with the averaging or integration volume is l, and the length scale associated with
rill geometry (such as flow depth) is L, then a desirable characteristic of this averaging
procedure is that d«l«L. If this characteristic is satisfied, areal-averaging of field vari
ables is equal to volume-averaging (Whitaker, 1969). This is important in estimating surface
forces and advection processes.
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Field variables are volume-averaged using the general formulation given by Drew
(1983) written for a generic variable F as

F = _I J pf dV (la)
V t V

t

where f is a local specific value, p is the local density and Vt is the volume. Because of the

two-phase nature of the system, the product pf will be defined as

where 6
f

= 0 when dV is in solid phase and 6
s

= 0 when dV is in liquid phase, otherwise these

values are equal to one.

To illustrate the volume-averaging procedure, the results for two-phase density will be
given. For volume-averaged density, f

s
and ff are equal to one. Therefore, Eq. la can be

written as

or

Iv
s

p dV +s } (2a)

(2b)

where p ,Pf and p are the densities of the mixture (bulk), fluid and solid phases, respec-m s
tively, and Vf and Vs are the volume occupied by fluid and solid phases, respectively.

Using volumetric concentration, mixture density can be written as

p = p c + Pf(l-c)m s

where c is the volumetric concentration of solids.

(3)

In a similar manner, a volume-averaged mixture velocity can be defined where f is
s

equal to the velocity of the solid phase and f f is equal to the velocity of the fluid phase.

Mixture velocity can then be defined as

p u . = u .p c + uf.Pf(l-c) (4)
m ml SI s 1

where u ., u . and ufo are the mixture velocity, fluid velocity and solid velocity, respec-
fit 51 1

tively, in the ith direction.
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Laminar flow equations

Using volume-averaging and areal-averaging techniques, fundamental rel[<tionships
for conservation of mass, equation of motion, and energy equations have been derived for
the bulk fluid. Non-linear spatial fluctuations around mean values were neglected. Addi
tional terms were eliminated using an order of magnitude analysis.

The conservation of mass for two-phase, laminar flow can be written as

a p
m

-a"'t=- + = 0 (5)

where tensor notation is used and p and u . are as previously defined. The mixture
m m1

density is independent of time and space for constant volumetric concentration fluid.

The equation of motion for two-phase, laminar flow in the ith direction be written as

+
a p u . u .
_~m=--=-"m",1,--",m",J_ =

ax.
J

£....£... +ax.
1

(6)

where p is pressure, g. is the gravitational component and r!. is the total shear stress defined
1 1J

as

t s f
r .. = r .. C + r .. (I-c)

1J 1J 1J
(7a)

f swhere r .. and r .. are fluid-fluid and solid-solid shear, respectively. Much theoretical
1J 1J

interest lies in estimating r!. (see Buyevich and Shchelchkova, 1978). A rough estimate of
1J

r!. will be obtained using the experimental results of Bagnold (1954, 1956). Total shear
1J

stress is evaluated as

t
r ij = J.'m (

au.
_~m",!_ +

ax.
1

au.
---,,..:m:::1c.. )

ax.
J

(7b)

where J.'m is a "mixture" viscosity defined using Bagnold's data as

where g(>.) is a some function of linear concentration >. that could be estimated using
Bagnold's experimental results and J.'f is the viscosity of water.

In laminar flow there are three energy equations of interest: (I) conservation of total
energy (mechanical and heat energy), (2) mechanical energy equation, and (3) thermal energy
equation. The conversion of mechanical energy to heat energy can be evaluated by
examining these relationships, resulting in a energy dissipation rate term. Details of this
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approach will only be given for turbulent flows.

Turbulent flow equations

Equations developed so far are for laminar flow conditions. Turbulent flows are
usually considered by dividing instantaneous values into mean (now with respect to time)
and fluctuating components. This procedure is similar to that used in volume-averaging,
except the time frame is too large to neglect products of fluctuating components. To
simplify mathematical manipulations, the concentration of solids is assumed independent of
space and time. Mixture density and viscosity are then constants.

The conservation of mass for turbulent, two-phase flows is obtained by substituting
mean and fluctuating components into Eq. 5 and time averaging the resulting expression.
For constant mixture density, the conservation of mass for mean motion can be written as

8 U .
_~m",J,- = 0

8x.
J

where U . is the mean velocity in the jth direction.
mJ

(8)

The equation of motion for mean flow is obtained by substituting mean and fluc
tuating components in Eq. 6 and again using time-averaging procedures. This procedure
introduces an additional term because of the non-linear momentum flux rate. The equation
of mean motion for turbulent flows can be written as

8 U .ml
--:8~t~ +

8 U . U .ml m,
---=:~--='-. =

8x.
J

8 P
8x.

1

82U .ml
+ v

m 8x.8x.
J J

{} u'. u' .
__~m~I,-~me.l,-- + g.

8x. 1
J

(9)

where uppercase letters represent mean quantities and lowercase letters with primes
represent fluctuating values, v = J.' / P ,and where the products of p and the correlationm m m m
terms u'. u'. are referred to as Reynolds' or turbulent stresses. Eq. 9 was obtainedml mJ

using Eq. 7b to estimate T~.. If viscous and turbulent stress terms are lumped into a single
IJ

term, such as

T
r .. =
IJ

u' . u' .
ml mJ + J.'m

8 U .ml
8x.

J
(10)

then the equation of motion can also be written as

8 U .ml
--:8"'t~ + Pm

8 U . U .
ml mr

-~----'-"-'- =
8x.

J

8 P
8x.

1

+

T
8 T ••
-:,-'I:.<J_

8x. + Pm gi
J

(II)
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where .,:!. are the total stresses including viscous and turbulent components.
IJ

There are five energy equations useful in describing energy transformations in
turbulent flows (Hinze, 1975). These are (I) conservation of total energy (total mechanical
and heat), (2) total mechanical energy equation (mean and turbulent motion), (3) mechanical
energy equation for mean motion, (4) mechanical energy equation for turbulent motion, and
(5) thermal energy equation. Only the mechanical energy equation for mean motion will be
given here.

The mechanical energy associated with the mean motion is obtained by using the dot
product of the equation of mean motion (Le., Eq. 9) and the mean velocity. This results in
the following expression

u .u --------u .u
mi au p ml mi

)a ml mi
(- +

2 au
2 Pm mi(- u' u' )

at ax. mi mj ax.
1

au au
au ( ----!!!l -!!!i )a umi ( - u' . u' ) mi ax. + ax.

ml mj 1 J+ + vax. m ax.
J J

v (
m

au .
-----!!!J. +ax.

1

au .
-!!!!. )ax.

au.
ml

ax.
+ U . g.

ml 1
(12)

The two boxed terms are of major interest in Eq. 12. These two terms also appear in
other energy equation with opposite signs. The first term

T =
I

u' . u' .
ml mJ

au.ml
ax.

J
(13a)

also appears in the mechanical energy equation for turbulent motion. It represents a lost in
mechanical energy of mean motion and a gain in the mechanical energy of turbulent motion.
The second term

T = v {2 m

au .
-----!!!J. +ax.

1

au.
ml

ax.
J

(13b)

appears in the thermal energy equation.
a gain in thermal energy as the result

dissipation rates per unit mass.

Energy dissipation rate

It represents a loss in mean mechanical energy and
of viscous forces. Both T I and T2 are energy

For the rill erosion model of this study, energy dissipation rate is defined as the rate in
which mechanical energy of mean motion is lost either to viscous dissipation or to
mechanical energy of turbulent motion. In the previous section, this rate per unit mass has
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been defined by the two terms given in Eqs. l3a and I3b. Energy dissipation rate per unit
volume can be written as

'" =t
p u' u'.
m mi mJ

au.m1
---,,...=c.. + J1. {ax. m

J

au .
----!!!l +ax.

1

au .
m1 }

ax.
J

au.m1
ax.

J

(14a)

where "'t is the dissipation rate per unit volume. By using Eq. 10, "'t can also be written as

'" =t
T

T ..
1J

au.m1
ax.

J

(I4b)

where ;!. is the total stress including viscous and turbulent components.
1J

The total energy dissipation rate is defined by integrating Eq. 14b over the flow field,
or,

T
T ..

1J

au.
_:::-"m~l_ d V

ax.
J

(15)

where "'t is the total energy dissipation rate and Vt is the volume of the flow field of

interest.

Following the approach given by Song and Yang (1980), it can be shown that, of the
many possible "'t functions, the minimum function corresponds to the equation of motion for

steady irrotational flows, assuming (I) no slip conditions at channel-fluid boundaries, (2)

negligible ;!. values at the fluid surface and planes normal to the flow direction, and (3)
1J

constant energy heads at the upstream and downstream points. Because of this solution, Eq.
15 provides a reasonable starting point for extrapolating to more complex flows.

Of course, the evaluation of Eq. 15 stills requires the estimation of T! and au ./ax ..
1J m1 J

Discussion

Energy dissipation rate is defined in Eq. 14b as the product of total stress and velocity
gradient. Experimental data suggest that these two terms vary with suspended sediment
load (Vanoni, 1946; Vanoni and Nomicos, 1960). Velocity gradients tend to increase with
sediment load, whereas turbulent stresses tend to decrease. Energy dissipation rate can then
either increase or decrease with sediment load depending on the relative changes in velocity
gradient and total stress. This concept will be illustrated using the log velocity model.

The energy dissipation rate defined by Eq. 14b consists of nine different terms when
expanded from its tensor notation. Using boundary-layer considerations, energy dissipation
rate can be approximated as
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(16)

where U is the mean mixture velocity in the x-direction, y is the vertical direction and T T
m xy

is stress associated with momentum transfer in the vertical direction.

The log velocity profile is based on the assumption of constant shear stress
(Schlichting, 1979), or,

( 17a)

where T
b

is bed shear evaluated for a wide channel, g is gravity acceleration, S is slope and h

is total flow depth. The log velocity profile has a velocity gradient defined as (Schlichting,
1979)

au
mBY = -,.-y = (17b)

where u. is shear velocity, ,. is the von Karmon constant and y is a given height above the

bed.

Using Eqs. 17a and 17b, the energy dissipation rate for sediment-free or clean flow can
be written as

and the energy dissipation rate for sediment-laden flows can be written as

P gSh .1gSi1m s \I o-"s
¢ts = ,. y

s

(18a)

(18b)

where the subscripts "c" and "s" refer to clean and sediment-laden flows, respectively.

For a given height above the bed, a lower dissipation rate for sediment-laden flows,
compared to that of clean flows, occurs when ¢ts<¢tc' or

(19)

The right hand side of Eq. 19 is less than one. Important factors in determining whether
energy dissipation rate increases or decreases are the ratios of h /h ,P / Pf and,. /,. . For a

scm c s
given flow rate and slope, reduction in flow depth is possible for a change in its friction
factor.
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EVALUATION OF ENERGY DISSIPATION RATE

General formulation

Total energy dissipation rate is defined by Eq. 15. To simplify integration, an
irregular shaped rill geometry is approximated by a trapezoidal rill shown in Fig. I. This
trapezoidal rill is defined such that the maximum flow depth, cross sectional area and top
width are equal to that of the original rill. The shape shown in Fig. I is assumed to be
representative of the geometry for the entire rill segment length. Following the general
approach given by Keulegan (1938), integration with respect to y is always perpendicular to
the bed. Only one-half of the rill area is directly integrated. The other half is obtained
from symmetry.

Eq. 16 is evaluated by dividing the volume into bed and suspended zones identified in
Fig. I. The total energy dissipation rate can then be written as

T
T ••

IJ

au.
_-::-"m:.ol_ dV +

ax.
J Iv

ss

T
T ••

IJ

au.
_-::-"m:.ol_ dV

ax.
J

(20)

where V b is the volume of the bed zone and V is the volume of the suspended zone.s g

Different procedures are used to calculate the energy dissipation rate for each of these two
zones.

Suspended zone

In the suspended zone, T:' is obtained from Eq. I I. For steady, irrotational flows this
IJ

equation can be written as (Song and Yang, 1980)

a P g Em
ax.

1

TaT..
IJ

ax.
J

(2Ia)

where E is the total energy head defined as

E =
u .U .

m! m! +
2g + Y (21 b)

where Y is the distance above some datum height for a gravity potential field.

Following the approach given by Wilson and Barfield (1986), Eq. 21b can be simplified
as

ap gE
m

-:a~x- = - Pm g Se = (22)

where Se is the energy slope and y is in the vertical (depth) direction. Other stresses are

assumed negligible.
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If the energy slope and mixture density are independent of depth, Eq. 22 can be
integrated between the surface elevation to some point y, or,

T T = p ghS ( I - L
h

) = T
b

( I - L
h

)
xy m e

where h is the flow depth and T
b

is the shear at the bed.

turbulence in the suspended zone (Rouse, 1937; Vanoni,

(23)

Eq. 23 is often used in modeling

1978; Wilson and Barfield, 1986).

The velocity gradient is approximated by using the log velocity profile previously
given by Eq. 17b. Using Eqs. 16, i7b and 23, energy dissipation rate at any point in the flow
can then be estimated as

(24a)

and the total energy dissipation rate for the profile shown in Fig. I as

(24b)

where <;b~ and ct>~ are the energy dissipation rates at a point and for the flow, respectively, Wp

is the wetted perimeter and a is the thickness of the bed zone. The thickness of the bed zone
is taken as twice the diameter of the particles. Eq. 24b is evaluated numerically.

Bed zone

Energy dissipation rate in the bed zone is evaluated from the following equation

or as

j
a

b T dUm
ct> = 1>.xW T -- dy =

t P dy
o

1>.xWpJ
bed

(25a)

(25b)

where variations in stress and velocity gradient with space have been lumped into an effec
tive shear and velocity product.

To evaluate Eq. 25b, it is assumed that effective shear can be divided into four possible
components. One component is the viscous shear where the velocity of the surrounding
fluid is essentiallly zero (no slip condition). Energy dissipation rate associated with this
component is negligible. Another component is viscous and pressure drag on fixed particles
extending into the flow. Energy dissipation rate is equal to a drag force multiplied by the
velocity of its surrounding fluid. A third component is the forces necessary to keep moving
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particles in motion, including forces to overcome solid-solid friction. Here energy dissipa
tion rate is a function of friction forces and the relative velocity of particles. The fourth
component is the forces required to accelerate detached particles. Energy dissipation rate
for this component is estimated by the change in the kinetic energy of the eroded soil.
Because of problems in evaluating forces and velocities associated with the first three
components, their energy dissipation rates are lumped into a single expression.

Using this physical model, the energy dissipation rate is the bed zone is estimated as

~b = ~b + ~s
t e s

(26a)

where the subscripts e and s indicate energy dissipation rates for the eroded particles and
remaining shear forces, respectively. Expressions to estimate these values are given as

and

~b
e

2
2 b u.

K E 
u r 2

(26b)

b
~ = K K W ~xu.T'b
STU P

(26c)

where E~ is bed erosion rate, u. is shear velocity, Tbis a bed shear (adjusted for the force used

in Eq. 25b), K u. is an effective velocity in the bed zone, K is a velocity constant, and K is
u U T

a constant to account for different energy dissipation rates among the three possible
components incorporated in Eq. 26c.

DETACHMENT AND TRANSPORT ALGORITHM

Introduction

The algorithm differs from other minimization approaches ( Yang, 1976; Chang and
Hill, 1977; Chang, 1979, 1982b, 1984a, 1984b, 1985) in that it does not use an empirical
transport equation. Energy dissipation rate is minimized with respect to suspended sedi
ment load. Constraints are the conservation of mass of both sediment and water
components, conservation of force-momentum for water component, and the detachment rate
of the soil.

The model assumes a single representative particle size and neglects lateral inflows.
If the minimization principle proves useful, the algorithm can be easily expanded and tested
on more complex problems. A simplified flow chart of the model is shown in Fig. 2. Each
of the key components in the algorithm will be described separately.

Rill geometry

Geometry characteristics are necessary to estimate flow area, hydraulic radius and top
width which are used in routing water downslope and calculating energy dissipation rates.
For each rill segment, the cross sectional profile is approximated by linear piecewise poly
nomials as shown in Fig. 3a. Linear piecewise polynomials were selected because they can
represent highly irregular profiles and are relatively easy to manipulate. It is from this
representation that the idealized rill geometry given in Fig. I is calculated.
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Rill profiles are allowed to change with time as the result of detachment or deposition.
Schematics illustrating these changes for deposition and detachment are shown in Fig. 3b and
Fig. 3c, respectively. During deposition, the sediment is assumed to be deposited in
horizontal layers. During detachment, the profile is modified based on the area detached
between breakpoints of the piecewise polynomials. Procedures used to estimate detachment
rates will be given later.

Outflow hydrograph

Total flow in the rill is divided into water and sediment components. The outflow
rate of water is estimated i.ndependently of the sediment load rate using a modified form of
Dooge et a!.'s (1982) Muskingum flood routing method. This method is based on a linearized
form of the St. Venant equation and, hence, maintains a rough balance between forces and
momentum. Ruffini and Wilson (1985) have shown that Dooge et a!.'s method accurately
approximates the results obtained using the full St. Venant equations.

Sediment load rate

Energy dissipation rate is minimized with respect to sediment load rate. Suspended
sediment is varied from clean flow to a maximum value determined by detachment capacity
using a constant step size of 5 gm/s. For each load rate, hydraulic properties of the flow are
calculated and the energy dissipation rates are estimated. The minimum value is then
estimated by a second degree polynomial fitted to points surrounding the lowest predicted
dissipation rate (Beveridge and Schechter, 1970).

Bed load rate is calculated directly from the suspended sediment load assuming iden
tical concentration at their interface. Bed load rate is estimated as

(27a)

where q band q are the sediment load rates in the bed and suspended zone, respectively,
s ss

and g is a function to match concentration values between the two zones. A number of
c

equations have been developed for gc (see Simons and Senturk, 1976). The following equa-

tion is used here,

(11.6)au.
gc = hU

m
(27b)

where U is a velocity and other terms are as previously defincd. Eq. 27b is roughly equal
m

to Einstein's (1950) equation for a small ratio of settling velocity to shear velocity.

Variation in hydraulic characteristics

Hydraulic properties have experimentally been observed to change with sediment as
the result of changing bed form resistance and von Karmon constant (Simons and Senturk,
1976). Changes in the von Karmon constant is predicted using the curve shown in Fig. 4.
This figure shows observed variations in von Karmon constant for a dimensionless energy
rate ratio, which is defined roughly as the power (rate of energy expenditure) to support
suspended sediment to the power to overcome frictional forces (Simons and Senturk, 1976).
Mathematically, this ratio is defined as
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•where P is a dimensionless power term used in Fig. 4, W
s

is the settling velocity of the

particle, c is volumetric concentration, '" is the slope angle and U is a mean velocity.

•Fig. 4 clearly shows a general trend for von Karmon I< to decrease with increasing P .
This effect was predicted by fitting a cubic spline to the curve given in Simons and Senturk
to represent the observed data.

As shown by Eq. 19, changes in flow depth are also important is determining energy
dissipation rates. In the rill erosion model, this change is predicted by adjusting Manning's
n. The general approach of Keulegan (1938) will be modified to estimate a new Manning's n
for a change in von Karmon constant.

Keulegan (1938) showed that Manning's equation could be evaluated from the log
velocity profile. Manning's equation can be written as

(29a)

where U is the mean velocity, R is the hydraulic radius, K is the effective roughness and C
s

is a constant defined as

K 1/6
sC = -"---

n \J'&

where n is Manning's n.

The log velocity profile can be written as Keulegan (1938)

U I [R]- = 6.25 + -In -
u. I< Ks

where I< is von Karmon constant.

(29b)

(29c)

Setting Eqs. 29a and 29c equal to each other, the following expression can be obtained

[
RJI/6 I [R]C K

s
= 6.25 + ;:In K

s
(30)

By numerically evaluating C for a large range of R/K values, C is found to be relatively
s

constant, and an average value for six points is used to obtain

C = 2.396 + 2.161
I<

(31 )
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Finally, by examining the ratio of C with clean water to C with sediment-laden water,
the following relationship is obtained

[
8", ]sn' - n

s - c 2.4",s+2.2
(32)

where n is Manning's n for clean water flows, n' is Manning's n adjusted for a change in thec s
von Karmon constant and", corresponds to von Karman constant for sediment-laden flows.

s
Eq. 32 is developed assuming that the von Karmon constant for clean water is 0.385.

Eq. 32 provides an estimate of Manning's n for different von Karman constants.
Manning's n may also depend on bed roughness factors. These factors are difficult to
predict. In the rill erosion model, Manning's n for sediment-laden flows is predicted using
the general form

where

n = f(c)n'
s s

(33a)

(33b)

where n
s

is Manning's n for sediment-laden flows, c is concentrations, and Kfi and K
f2

are

constants. fCc) is a function to vary n' for bed roughness factors. Alternatively, fCc) can
s

also be viewed as an adjustment for approximation errors in Eq. 32.

Detachment

Detachment rate is used to (1) determine the energy dissipation rate in the bed zone
(i.e., Eq. 26b) and (2) provide a maximum load rate constraint for flow in the suspended zone
(i.e., increase in suspended load can not exceed its supply). The potential detachment rate is
predicted using the following general equation (Foster, 1982)

E = K (T
b

- T )P e c
(34)

where E is the potential detachment rate, K is a soil erodibility constant, T
b

is the bed
p e

shear and T is the critical shear. Bed shear is allowed to vary with location on the rill
c

boundary using the equation given by Foster (1982).

Total detachment rate decreases as the erodible surface area becomes smaller.
Erodible surface area is assumed to decrease with the number of particles moving in the bed
layer. Actual detachment rate is estimated as

(35)

where E~ is the detachment rate, qsb is the bed load rate and q:b is a maximum bed load rate.
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Maximum bed load rate is estimated using the movement of a layer of particles at a
maximum packing density and traveling at the bed velocity.

Deposition

Net deposition of sediment is calculated using mass balance relationships for both the
suspended and bed zones. Advected mass in the bed zone is neglected. A negative deposi
tion corresponds to detached sediment mass.
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METHODOLOGY: EXPERIMENTAL

LABORATORY STUDIES

Erosion table

To study the interactions between the transport of eroded soil, the flow rate, and rill
geometry, a relatively large-scale laboratory apparatus was constructed in one of the Agricul
tural Engineering Department's research shops at the edge of the Oklahoma State University
campus. Erosion processes can be studied on 2.4 m by 9.8 m (8 ft x 32 ft) surface. To
simulate longer upland flow segments, sediment-laden flows can be entered at the inlet of the
table. Clean water and sediment-laden flows can be mixed at this point and allowed to flow
onto the plot. To obtain different slopes, two false floors are placed under the erosion
surface and hinged so that upslope floor can rotate to different angles. A wet laboratory is
adjacient to the erosion table for use in the analysis of runoff data.

A view of the erosion table from the upslope end of the plot is shown in Fig. 5. The
instrumentation rack and rainfall simulator are shown on this print. The instrumentation
rack is part of the system used to measure geometric characteristics of rill flows and is
discussed in the next section. The rainfall simulator was not used in this study. Additional
details about the design and operation of the erosion table are given by Wilson and Rice
(1987).

Measurement of geometry characteristics of rills

As part of this study, an efficient and accurate instrumentation technique was devel
oped to measure rill geometries using relatively low-cost image processing equipment and
structured lighting concepts. A three dimensional schematic of our system is shown in Fig.
6. A laser source projects a well-defined stripe of light which in Fig. 6 intercepts a block of
fixed height situated on a flat surface. The light is gathered through a lens and focused on
a sensor located behind the lens. The sensor image of the striped light is shown in the inset
of Fig. 6. The image is digitized into a square grid (512 x 512) of discrete picture elements
or pixels. Since the light is striking the block at an angle, there is a difference in pixel
locations between the top of the block and that of the flat surface. Differences in these
locations can be used to determine elevation.

The laser and camera components of the system are supported and moved over the
erosion table surface using the instrumentation rack shown in Fig. 5. Movement in the x, y
and z directions is powered by three stepper motors controlled by an IBM PC-AT. Motion in
the y and z directions is obtain using precision racks and pinions and in the x direction using
a chain driven system.

Output signals from the camera are sent to a Data Translation DT-2851 frame grabber
board located in an IBM PC-AT. This board has flashed AID converters that can digitize a
frame in 1/30 of a second. Its resolution is 512 lines by 512 pixels with 256 possible gray
values. Limited processing on the board can be done such as frame averaging, frame
addition and subtraction, and windowing. The computational speed of the system is
increased using a Data Translation DT-2858 auxiliary frame processor board. This board
has high speed direct interface to the frame grabber memory, has pipelined arithmetic
performance, and supports NxM convolutions, frame averaging, normalization and
histograming operations.
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Software has been written to manipulate and analyze the images. A critical algorithm
is identifying the location of the laser line. The key components of this algorithm are (I)
enhancing the image using a convolution filter, (2) selecting the appropriate gray level and
(3) determining the midpoint of the line. The system can measure 300 data points in less
than six seconds. Theoretical and operational details and calibration procedures are given
by Rice et al. (1987a, 1988).

Two sets of experiments were conducted to evaluate the accuracy and applicability of
structured lighting techniques for measuring surface profiles. The first set of experiments
used "precision", rigid objects. These objects were constructed precisely and represented
well-defined shapes for evaluating accuracy. The second set of experiments used soil with
pre-formed surface depressions to test the applicability of the system.

A summary of the measured heights for five square tubing blocks are given in Table 1.
Eight different measurements were taken for each block at various camera heights as
discussed by Rice et al. (1987a, 1988a). The mean values is within 0.1 mm of the actual
value for each height. The maximum error for rigid blocks was only 0.63 mm. No notice
able problems were found using the system on soils. The measured values for soils were
within the accuracy of the commonly used pin displacement method. Details of these results
are also presented by Rice et al. (l987a, 1988a).

Table I
Summary of Height Measurements

Block
#1
#2
#3
#4
#5

Actual Height
(mm)

12.80
25.04
37.69
50.37
62.08

Mean Value
(mm)

12.84
24.95
37.60
50.31
62.02

Std Dev.
(mm)
0.128
0.128
0.196
0.119
0.082

Finally, dynamic changes in the top width of rills during the event are also obtained
using image processing techniques. Here a solid-state video camera is located directly over a
rill and records the rilling processes. Images are analyzed using Data Translation's DT-2851
and DT-2858 image processing boards. Since the gray level of flowing sediment-laden water
is different than the surrounding soil, it is possible to locate the interface boundaries
between them. It is then relatively easy to measure the top width at different times using
image processing software.

Measurement of surface velocities in rills

In addition to the development of instrumentation techniques to measure rill geometry,
unique techniques were also developed to measure near-surface velocities of rill flows.
Surface velocities are determined by the movement of small wooden beads as they float past
a camera. Image processing techniques were used to determine the travel distance within a
known time interval and hence surface velocities. Details of the procedure are given by
Rice et al. (1987b, 1988b).

Different algorithms were developed for slow and fast water velocities. Both
algorithms determined the location of beads with time using a connectivity analysis given by
Cunningham (1981). For the slow water algorithm, the time interval between beads was
obtained by evaluating different image frames, whereas the fast water algorithm used a
single frame to trace the movement of beads. Velocity is obtained directly from the
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measured displacement distance over a given time interval.

Two sets of experiments were conducted to evaluate the accuracy and applicability of
the velocity measuring algorithms. The first set of experiments used beads glued to a
rotating belt to provide a well-defined, known velocity. The second set of experiments was
used to test the applicability of the system to open channel flows. In both sets of tests, the
image processing velocities corresponded very well to observed values. The results for open
channel flows are summarized in Fig. 7. The accuracy of the system was estimated as + 10
mm/s. Additional experimental details are given by Rice et al. (1987b, 1988b). -

Experimental design for laboratory studies

Laboratory experiments were conducted to study interactions among transport rate and
flow and geometry characteristics and to evaluate minimum rate of energy dissipation
concepts. Preformed rills were constructed in the erosion table using a specially constructed
tool attached to a John Deere 318 tractor. The initial rill geometry was approximately
parabolic with dimensions corresponding to that reported by Rohlf and Meadows (1980) and
Line and Meyer (1987) for observed rills. A local loam soil (38% sand, 40% silt and 22% clay)
was used in the study.

Data were gathered for two different slopes of 2% and 8% and for two levels of inflow
concentration. Two replicates were used to obtain a total of eight runs. Prior to each run,
the soil was roto-tilled; a rill was then formed and saturated using a drip hose. Three
different inflow rates were used for each run: (I) low flow rate of roughly 0.2 lis for the
first fifteen minutes, (2) medium flow rate of roughly 0.5 lis for next fifteen minutes, and
(3) high flow rate of roughly 1.0 I/s for the last fifteen minutes. A small break was allowed
between flow rates so that rill profiles could be measured.

During each run, the volumetric flow rate and effluent concentration were recorded at
the outlet of the rill. At roughly the midpoint between inlet and outlet of the rill (distance
of 5 m downslope) surface velocities and rill top widths were recorded using procedures
previously discussed. Rill profiles were measured at fifteen upslope locations at equal
spacing of 0.05 m before and after the run using structured lighting techniques. In addition,
intermediate profiles were taken at three locations of equal spacing of 0.1 m between the
different flow rates. Bulk densities were taken in the rills following the runs.

FIELD STUDIES

The final phase of this project was to obtain data in the field. This step required the
construction of a portable, field rainfall simulator. A portable rainfall simulator was
designed and constructed similar to that built by Dickey et al. (1984). The main advantages
of this particular type of simulator were its portability and relatively low construciton costs.
It has a rotating boom simulator capable of spraying an area roughly 14 feet by 35 feet.
Image processing techniques developed in the laboratory for measuring rill profiles were
extended to the field.

Field erosion studies were conducted at an Agricultural Engineering Departmental site
located just off campus. Here the emphasis was to measure the shape of rills generated from
runoff. A suitable site was cleared of its vegetation. Rainfall was applied to the plot until
rills of significant size were formed. The profiles of these rills were then measured.



Figure 7. Comparison of Channel and Image
Processing Velocities.
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FINDINGS

LABORATORY STUDIES

Observed data

The sedimentologic response of the preformed rills was strongly dependent on slope.
For the eight percent slope, the average detachment rates for clean water runs were 0.17
gm/m/s for the low flow rate, 0.72 gm/m/s for the medium flow rate and 2.26 gm/m/s for the
high flow rate; whereas for the clean water, four percent slope runs the corresponding
average detachment rates were 0.04, 0.21, and 0.79 gm/m/s for the low, medium and high
flow rates, respectively. Detachment rates at the eight percent are three to four times larger
than those observed at four percent. These ratios also correspond roughly to observed ratios
of transport rates at the outlet of the rill.

Observed sedimentologic response was also dependent on the sediment concentration at
the inlet of the rill. For the eight percent slope, the average detachment rates of sediment
laden runs were 0.03, 0.0 (no net detachment) and 0.53 gm/m/s for the low, medium and high
flow rates, which are at least four times smaller than values given in the previous paragraph.
For the four percent slope, the effects of non-zero influent concentration were not as
significant resulting in average detachment rates of 0.03, 0.03 and 0.77 gm/m/s for each of
the three flow rates. Lower influent concentration values were used in the four percent
runs. A reduction in net detachment rate was expected as the transport rate approached its
maximum capacity.

The effects of inlet sediment concentration on near-surface velocities are not clear.
For the eight percent slope, there was consistent trend for larger velocities with the sediment
laden runs. The averaged surface velocities for clean water runs were 0.92, 1.14 and 1.26
m/s for the low, medium and high flow rates, respectively; whereas, the corresponding
velocities for the sediment-laden runs were 1.15, 1.48 and 1.85 m/s. For the four percent slope,
however, a slightly opposite trend appeared to occur, that is, smaller velocities for the
sediment-laden runs. Here the data were not as consistent in the eight percent runs. The
averaged surface velocities for clean water runs were 0.79, 0.91 and 0.98 m/s for the low,
medium and high flow rates, respectively; whereas, the corresponding velocities for the
sediment-laden runs were 0.65, 0.89 and 0.96 m/s. In all of these calculations the velocities
were adjusted to a standard flow rate assuming linear relationships.

The detachment rate in the rills was highly variable, especially for the eight percent
runs. Before and after profiles for two locations along the rill are shown in Fig. 8. The
two profiles were 0.2 m apart. The detached mass per unit length for the downslope profile
was roughly 13 gm/cm compared to 131 gm/cm for the upslope profile. Uniform flow
conditions assumed in the proposed model (and most other models) did not occur. Small
perturbations in the rill slope often resulted in an overfall condition. The movement of this
overfall appeared to be an important component in the erosion process.

Comparisons with predicted values

Procedures and assumptions for determining parameters for the detachment and
transport model are as follows:



28

300 r -----1 --,

. Upslope Locatlon ~,
, I,

260
,

• /,-!E 220 ~

,5

~
,

J: Initial ->/ rV+'
a 180 ,-/0
0

.-
1-140 <- Final

...,

100
j

~--L~__-'- -'--
40 89 138 187 236 285

Prof 11e (mm)

300

~
I

Downslope Location I
..;

260

E 220
.§ I
J:

~
+'

~a 180c
Cl Ir j

~
Final

140
I

100
L~_-J- ~
0 50 100 150 200 250

Prof 11e (mm)

Figure 8. Spatial Variability of Detachment.



29

(I) The rill was modeled as a single segment. Representative cross-sectional area,
velocity and top width were determined by data at roughly the midpoint of the
rill.

(2) The observed cross-section before the each flow rate was approximated by a
parabolic profile to simplify calculations matched to the observed data.

(3) From observed flow width and parabolic profile, the flow depth, hydraulic
radius and wetted perimeter were calculated.

(4) Using the measured water surface slope (S) and calculated hydraulic radius (R),
the average bed shear (r) was estimated as pgSR and the shear velocity as the
square root of gSR.

(5) Measured surface velocities were converted to mean velocities using the rela
tionships developed by Rice et al. (l987b).

(6) Manning's n was then estimated.

(7) Observed detached mass per unit length using measured influent and effluent
concentrations was divided by the wetted perimeter to determine E in Eq. 34.

p

(8) Critical shear value was assumed equal to zero. Soil erodibility constant in Eq.
34 can then be approximated by dividing Ep by the bed shear.

(9) Representative particle size was taken as the value corresponding to the fifty
percent finer from observed distributions.

(10) The following values were assumed: K u = I, K r = 0.5, Kfl = I and K
f2

= o.

Predicted and observed transport rates are shown in Table 2 for the clean water runs.
The observed values varied considerably with flow rates and slopes. The predicted
transport rates, however, have either an almost constant value of 7 gm/s or sediment-free
water. There was a slight trend for predicted transport rate to increase with flow rate.
Predicted transport rate was not dependent on slope.

It is unclear whether these poor predictions are caused by an erroneous theoretical
hypothesis, that is that rills minimize their energy dissipation rates, or by an oversimplified
algorithm which was required to implement the hypothesis. This issue will be addressed by
conducting a sensitivity analysis of key input parameters in the next section. Results are
presented separately for bed and suspended zone parameters.

Sensitivity of predicted values

All sensitivity runs were conducted for a triangular shaped rill of 1:1 sideslopes and
length of 2 m. Constant volumetric flow rate, slope, particle diameter and critical shear stress
were set at 1000 cc/s, 0.05, 0.0012 cm and I N/m/m, respectively.
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Table 2
Predicted and Observed Transport Rates

Slope Site

8

8 2

4

4 2

Transport Rate
Flow Predicted Observed
Rate (gm/s) (gm/s)

Low 0.0 1.8
Med 7.3 8.5
High 7.5 17.6

Low 7.0 1.0
Med 7.4 3.2
High 7.5 17.2

Low 7.2 0.3
Med 7.4 2.6
High 7.5 10.0

Low 0.0 0.3
Med 0.0 1.2
High 0.0 4.2

The sensitivity of energy dissipation rate was evaluated by varying constants K
u

(effective bed velocity), K (effective bed shear) and K (soil erodibility factor). The
r e

effective bed velocity was varied between 0.2 and 6.0, effective bed constant was varied
between 0.1 and 0.75, and soil erodibility factor was varied between 1.0 and 10.0 gm/N. The
resistance constants of Kfl and Kf2 were set equal to one and zero, respectively.

Overall the variation in bed parameters over this range of values had little influence
on locating the minimum energy dissipation rate. This is because the contribution of bed
energy dissipation rate is relatively small in comparison to dissipation rate in the suspended
zone. Predicted energy dissipation rates for the bed zone and total flow are shown in Fig. 9.
Thesc results were obtained using K =1, K =0.5, and K =5.0.u r e

In addition to its relatively small contribution to total dissipation rate, bed dissipation
rate is dominated by "shear" rate given by Eq. 26c. Since the dissipation rate in the suspended
zone is also strongly dependent on r

b
, load rate corresponding to minimum dissipation rate in

the bed zone is approximately equal to the suspended zone minimum value. Therefore, the
bed zone only accentuated results obtained in the suspended zone.

The sensitivity of energy dissipation rate in the suspended zone was evaluated using
different von Karmon constants (i.e., Fig. 4) and for variations in Manning's n due to the
function f(c) in Eq. 33a. The von Karmon curves were modified by linearly increasing or
decreasing predicted values of Fig. 4. Manning's n was varied using KfI=1 and K f2=10.

Bed parameters of K , K , and K were set to I, 0.5, and 5 gm/N, respectively.u r e

The effects of varying von Karmon values + 5% over the range of power ratio had a
relatively minor effect on the location of the minimum dissipation rate. A positive change
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shifted the location to larger sediment rates, whereas a negative change shifted the location
to smaller sediment rates.

The results of changing Manning's n were, however, quite important. In Fig. 10, thc
energy dissipation rate is shown for the case when the function f(c)=1 (i.e., KfI=l; Kf2=O).

As shown by this figure, the minimum value is 4.6 gm/s, which is close to clean water. Also
shown on the figure are the results for KfI=1 and Kf2=IO. For this condition, the minimum

value corresponded to detachment limiting value of > 50 gm/s, which the largest concentra
tion that can be achieved for the given detachment rate. Variation in Manning's n over this
range, due to f(c), was less than 20 percent. Therefore, a relatively minor change in
Manning's n varied the sediment load from relatively clean to relatively "dirty" flows. Since
an accurate estimate of f(c) is difficult, this is a major limitation of the proposed model.
Improved procedures are needed in estimating this effect before the minimum rate of energy
dissipation hypothesis can be evaluated more thoroughly.

FIELD STUDIES

A typical rill profiles gathered in the field study are shown in Fig. II. These three
profiles are gathered on the same rill and can be used to illustrate rill development. At the
upslope point, the rill is relatively shallow. As the flow increases downslope, the rill
becomes deeper and wider.
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