Alle Long the

RESEARCH PROJECT TECHNICAL COMPLETION REPORT OWRR PROJECT NO.. A-038-OKLA.

1

Sensitivity of Groundwater Flow Models to Vertical Variability Of Aquifer Constants

Submitted to

The Oklahoma Water Resources Research Institute Oklahoma State University Stillwater, Oklahoma

Вy

Richard N. DeVries Douglas C. Kent Associate Professor Associate Professor Civil Engineering Geology Oklahoma State University Stillwater, Oklahoma

January 1923

The work upon which this report is based was supported in part by funds provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Research Act of 1964.

SENSITIVITY OF GROUNDWATER FLOW MODELS TO VERTICAL VARIABILITY OF AQUIFER CONSTANTS By Richard N. DeVries and Douglas C. Kent

ABSTRACT

The Ogallala aquifer in the Oklahoma Panhandle is in need of better management because of increased groundwater demand which has caused declines in static water levels at an alarming rate. A groundwater management computer model was developed for the Ogallala aquifer in the Texas Panhandle and treats the aquifer as a homogeneous system. In this study, the computer model has been modified in order to evaluate the effect of vertical layering on semi-static water level changes which occur during the dewatering of a single unconfined aquifer. The modified model was applied to a study area near Guymon, Oklahoma, using both the homogeneous and the multi-layered cases. The aquifer is characterized by a saturated thickness of 400 feet. The accumulated drawdown values of the homogeneous and the multi-layered cases demonstrate that there is about 88 feet difference between the two cases before the base of the aquifer is encountered. Approximately 26 percent more time is required to dewater the layered aquifer. Thus, vertical variations of lithology in an aquifer such as the Ogallala should be considered when prediction is made relative to groundwater management.

A physical sand model was constructed using four layers of Ogallala aquifer material. Pumping tests and drainage tests were conducted. Average values of aquifer characteristics were obtained for the model under different saturated configurations. The results clearly indicate that the aquifer characteristics change as dewatering takes place. DeVries, Richard N., and Kent, Douglas C., SENSITIVITY OF GROUNDWATER FLOW MODELS TO VERTICAL VARIABILITY OF AQUIFER CONSTANTS. Project A-038-OKLA., Completion Report to the Office of Water Resources Research, Department of the Interior, December 1972, Washington, D.C.

Keywords - *GROUNDWATER - *MANAGEMENT MODELS - GROUNDWATER FLOW MODELS -OGALLALA - SPECIFIC YIELD - TRANSMISSIBILITY - COEFFICIENT OF PERMEABILITY - HYDROGEOLOGY

TABLE OF CONTENTS

I.	DESCRIPTION OF RESEARCH PERFORMED
	Introduction
	Adaptation Of Aguifer Characteristics
	to Management Model
	Introduction
	Computer Programming of Management Model
	Adaptation of Aquifer Characteristics to Sand Model 24
	Introduction
	Pump Test
	Pump Test Results
	Laboratory Measurements ,
	Drainage Tests Using the Sand Model
	Results of Laboratory Measurements
II.	SUMMARY AND CONCLUSIONS
III.	PROJECT RELATED PUBLICATIONS
IV.	PROJECT PERSONNEL
··· ,	SELECTED BIBLIOGRAPHY
	APPENDIX A

I. DESCRIPTION OF RESEARCH PERFORMED

INTRODUCTION

The Ogallala Formation has been used as an aquifer providing a groundwater resource to farm production and the agriculturally based industries in the High Plains Province of the United States. The formation extends from Nebraska to the Texas Panhandle. This study was restricted to the portion of the Ogallala Formation which occurs in the Oklahoma Panhandle. Although this aquifer occurs in Cimarron, Texas, and Beaver counties of the Oklahoma Panhandle, only Texas county is considered because of the availability and quality of data (see Figure 1).

Geologically, Pleistocene and Pliocene sediments crop out in the study area. The Ogallala Formation is of Pliocene age. However, because there is a lack of stratigraphic detail the name "Ogallala" was used in this study to include all Tertiary sediments. These sediments can occur either as unconsolidated or semiconsolidated sediments and are composed of discontinuous layers of sand, silt, clay, gravel, sandstone, caliche, limestone, conglomerate, and volcanic ash. Locally the units are tightly cemented by calcium carbonate while in other places, they are very poorly consolidated. These sediments are moderately permeable and provide a major source of ground water in the area. The saturated thickness ranges from 300 to 800 feet with an average thickness of 400 feet. Bedrock units of Mesozoic and Permian times subcrop under the Tertiary sediments. The bedrock within the study area is composed of vari-colored shale, sandstone, siltstone, and a limited occurrence of thin discontinuous gypsum beds. With the exception of Jurassic and Cretaceous sandstones in western Texas county, the bedrock is generally too fine grained and impermeable to transmit water. Thus, the bedrock surface forms an impermeable boundary at the base of the aquifer in the study area. The bedrock surface is characterized by moderate topographic relief with numerous local depressions which are considered to be bedrock valleys.

The Ogallala aquifer is being subjected to increased water withdrawals. These withdrawals far exceed the natural recharge, especially in the Southern High Plains area. The aquifer is being mined in this area and the resulting declines in static water level are becoming

THE HIGH PLAINS PROVINCE FIGURE 1

Ŷ

critical. In order to predict these declines in the Texas Panhandle, a mathematical management model was developed by investigators of Texas Tech University's Civil Engineering and Mathematics departments and of the High Plains Underground Water Conservation District No. 1 at Lubbock, Texas (Sechrist, et al., 1970). McClain (1970) is using a similar approach to modeling the Ogallala Formation in Kansas. However, these investigators (Sechrist, et al., and McClain) are considering the Ogallala Formation as a homogeneous unit. Heterogeneous porous materials have also been considered by researchers such as Nelson and Cearlock (1967) as a homogeneous mass in which there is a statistical variation in the distribution of aquifer constants. They model the distribution of permeability irrespective of vertical variation in the aquifer and use fitting procedures to statistically determine lateral variations of permeability. A heterogeneous distribution of permeability has also been assumed by McMillan (1966) to be homogeneous with a specific range of variance.

2

Research by Frye (1970), Keys and Brown (1970), and Pearl (1970) has shown that the Ogallala Formation is neither homogeneous nor randomly heterogeneous but rather is discontinuously layered. The importance of considering layering as it would apply to groundwater flow models is evident in articles which have appeared since the beginning of the middle 1960's. The bulk of this research has been restricted to the analysis of multi-aquifers (several aquifers) or to aquitards between multi-aquifiers. Bredehoeft and Pinder (1968, 1970), Hantush (1967), and Neuman and Witherspoon (1969, 1969) have applied mathematical models in this manner to nonhomogeneous, anisotropic, and/or leaky artesian aquifers.

Freeze and Witherspoon (1966, 1967, 1968) evaluated the effects of layering within a single aquifer (with different values of permeability) on flow net configurations within the saturated zone using the finite difference technique and the digital computer. More recently Javandel and Witherspoon (1969) have extended the layered case to consider the temporal effects of layered aquifers on drawdown associated with pump tests and their analysis. Current research concerned with mathematical modeling of a single multi-layered aquifer is being conducted by Pinder, Bredehoeft, and Bennett. They are concerned with the determination

of factors and relationships that govern permeability distribution (including layering) which in turn will be useful for predicting permeability distribution by indirect means. In addition, they are considering how this information can be applied to mathematical models. However, it is apparent that no attempt is being made to specifically relate the effects of layering on semi-static water-level changes which occur during the dewatering of a single unconfined aquifer over a long period or time.

Thus, this study is an evaluation of how the variation of lithology within an aquifer can affect the rate of dewatering. This variation is assumed to be a major factor contributing to the response of mathematical groundwater flow models. This would be particularly valuable when such models are used for predicting the time for a given water-level change to occur during the dewatering of an aquifer.

The determination of the relationship between aquifer constants and declines in static water levels would not only be useful in analysis of the Ogallala aquifer but also could be applied to layered alluvial aquifers (floodplain and terrace deposits, alluvial fan deposits) as well as to layered basin and coastal plain aquifers. Layered alluvial deposits are associated with many of the major streams in the State of Oklahoma.

1

Therefore, the major objective of this study was to compare the response of a modified version of the Texas Tech management model to multi-layered and homogeneous cases. This was accomplished by making modifications in the management model which would accommodate the multilayered case and the assumption based on the use of weighted-average values to represent the hydraulic coefficients. Comparisons were subsequently made between the homogeneous and multi-layered case using hydrographs.

DESCRIPTION AND MEASUREMENT OF

AQUIFER CHARACTERISTICS

In constructing the groundwater management model for the Ogallala aquifer in Texas County, hydrogeologic data were collected and analyzed. Data were evaluated in order that a basic set of assumptions could be determined and adaptations made in the mathematical model.

The well data for Texas County were provided by the United States Geological Survey and the Oklahoma Water Resources Board. An isometric map was prepared to show the three dimensional distribution of the lithologic characteristics of the Ogallala aquifer both in Texas County and in the test area, located northeast of Guymon, Oklahoma. (See Figure 2).

Layer codes (see Figure 3), were used to simplify log descriptions and provide uniformity in the data. This was achieved by identifying the principal grain sizes. Subsequently the codes were used to prepare isometric diagrams for Texas County and the test area (See Figure 3). Two maps were also used to represent other hydrogeologic aspects of the test area. These two additional maps include the water-level map (Figure 4) and the saturated thickness map (Figure 5).

The isometric diagram was prepared to show the lithologic characteristics of the Ogallala aquifer both in Texas County and in the test area. Preparation of this diagram involved the transformation of coded layer data into a visual three-dimensional diagram. The map grid was skewed to a 30-degree angle in order to provide a three-dimensional view of the groundwater system. A reference datum of 3300 feet above sea level was used with a vertical scale of 1 inch to 100 feet and a horizontal scale of 1 inch to 1 mile. Panel diagrams were not used to show correlation between wells because of the apparent discontinuous nature of the layers.

The water-level map was used to represent the water-table configuration of the test area. All water-level records for March, 1966, were taken from published data (from Hart, 1971). A contour interval of 10 feet was used. The saturated-thickness map was a modification of one prepared by Wood and Hart (1967). A contour interval of 100 feet was used to show the distribution of saturated thickness in the test area.

FIGURE 2

L

Fig. 3.-Coded-layer isometric diagram of the Ogallala Formation near Guymon, Oklahoma

÷ė.

Fig. 4.-Water-level map of test area (after U.S.G.S.), March, 1966

Fig. 5.-Saturated-thickness map of the Ogallala Formation in the test area (after U.S.G.S.), March, 1966

In order to develop an idealized conceptual model which would represent the layered character of the Ogallala Formation, a simple statistical study was made showing the frequency of occurrence of lithology type and layer sequence. In Texas County, 37 percent of the lithology is coarse sand, 25 percent is medium sand, and the remainder is fine sand and clay. (See Tables 1,2). By lumping thinner units together on the isometric map, a sequence of fine to coarse sediments from the water table to the base of the aquifer could be observed. There were 13 from a total of 17 wells within the test area which were representative of this sequence. A similar sequence was noted when 75 of the total number of wells (112) in Texas County were noted to have this sequence. Based on the frequency of occurrence of sequence and lithology type, it was concluded that the model should be described using medium and coarse sediments in a graded sequence with coarser sediments occurring at the base.

To simplify the model, four layers of uniform thickness were assumed. The thickness of each was 100 feet in order that the total thickness of 400 feet would correspond with the average thickness represented on the saturated-thickness map of the study area. (See Figure 5). It was also assumed that the layers were homogeneous when extended uniformly in the lateral direction. Although this assumption is an oversimplification, it was considered necessary for the Texas Tech model and before more complex models could be evaluated.

The distribution and character of the sediments were studied at an outcrop of the Ogaliala Fromation at a location just west of Guymon. A photograph and generalized cross-sectional diagram of the Ogallala outcrop is shown in Figures 6 and 7. The outcrop consists of a buried sand and gravel channel fill overlain by later Ogallala deposits and the caliche caprock which is used as the upper boundary of the Ogallala Formation. It was assumed after examining the well logs that the channel and dissected deposits are similar to those which appear to occur at a much larger scale within the saturated zone of the Ogallala aquifer. Therefore, the graded sequence used to describe the mathematical model was characterized by the sand types at the outcrop (A, B, C, D, in Figure 7). The A, B, C, and D sands were classified as medium, coarse, and very coarse sands, respectively, on the basis of the median grain size.

Table -1-

Frequency of Occurrence of Sediment Types within Texas County

	Accumula	tive Thic Types in D	ckness of Each Well	Sediment	t		Accumu	lative Th Types in	ickness of Each Wel	f Sediment	t	Acc	umulative Type:	e Thickne: s in Each	ss of Sedi Well	iment	
Well No.	2 (feet)	3(13) (feet)	4(14) (feet)	5(15) (feet)	Sum (feet)	Well No.	2 (feet)	3(13) (feet)	4(14) (feet)	5(15) (feet)	Sum (feet)	Well No.	2 (feet)	3(13) (feet)	4(14) (feet)	5(15) (feet)	Sum (feet)
5				150	150 :	58	60			120	180	202	80		40	75	195
6	50			145	195	59	80	20	20	180	300	203		170	30	30	230
7	45		30	90	165	62	40	236		40	316	204	45	30	90	105	270
8	64		16	219	299	65	20		85	120	225	205	30	75	1211	/ S Q()	255
10	215	15	55	20	285		10	225	117	83	210	207	30	75		220	220
13	10	21	52 27	121	177	72	45	235	20	60	250	200	100		100	50	250
10	19		27	165	225	70	30		212	60	302	210		50	127	10	187
19	40	32	48	80	200	80	20	120	212	135	255	211		20	20	320	360
20	27	24	36	72	159	81	30	40		226	296	215	15	90	60	180	345
21	49	23	62	106	240	82	20	127	288		435	- 216	30	30	60	90	210
23			160	50	210	83	13		168	50	231	217	70	15		10	95
26		150	30		180	84			80	216	296	219	166		15	219	225
27		120		120	240	87	32	••	176		208	220	155		75	280	4.30
29	34	9	242	32	317	90	284	10	104	106	400	221	30	20	75	200	260
30	23	23	62	103	207	92	103	10	104		21/	225	. 270	20	75	15	360
31	40	205	02 56	203	467	94	90	30	190	165	240	227	80			130	210
33	40	5	50	111	196	97	45	60	80	120	260	228	72	86	96	26	280
35	00	5	125	90	215	98	75	00	105	105	285	229	76	54	10	10	150
38	225	15	45	75	360	100	45		30	140	215	230	214	7	77	21	319
41			217		217	101	25		<u>90</u>	190	305	232	150	170		45	365
47	40	70		150	260	102	46			176	222	234	38	40	48	50	176
48		90	30	90	210	104	70		20	212	302	236	00	30	/5	45	150
50		60	10	54	124	107	91	25		124	240	238	30		75	190	105
52	64		120	340	2/3	162	35	40	330		270	239	24	29	178	167	398
108	/5	146	130	105	200	163		140	230	230	375	241	85	2.5	12	231	328
110	66	77	185	20	348	167		145	44	300	344	242	36	23	21	107	187
111	55	90	166	49	360	168	30	45	30	300	405	244	30		45	112	187
112	20	••	120	140	280	169	45		205	15	265	245		70		120	190
113	120			150	270	170	20			260	280	249	17	18	190	41	249
114	100	60	240	40	440	171	60			220	280	252		30	18	90	138
116	55	14	116	80	265	172	120			250	370	253	14	51)	001	50	200
117	50	210	30	80	370	173	• -	•-	92	228	320	254	14	40	120	4 i 60	230
118	135	68	140	102	343	175	15	15	90	382	502	255		135	45	60	240
119	35		175	180	330	120	105	165	120	100	445	260	120	155	165	75	360
125	85		120	15	220	181	105	375	75	100	450	262	40	240	80		360
121	235		40	140	415	182		320	30	45	395	263	60	260	20	40	380
134	37		6	77	120	183	80	10	6	25	121	264	20	340		80	440
135	40			140	180	184	90	135	150		375	265	120	240			360
137	3	136	5	50	194	185	80	120	330		480	268	15		135	109	259
146		220	30		250	186	75	60	180	60	375	269	227	1-	54	81	361
147				180	180	187	35	25	74	96	230	₩ 272	130	15	80	00	285
149		90	10	270	370	188	15	15		375	405	Tatal thickness					
151	30	10	90	120	240	190	179	/	26	09	28(of each sediment					
152	30	10	60	120	147	192	65	25	108	30	140	type for all					
154	00	164	- 58		320	194	15	23	30	90	135	wells	7,991	7,654	10,568	15,595	41,808
150	30		50	180	190	196	10		75	<u>90</u>	165						
160	160			240	400	235	25		15	100	140	+hicknoss	10 11	18 30	25 27	37 32	100
197	83	108	6	132	329	200	60	45	30	105	240	Unickness	12.13	10.00	23.27	57.52	
56	30		230	100	360	201	105	33	22	200	369	lf -					

•

Frequency	of	Occurrence	of	Sediment	Types
		within Stu	dy /	Area	•••

Table -2-

Well No.	2* (feet)	3 & 13* (feet)	4 & 14* (feet)	5 & 15* (feet)	
167	0	0	44	300	
173	0	0	92	228	
175	15	15	90	232	
178	105	165	120	55	
180	105	105	120	100	
181	0	375	75	0	
183	80	10	6	25	
184	90	150	150	0	
186	75	60	180	60	
187	35	25	74	96	
188	15	15	0	375	
215	15	90	60	180	
216	30	30	60	90	
219	0	0	15	210	
220	155	0	0	280	
221	30	0	75	0	
225	20	20	0	200	
Total thickness of each sediment type for all wells	770	1045	1161	2437	Σ = 5413 ft
% of total thickness	14,3%	19.3%	21.4%	45%	Σ = 100%

.

*Codes are defined in Figure 7

.

Figure 6. View of Ogallala Formation outcrop near Guymon, Oklahoma

LEGEND

CROSS-SECTIONAL DIAGRAM OF OGALLALA FORMATION OUTCROP NEAR GUYMON, OKLA.

FIGURE 7

GUYMON

10

Poor to moderate sorting was characteristic of these sands. The overall average coefficient of permeability of 400 gpd/ft^2 was used to represent the four layers. This average was the same as the value which was derived from pump test analysis and used in the original Texas Tech model. The coefficient of permeability values used for each of the sands A, B, C, D, were 150, 236, 380, and 835 gpd/ft^2 respectively. Specific yield values were estimated based on each sand type. An average specific yield value of 0.15 was used which corresponds to the value used previously in the Texas Tech model. Specific yield values of 0.07, 0.11, 0.17 and 0.25 were assigned to sands A through D respectively. Samples of each identified layer at the outcrop (A, B, C, and D in Figure 7) were collected for analysis and subsequently used in a sand model which will be discussed later.

ADAPTATION OF AQUIFER CHARACTERISTICS

TO MANAGEMENT MODEL

Introduction

Because preliminary geologic and hydrologic data were used, a simplified conceptual model was considered. Therefore, the basic assumptions used in the modified version of the management model were the following: (1) The aquifer is multilayered and is ideally represented by four uniform sand layers of equal thickness. (2) Each layer is horizontally homogeneous. (3) The bedrock topography underlying the Ogallala aquifer is considered to be relatively smooth and slopes approximately 14 feet per mile in a southeasterly direction. (4) The bedrock and water-table surfaces are approximately parallel and are used as the lower and upper boundaries respectively. (5) Weighted average values of permeability and specific yield assigned at each time step are close approximations for that particular time period. (6) There is no recharge or discharge through the bedrock. (7) Natural recharge and discharge at the boundary of the study area are equal. (8) The total saturated thickness is subject to pump withdrawal in any one time step.

A hypothetical grid of well nodes was designed and subsequently adapted to the study area. Within this area, 24 nodes were assigned having fixed coordinates. In addition, 17 nodes were located around the perimeter of the area and were used as an aid in defining the boundary conditions. A separate computer program was used to divide the 24 internal nodes of the study area into a polygonal grid system using the Thiessen Method (see Figure 8). The amount of groundwater withdrawal from each polygon was based on the area of the polygon and on an assumed constant rate of discharge per unit area of the polygon. The computations used to obtain the adjusted pump withdrawal at each node is shown in Table 3.

Computer Programming of Management Model

The basic program used in this study was originally written by Weber (1968) and later revised by Sechrist, Claborn, Rayner, and Wells (1970). The latter program includes the Crank-Nicholson finite difference method and the Gaus-Seidel iteration procedure. In all preceding uses of the program, the homogeneous case was assumed. In this study, where the multi-layered case was also considered, vertical variations of permeability and specific yield values were introduced into the program as a sub-program, (Figure 9).

New weighted-average values of the coefficient of permeability and specific yield are computed in a sub-program between timesteps. The two hydraulic coefficients are averaged using the following equations:

$$\frac{\underset{\substack{x = i \neq 1 \\ i \neq 1}}{\overset{n}{n}} K_{i}M_{i}}{\underset{\substack{x = 1 \\ i \neq 1}}{\overset{n}{n}} S_{y} = \frac{\underset{\substack{x = 1 \\ i = 1 \\ i \neq 1}}{\overset{n}{n}} K_{i}M_{i}$$

where

n = the number of layers
K_i = the coefficient of permeability value of ith layer
S_i = the specific yield value of ith layer
M_i = the saturated thickness of ith layer

The validity of the values used in this approach was subsequently tested using a physical sand model and will be the subject of the next part of this report.

POLYGON DISTRIBUTION IN TEST AREA

FIGURE 8

Table -3-

Data Used For Computation Of

Simulated Pump Withdrawal

At Each Node

Node	Area (acres)	Seasonal Withdrawal at each node(acre feet) (1.77 acre feet/ acre/ season)	Seasona] Boundary Discharge/ Recharge (acre feet)	Total Adjusted Seasonal Withdrawal at each node (acre feet)
1	4915.20	8699.9	0.0	8699.9
2	2867.20	5074.9	0.0	5074.9
3	3635.20	6463.3	0.0	6463.3
4	3532.80	6253.1	0.0	6253.1
5	4940.80	8745.2	0.0	8745.2
6	3225.60	5709.3	0.0	5709.3
7	2790.40	4939.0	0.0	4939.0
8	2816.00	4984.3	0.0	4984.0
9	4172.80	7385.9	-5011.3	2374.6
10	7219.20	12778.0	-7338.6	5439.4
11	4582.40	8110.8	-2094.5	6016.3
12	1766.40	3126.5	-1737.7	1388.8
13	4710.40	8337.4	-3452.1	4885.3
14	6016.00	10648.3	-7105.8	3542.5
15	4633.60	8201.5	404.0	8605.5
16	1638.40	2900.0	1344.0	4244.0
17	3276.80	5799.9	5384.0	11183.9
18	3614.40	6397.5	7808.0	14205.5
19	2611.20	4621.8	4864.0	9485.8
20	4608.00	8156.2	1904.0	10060.2
21	4070.40	7204.6	0.0	7204.6
22	1996.80	3534.3	788.0	4322.3
23	3072.00	5437.4	1976.0	7233.4
24	3763.20	6660.9	2448.0	9108.9
FOTAL	90,475.20	160,140.7	0.0	160,140.7

Final output from the computer program of the mathematical model was in the form of printed output and included average coefficients of permeability and specific yield, water-level elevations and accumulative drawdown values for each timestep. The results were also electronically plotted in the forms of accumulative drawdown curves for each node.

Results of the Mathematical Model

Comparison was made of accumulative drawdown curves representing nodes in both homogeneous and multi-layered cases. In addition, a sensitivity analysis of the coefficient of permeability and specific yield was conducted.

Accumulative drawdown curves representing the same nodes for both homogeneous and multi-layered cases were overlain on one another and a residual curve was drawn which represented the difference between the two curves. This was repeated for all 24 nodes (See Table 4). Accumulative drawdown curves for a representative node are shown in Figure 10. A significant difference between the homogeneous and the multilayered cases can be noted. The difference is clearly indicated by the residual curve. It can also be noted that the length of time for dewatering of the layered aquifer is approximately 26 percent longer than the comparable dewatering of the homogeneous aquifer. A maximum difference between accumulative drawdown curves for the two cases was 20 percent of the original saturated thickness. This maximum difference occurred at the time when a polygon was completely dewatered using the homogeneous case (see Figure 10).

The sensitivity of the model to the coefficients of permeability and specific yield was evaluated by keeping the initial average value of either of the two coefficients constant throughout the period of dewatering while using the multi-layered case. When specific yield was varied, it was noted that the water-level changes were clearly different in the two cases (see Figure 10). Conversely, the model response was identical to that of the homogeneous case if specific yield was held constant. It was concluded from these results that the model is insensitive to changes of the average coefficient of permeability over the same period of time. However, it should be noted that the model response for either case is different from the above when the initial average values of either coefficient are changed.

Table -4-

Accumulative Drawdown

r

Relationships	Between	Homogeneous	and	Layered	Cases

Node Number	Extended Period of Dewatering Caused bv tayering (%)	% of Aquifer Depth Remaining Saturated For Layered Case When Dry For Homogeneous Case (%)	Depth Remaining Saturated For Layered Case When Dry For Homogeneous Case (feet)
1	27.4	23.0	92
2	24.6	21.4	86
3	32.0	25.7	103
4	25.0	21.7	87
5	27.7	23.9	93
6	24.6	19.8	79
7	27.7	21.2	85
8	23.7	18.7	75
9	33.5	27.8	111
10	24.7	22.8	91
11	. 29.0	25.0	100
12	29.5	27.0	108
13	26,2	23.8	95
14	28.0	25.0	100
15	24.6	22.0	88
16	24.4	20.2	18
17	20.0	18.0	72
18	17.5	15.5	62
19	18.0	16.5	66
20	25.0	18.7	75
21	27.0	22.0	88
22	24.0	22.0	88
23	27.6	23.0	92
24	29.2	23.5	94
Average for all Nodes	25.8%	20.3%	88 Ft.

ACCUMULATIVE DRAWDOWN FOR A REPRESENTATIVE NODE IN TEST AREA FIGURE 10

ADAPTATION OF AQUIFER CHARACTERISTICS

TO SAND MODEL

Introduction

Using the aquifer material collected near Guymon, a physical sand model was constructed. A photo of the model is shown in Figure 11. The model consists of an inner tank 3' in diameter, and 4' diameter outer tank. The inner tank was perforated to allow water from the annular area to flow into or out of the tank. Aquifer material previously described as A, B, C, and D sands, (see Figure 7), were wetted and compacted into the inner tank in one foot layers respectively. A 1-1/4" Johnson well screen with four 10" sections was fabricated and used for the pumped well. Additional observation wells were made from 1" plastic pipe. Waterlevel observations were made using direct open hole measurements and water manometers.

Pump Test

The model was first constructed during early 1972, and pumping tests run during the Spring. The data from these tests are shown in Tables 5, 6, 7, and 8. Because of a requirement that the model be moved to another area in the laboratory, the original model was dismantled and reconstructed during the Summer of 1972. The reconstructed model was again pump tested and also allowed to gravity drain.

The configuration of the model was so designed that the pumping tests data could be evaluated using the Theis Non-equilibrium Equation. A constant head level could be maintained in the annular area between tanks and drawdowns in the pumped and observation well were observed.

Pump Test Results

Plots of the drawdown versus time for the four layers are shown on Figure 12. These data reflect a test procedure where the water level in the annular area was held constant at the upper level of each sand layer. The resulting average values of transmissibility and specific yield are shown in Table 9. The values obtained in these tests are

Tebol bnas lasisval . If erupit

T	ab	le	-5-
---	----	----	-----

Pump Test Data Layer A

	•	

Q = 46.41 ml/sec

time	drawdown	time	drawdown
t = sec	s = cm	t = sec	-s = cm
$\begin{array}{c} 0\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 55\\ 60\\ 65\\ 70\\ 75\\ 80\\ 85\\ 90\\ 95\\ 100\\ 105\\ 110\\ 115\\ 120\\ 125\\ 130\\ 135\\ 140\\ 145\\ 150\\ 165\\ 170\\ 175\\ 180\\ 185\\ 190\\ 195\\ 205 \end{array}$	$\begin{array}{c} 0.0\\ 0.9\\ 1.3\\ 1.7\\ 2.0\\ 2.2\\ 2.7\\ 3.1\\ 3.5\\ 4.9\\ 5.3\\ 5.9\\ 6.1\\ 6.9\\ 7.1\\ 7.7\\ 7.9\\ 8.4\\ 8.6\\ 8.8\\ 9.0\\ 9.3\\ 9.6\\ 9.8\\ 9.0\\ 9.8\\ 10.0\\ 10.2\\ 10.3\\ 10.5\\ \end{array}$	210 215 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930* 960 990 1000	$10.6 \\ 10.8 \\ 11.4 \\ 11.8 \\ 12.5 \\ 12.8 \\ 13.1 \\ 13.4 \\ 13.7 \\ 13.8 \\ 14.0 \\ 14.1 \\ 14.25 \\ 14.35 \\ 14.45 \\ 14.5 \\ 14.5 \\ 14.6 \\ 14.7 \\ 14.75 \\ 14.8 \\ 14.95 \\ 15.05 \\ 15.1 \\ 15.2 \\ 15.3 \\ 15.4 \\ 15.5 \\ 15.5 \\ 15.4 \\ 15.5 \\ 1$

* equilibrium pt.

 $\gamma_{\mathcal{X}_{i}}$

Table -6-

Pump Test Data Layer B

\bar{Q} = 49.24 ml/sec

* equilibrium pt.

Table -7-

Pump Test Data Layer C

Q = 50.44 m1/sec

time	drawdown
t = sec	s = cm
0	0.0
5	3.71
10	9.82
15	14.43
20	18.24
25	21 3
30	24 35
35	25 32
40	26.79
45	27 86
50	28.75
55	20.75
60	20.37
65	30.37
70	20.74
76	21 20
75	31.30 21.55+
00	J1.35" 21 EA
100	31.50
120	31,50

* equilibrium pt.

Table -8-

Pump Test Data Layer D

\bar{Q} = 19.6 ml/sec

time	drawdown
t = sec	s = cm
0	0.0
10	8.4
15	11.3
20	12.8
25	13.2
30	13.4
35	13.9
40	14.0
60	14.1
80	14.3
100	14.4
120	15.5*
140	15.5

* equilibrium pt.

Figure I2. SAND MODEL PUMPING TEST.

Table -9-
Resulting Average Values of
Transmissibility and Specific Yield

Active Layers	T (gal/day/ft)	S _y (dimensionless)	K (gal/day/ft ²)
A,B,C,D	325	0.28	80
B,C,D	125	0.05	40
C,D	150	0.02	75
D	155	0.007	155

considerably lower than those obtained in actual field tests. They are reported here though to confirm that the aquifer characteristics do, in fact change as dewatering takes place. No attempt was made to mathematically establish a set of characteristics curves (S, T, K) plotted versus depth from the results of the sand model tests. Additional runs are being made on the model as part of a class project and it is anticipated that a mathematical relationship can be derived.

Laboratory Measurements

Several samples for permeability analysis were obtained from each packed layer in the sand model by using $1-1/4" \times 2"$ stainless steel tubes. Larger plastic tubes (length 7.7 cm; diameter, 6.49 cm) were also used to collect larger samples. In addition, samples were collected from the sand model for determination of grain-size distribution.

Standard methods of falling head and constant head analysis were used for the determination of the coefficient of permeability. The permeameter used was a soil test model K-670. It is equipped with a 6 x 24" reservoir tank for the permeability fluid (distilled water), a control regulator to maintain constant pressure, and a calibrated pipette to measure the change in head. Both falling head and constant head methods were used sequentially without having to remove the sample. The sample tubes were placed directly into the sample chamber in order to avoid any unnecessary disturbance of the textured properties of the samples. The following relationships were used for computing the coefficient of permeability:

Constant Head K =
$$\frac{QL}{AH}$$

where

K = coefficient of permeability, cm/sec Q = rate of discharge, cm³/sec 1 = length of sample, cm A = area of sample, cm² H = pressure head, cm.

Falling Head K =
$$\frac{2.3aL}{AT} \log_{10} \frac{H_0}{H}$$

where

K = coefficient of permeability, cm/sec a = cross sectional area of pipette, cm² L = length of sample, cm A = area of sample, cm² T = time of test, sec H₀ = pressure head at beginning of test, cm H = pressure head at end of test, cm.

The grain-size distribution of each sediment type was determined using visual-accumulation analysis. A 180 cm tube was used. The analysis included tracking the accumulation of grains which are sorted by size due to their fall velocities as described by Stoke's Law. The accumulative curves for each sediment type are shown in Figure 13.

Drainage tests were also conducted on samples collected in plastic tubes from the sand model. Each sample was saturated under a vacuum, weighed, and subsequently permitted to drain for 360 hours. For no apparent reason, no appreciable drainage occurred in the sample representing sediment type B.

Drainage Tests Using the Sand Model

Drainage tests were conducted on each sediment type (A, B, C, and D) using the sand model. The annular area was drained incrementally with each increment corresponding to the layer thickness of each sediment type. Each layer was permitted to drain radially into the annular area where the volume of drained water was collected and measured. The layers were permitted to drain until no further drainage occurred. The bulk volume of each layer was measured and computed. Corrections were made for the drained fluid volume in the annulus of the tank model and in wells which penetrated the layers in the sand model. The following relationship was used to compute the specific yield:

 $S_y = \frac{Volume drained from layer}{Bulk Volume of layer}$

Figure 13. CUMULATIVE CURVE FOR GRAIN SIZE.

Results of Laboratory Measurements

Results of the permeability tests are shown in Table 10. The average of the four sediment types, comprising the four layers in the sand model, is 69 gpd/ft^2 . This is considerably less than the value of 400 gpd/ft^2 used for the original and modified version (in this paper) of the Texas Tech Mathematical Model.

A summary of the statistics associated with textural characteristics of each sediment type is shown in Table 11. Only one of the four sediment types can be considered to have good sorting. The others were characterized by fair to poor sorting. The poor sorting was probably the main reason for the relatively low permeability coefficient values. If the 400 gpd/ft² is a reasonable estimate for the average permeability then it can be assumed that the samples used were more poorly sorted than those found within the saturated zone.

The drainage tests of the samples in the plastic tubes provided values of specific yield which were generally smaller than those obtained from drainage tests using the sand model. The results of these two tests are summarized in Tables 12 and 13 and in Figure 14. The average specific yields determined from Tables 12 and 13 are .09 and .12 respectively. The average specific yield obtained from the results using the plastic tubes is probably low because of the smaller sample size and loss of sediment type B sample. However, it is assumed that the drainage tests using the sand model are more accurate because of the larger volume of the sediment drained. The average of .12 corresponds reasonably well with the average of .15 used in both the original and modified versions (used in this study) of the mathematical model.

II. SUMMARY AND CONCLUSIONS

Results from the mathematical model indicate that a significant difference can be obtained when comparing the homogeneous and multilayered approaches to aquifer management of the Ogallala aquifer. The length of dewatering time is approximately 25 percent greater in the multi-layered case. Therefore, it can be concluded that layering in the Ogallala aquifer should be considered in any management model

lable -IV-	le -10-
------------	---------

Laboratory Determinations of the Coefficient of Permeability

Samplo	No. of Samples	Const	ant Head	Falli	ing Head	Overall for Cor Fall	l Average Istant and ing Head
Type	Each Type	cm/sec	gal/day/ft ²	cm/sec	gal/day/ft ²	cm/sec	gal/day/ft ²
А	6	0.0012	24	0.0014	29	0.0013	27
В	7	0.0012	25	0.0018	38	0.0015	32
С	7	0.0044	93	0.0048	103	0.0046	98
כ	6	0.0056	118	0.0056	122	0.0056	120

.

Sediment type	Sorting Coefficient (D ₆₀ /D ₁₀)	Degree of Sorting	Median Grain size (D ₅₀)
A	3.2	(Good)	.27
В	16.7	(Poor)	.36
С	5.4	(Fair)	.59
D	10.0	(Poor)	1.5

Grain Size Analysis

Table -11-

Table -12-

Drainage Tests of Core Samples

of Sediment Types

ļ A			С	D	
S _y	time t = Hrs	Sy	time t = Hrs	S _y	time t = Hr
0.019	2				
0.02	12	0.002	12	0.004	12
0.02	47	0.007	47	0.045	47
0.021	96	0.018	96	0.059	96
0.026	360	0.04	360	0.19	360

<u>.</u>

Table	-13-
-------	------

Drainage Tests Using Sand Model

Sediment type	Final Time	Specific Yield (^S y)	Specific Yield at 30 hrs	Specific Yield at 60 hrs
А	60 hrs	.024	.017	.024
В	65 hrs	.081	.072	.080
С	180 hrs	.134	.080	.099
D	190 hrs	.232	.185	.220

DRAINAGE TESTS.

which will be used for management of the groundwater resource. However, the assumption that the layers are considered to be of equal thickness and laterally homogeneous is as previously stated, an over-simplification. Before more complex layering can be considered, additional data and other types of mathematical models should be evaluated.

Results of the physical sand model and laboratory analysis indicate that the average coefficient of permeability of the four layers were 80 and 70 gal/day/ft², respectively. The average specific yield for the four layers determined from drainage tests was 0.12. The coefficient of permeability is considerably less than the 400 gal/day/ft² used in the mathematical model. The specific yield value is similar to that used in the mathematical model. If the mathematical model is to be used for future prediction pruposes, it is recommended that the average values of the coefficient of permeability and specific yield given above be used. However, it is concluded that the hydraulic characteristics do change as the dewatering of the layered aquifer progresses. This confirms the conclusions made from the modified mathematical model analysis.

Ongoing research involves the investigation of the feasibility of combining the results of this study with an economic model, for the prediction of future management alternatives for the Ogallala aquifer in Oklahoma.

III. PROJECT RELATED PUBLICATIONS

 Loo, Walter Wei-To, "The Influence of Vertical Variation in Lithology on a Mathematical Management Model For the Ogallala Aquifer, Texas County, Oklahoma," unpublished Masters Thesis, Department of Geology, Oklahoma State University, Stillwater, Oklahoma, 1972.

2. DeVries, R. N., Kent, D. C., and Loo, W. W., "A Groundwater Management Model of a Multilayered Aquifer," Proceedings of the 23rd Annual Oklahoma Industrial Waste and Advanced Water Conference, Oklahoma State University, Stillwater, Oklahoma, 1972.

3. DeVries, R. N., and Kent, D. C., "Sensitivity of Groundwater Flow Models to Vertical Variability of Aquifer Constants," Presented at the Eighth American Water Resources Conference, St. Louis, Missouri, 1972. The following personnel received financial support from this project:

- 1. R. N. DeVries, Associate Professor of Civil Engineering, Co-Principal Investigator
- D. C. Kent, Associate Professor of Geology, Co-Principal Investigator
- 3. W. W. Loo, Graduate Student
- 4. E. Liao, Graduate Student
- 5. J. Chowning, Graduate Student
- 6. M. Hannon, Graduate Student
- 7. J. A. Tatanio, Secretary

- Bredehoeft, J. D., and Pinder, G. F., 1968, A Numerical Technique for Aquifer Analysis, Proc., National Symp. Anal. Water-Resources Systems., 12) p.
- Bredehoeft, J. D., and Pinder, G. F., 1970, Digital Analysis of Areal Flow in Multiaquifer Groundwater Systems: A Quasi Three-Dimensional Model, Water Resources Research, Vol. 6, No. 3, p. 883-888.
- Freeze, R. A., and Witherspoon, P. A., 1966, Theoretical Analysis of Regional Groundwater Flow: 1. Analytical and Numerical Solutions to the Mathematical Model, Water Resources Research, Vol. 2, No.4, p. 614-656.
- Freeze, R. A., and Witherspoon, 1967, Theoretical Analysis of Regional and Groundwater Flow: 2. Effect of Water Table Configuration and Subsurface Permeability Variation, Water Resources Research, Vol. 3, No. 2, p. 623-634
- Freeze, R. A., and Witherspoon, P. A., 1968, Theoretical Analysis of Regional Groundwater Flow: 3. Quantitative Interpretations, Water Resources Research, Vol. 4, No. 3, p. 581-590.
- Frye, J. C., 1970, The Ogallala Formation -- A Review, Ogallala Aquifer Symposium, International Center for Arid and Semi-Arid Land Studies, Special Report No. 39, p. 5-14.
- Hansen, H. J., 1971, Common Stratigraphic Boundaries Associated with Coastal Plain Aquifers, Groundwater, Vol. 9, No. 1, p. 5-12.
- Hantush, M. S., 1967, Flow of Groundwater in Relatively Thick Leaky Aquifers, Fater Resources Research, Vol. 3, No. 2, p. 583-590
- Hart, D. L., Jr. 1971, Records of Water Level Measurements in Wells in the Okiahoma Panhandle 1966-70, U.S.G.S. Publication.
- Javandel, I., and Witherspoon, P. A., 1969, A Method of Analyzing Transient Fluid in Multilayered Aquifers, Water Resources Research, Vol. 5, No. 4, p. 856-869.
- Jones, O. R., and Schneider, A. D., 1970, Comparison of Methods of Determining the Specific Yield of the Ogallala, Ogallala Aquifer Symposium, International Center for Arid and Semi-Arid Land Studies, Special Report No. 39, p. 118-130.
- Keys, W. S., and Brown, R. F., 1970, The Use of Well Logging in Recharge Studies of the Ogaliala Formation, Ogallala Aquifer Symposium, International Center for Arid and Semi-Arid Land Studies, Special Report No. 39, p. 31-48.

- -

- Lamirand, T. J., 1971, Application of a Management Model to the Ogallala Groundwater Aquifer of the Oklahoma Panhandle, Master of Science Thesis, Oklahoma State University.
- Levings, G. W., 1971, A Groundwater Reconnaissance Study of the Upper Sugar Creek Watershed, Caddo County, Oklahoma, Master of Science Thesis, Oklahoma State University.
- Linsley, R. K., Jr., Kohler, M. A., and Paulhus, J. L., 1958, Hydrology for Engineers, McGraw-Hill Publishing Company, Inc.
- McClain, T. J., 1970, Digital Simulation of the Ogallala Aquifer in Sherman County, Kansas, Kansas State Geological Survey, Open-File Report.
- McMillan, W. D., 1966, Theoretical Analysis of Groundwater Lasin Operations, California University, Water Resources Center Contribution, No. 114, 167 p.
- Nelson, R. W., and Cearlock, D. B., 1967, Analysis and Predictive Methods for Groundwater Flow in Large Heterogeneous Systems, Symp. Amer. Water Resources Association, Proc. Ser. No. 4 18 p.
- Neuman, S. P., and Witherspoon, P. A., 1969, Theory of Flow in a Confined Two Aquifer System, Water Resources Research, Vol. 5, No. 4, p. 803 816. *Also see last entry .
- Pearl, R. H., 1970, Method for Estimating Average Coefficient of Permeability Using Hydrogeologic Field Data, Ogallala Aquifer Symposium, International Center for Arid and Semi-Arid Land Studies, Special Report No. 39, p. 131-144.
- Sechrist, A., Claborn, B. J., Rayner, F., and Wells, D. M., 1970, Mathematical Management Model -- Unconfined Aquifer, Final Report, O.W.R.R. Project C-1537 (No. 1993) (1), 148 p.
- Weber, E. M., Peters, H. J., and Frankel, J. L., 1968, California's Digital Computer Approach to Groundwater Basin Management Studies, Symposium on Use of Analog and Digital Computers in Hydrology, Tucson, Arizona, International Association Sci., Hydrology, Publication No. 80, Vol 1, p. 215-223.
- Wood, P. R., and Hart, D. L., Jr., 1967, Availability of Groundwater in Texas County, Oklahoma, U.S.G.S. Hydrologic Investigations Atlas HA-250.
- Neuman, S. P.*, and Witherspoon, P. A., 1969, Applicability of Current Theories of Flow in Leaky Aquifers, Water Resources Research, Vol. 5, No. 4, p. 817-829.

A XION399A

FORTRAN IV G LEVEL 19

MAIN

DATE = 72348

13/00/09

PAGE 0001

C. A MODIFIED TEXAS TECH GROUNDWATER MANAGEMENT MODEL ٢ C ¢ OKLAHOMA STATE UNIVERSITY £. С IBM 360/65 MODEL ſ. С. **0 С С THIS IS A PROGRAM TO MODEL FLOW WITHIN A MULTILAYERED AUUIFER С £ WEIGHED AVERAGE VALUE OF PERMEABILITY & SPECIFIC YIELD FOR £ C С REMAINING SATURATED THICKNESS WILL BE ASSIGNED AT EACH TIMESTEP Ú, BASIC ASSUMPTIONS: £ C THE AQUIFER IS MULTILAYERED AND IS IDEALLY 1 C. Ĺ REPRESENTED BY 4 UNIFORM LAYERS OF EQUAL THICKNESSC Ĉ EACH LAYER IS HORIZONTALLY HOMOGENEOUS 2 C. WEIGHTED AVERAGE VALUES OF PERMEABLLITY AND C 3 c Ç SPECIFIC YIELD ASSIGNED AT EACH TIMESTEP IS A С CLOSE APPROXIMATION FOR THE AQUIFER DURING THAT C С PARTICULAR TIME PERIOD Ľ. THE BEDRUCK TOPOGRAPHY IS RELATIVELY SMOUTH AND С C C IS SLANTED ABOUT 14 FEET PER MILE C. Ç 5 THE BEDRUCK AND WATER TABLE SURFACES ARE APPROX. ٢. С PARALLEL £ THERE IS NO RECHARGE OR DISCHARGE THROUGH THE C 6 c C BEDROCK С RECHARGE AND DISCHARGE AT SURFACE OR BOUNDARY OF £. STUDY AREA ARE ACCOUNTED FOR BY ADJUSTMENTS ON C C. WITHDRAWAL FROM NUDES C. ſ. C С ****** ۴C C¥ C C. Û ARRAYS C r. C C A(I) = AS(I) * SY ACRESC. AU(I)= WITHDRAWAL FROM NODE(I) ACRE-FT/TIMESTEP С C. AGE II = WITHDRAWAL FROM NODECTI ACRE-FITTIMESTEP AGE II = NET SURFACE: FLOW OF NUDE(I) AT TIMESTEP ACRE-FT AS(I) = AREA OF A POLYGON(I) ACRES B(I) = ELEVATION OF BEDRUCK AT POLYGON INTERFACE(I) FEET<math>BL(I) = BEDROCK ELEVATION AT NODE(I) FEETCOEFF(I) = PERMEABILITY OF SATURATED MATERIAL UNDER NODE(I)A TIMESTEP ACRE-FT/TIMESTEP/SQ.FTA TIMESTEP ACRE-FT/TIMESTEP/SQ.FTC C. С C. С C C C AT c C ſ. U(1)= THICKNESS OF AQUIFER AT POLYGON INTERFACE(I) FEET C £ JH(I, J)= ACCUMULATIVE DRAHDOWN AT NODE(I) AND С £ AT TIME TSTEP(1,I) FEET EL(I) = ELEVATION OF TCP OF LAYER(I) FEET (DATUM= H(I) = WATER TABLE ELEVATION AT POLYGON(I) FEET HINIT(I) = INITIAL WATER LEVEL AT NODE(I) FEET ſ. С C FEET (DATUM= 0.0) £ C С C C С £ С FEET С С С AND ADJACENT NUDE NUDE2(I) NI(I),N2(I)= SAME AS NUDE1,NUDE2 C. C C £ NWELLC(I) = WELL NUMBER UF NGDE(I) С £ С C С C C £ ACRE-FT C. C. QS(I) = VOLUME OF WATER ABUVE GROUND SURFACE OF NODE(I) £ ſ.

PAGE 000 FERTRAN IV G LEVEL 19 MAIN UATE = 72348 13/00/09 ĉ ACRE-FT С С STURAGE CHANGE AT NUDE(I) PER TIMESTEP ACRE-FT/TIMESTEP RELAX(1)= С С RES(I) = RESIDUAL ERROR AT NODE(I) AFTER BALANCING ALL C FLOWS С (BY FINITE DIFFERENCING) PER TIMESTEP (COMPAKISUN OF VULUME OF DRAFT WITH VOLUME REPRESENTED BY DRAWDOWN FOR EACH NODE & С С С C С C TIMESTEP) ACRE-FT/TIMESTEP С С S(I)= NET WITHDRAWAL AT NODE(I) FOR A TIME STEP C AURE-FT C C C С С C С C CALENDER YEAR С XNOUE(I)= X COORDINATE VALUE OF NODE(I) MILES Y(I)= WIDTH OF FACE/DISTANCE BETWEEN NODES YNODE(I)= Y COORDINATE VALUE OF NODE(I) MILES C MILES £ C C C С C С ***C C C С VARIABLE NAMES C. С C С AH= AVERAGE WATER TABLE ELEVATION FOR A PARTICULAR TIMESTEP FEETC AT= AVERAGE SAT. THICKNESS OF AUUIFER AT A PARTICULAR TIMESTEPC BEL= ZERD DATUM & TOP OF BEDROCK C C С COEFFA= FIELD PERMEABILITY FOR A PARTICULAR TIMESTEP С С DELTA= TIMESTEP PERIOD DELTA= TIMESTEP PERIOD YEAR ERROR= CLUSURE ALLOWANCE FOR A TIMESTEP C С С ACRE-FT ĉ ITER= NUMBER OF ITERATIONS DONE С С LIST= NUMBER OF YEARS OF STUDY LMAX= NUMBER OF FLOWPATHS AT POLYGON INTERFACES MAJOR= NUMBER OF TIMESTEPS WITHIN A YEAR C С С С С Ľ С MESS= ERROR MESSAGE С MINOR= NUMBER OF MINOR TIMESTEPS WITHIN MAJOR MM= TOTAL NUMBER OF TIMESTEPS TO BE PERFORMED С С С С MMAX= NUMBER OF WELLS UNDER STUDY SK= NAME OF SUBPROGRAM TO COMPUTE AVERAGE COEFFA & SY C C С С FOR A TIMESTEP C C SY= STORAGE COEFFICIENT OR SPECIFIC YIELD FOR A PARTICULAR TIME PERIOD С С С С TIME= INITIAL TIMESTEP CALENDER YEAR С С С TIME2= FIRST TIMESTEP CALENDER YEAR C С ALL OTHER INTEGER & REAL VARIABLE NAMES= COUNTERS Ĺ C С ****(0001 DIMENSION AS(24), H(24), PL(4), SCL(4), AQ(24), EL(4), A(24) DIMENSION S(24), COEFF(24), US(24), HG(24), Y(106), Q(106), SLX(24) 0002 0003 DIMENSIUN NUDE1(106), NODE2(106), B(106), U(106), P(106) DIMENSION N1(106),N2(106) 0004 DIMENSION HINIT(24) 0005 0006 DIMENSION BL(24), SL(24), RELAX(24), RES(24) DIMENSION XNODE (44), YNODE (44), NWELLC (44), AQS (24), DRY (24) 0007 0008 DIMENSIUN TSTEP(1,400), DH(24,400), HS(24,400) DIMENSIUN WR(24), VOL(24), 5 AQ(24) 0009 DIMENSION WC(24), WNN(24) 0010 ۵ С C INITIALIZED INPUT DATA C £ CARD INPUT DATA С

FORTRAN	IV G	LEVEL	19	MAIN	DATE =	72348	13/00/09	PAGE 0003
		с с	DATA PREPARATION	FOR MODEL			C C	
		() *** **	*******	*****	******	******	**********************	
0011			PL(1)=0.0420225					
0012			PL(2)=0.066154					
0013			PL(3)=0.10561655					
0014			PL(4)=0.23392525					
0015			SCL(1)=0,07					
0016			SCL(2)=0.11					
CO1 7			SCL(3)=0.17					
CO18			SCL(4)=0.25					
0019			EL(1)=400.0					
C02 C			EL(2) = 300.0					
0021			EL(3) = 200.0					
0022			EL(4)=100.0					
00.34								
0024								
0025								
0020								
0023								
0020								
0030			DATA LMAX.MMAX /106	.241				
0031			READ(5.101)LIST.MAJ	BR.MINDR				
C032			MM=LIST*MAJOR					
C033			READ(5,102)ERROR, TI	ME				
0034			DO 1211 I=1, MMAX					
0035			READ(5,1210) XNODE(I), YNODE(I), NWELLC	(1)			
0036		1211	CONTINUE					
0037			DG 131 M=1,MMAX					
CC38		131	READ(5,14)N1(M),AQ(M)				
			ECH GATA ECH COBDECT	00050				
		C CIN	CON DATA TON CORRECT	UNDER				
0039			Dù 140 M=l+MMAX					
CO4 0			IF(NI(M)-NWELLC(M))	139,140,139				
0041		139	ME \$ \$ = 1					
C042			11=N1(M)					
C043			111=M					
0044			JJ=NWELLC(M)					
0045		<i>c</i>	JJJ=M					
		C ME.	SSAGE=1 FEED DATA FO	R A WELL NOT IN CL	ASS C OF	OUT OF DRDER		
00/ /		C	CO TO 10000					
0048		140	CONTINUE					
0049		140	DELTA-1 /EL DAT/MA JO	04414091				
0048			DO 15 ME1-MMAY					
0049		15	$\Delta O(M) = -\Delta O(M)$					
0051			READ(5.1001(NODE)()	.NODE2(L).Y(L).L=	1.LMAX)			
0052			READ(5.104)(N1(M).8	L (M) • SL (M) • AS (M) • H	(M).M=1.	MMAXI		
0053			CALL SKIAS.H.	PL,SCL,BL,COEFFA.B	EL,KK,TI	ME, ITER, EL,A)		
		с						
		с сн	ECK FOR OUT OF ORDER	CARDS				
		C						
0054			DO 105 M=1,MMAX					
0055	•		IF(N1(M)-NWELLC(M))	106,105,106				
C056		106	MESS=2	•				

I.

UKIKAN	IV G LE	VEL 19	MA IN	DATE = 72348	13/00/09	PAGE O
C057		II=01(M)				
0058		III=M				
0059	1	JJ=NwELLC(M	3			
0000		M≔LLL				
	C C	MESSACE-D DUNG				
	č	LET WAS DEAD	ICAL WELL DATA FOR A	WELL NOT IN CLASS C DR	UUT OF URDER	
	C C	WELL WAS KEAD			•	
0061	C	GO TO 10000				
0062		105 CONTINUE				
0063	-	00 103 M=1				
0005		103 COFFE(M)=CO	LEEA			
0004		999 DU 998 M=1.				
0066		M112=KM123 800				
0000	r	JO SEALDY-SEAN	,			
	č	IDENTIFY THE P	USITION IN THE NWELL	C ARRAY OF THE WELL NUM	BERS IN THE NODEL	
	C	AND NUDE2 ARKA	YS. STORE THIS POSI	TIDN NUMBER IN NI AND N	2	
	C					
0067		DU 1400 M=1	LMAX			
0068		IF{M-1}990,	990,985			
0069		985 IF (NODEL(M)	-NCOE1(M-1))990,985,	990		
0070		986 N1(M)=N1(M-	1)			
C071		GU TO 1105				
0072		990 DO 1000 L=1	, MMA X			
0073		IF(NODE1(M)	-NWELLC(L))1000,1100	,1000		
CC74	1	000 CONTINUE				
CG75		ME55=4				
0076		II=NODE1(M)				
CC77		1 I I =M				
CC78		JJ=NWELLCIL	3			
0079		JJJ=L				
	C					
	یا م	MESSAGE=J NUUE	I WAS NUT FUUND IN T	HE CLASS C WELLS		
0090	L L	CO TO 10000				
0080	,	100 NJ (N) - 1				
0081	L	100 NILMIEL 105 DO 1000 LEI	14 M A V			
0082	L	100 00 1200 L=1	THEAA	1200		
0000	,	200 CONTINUE	-NWELLUIL//1200/1300	11200		
0004	1	NESS-E				
0000		MESS-S Li-NCDESINI				
0087		TT-MODEZ TH				
0084		11=NW#11011	N Contraction of the second seco			
0088		111=1	,			
0009	r	3 3 3-L				
	c C	MESSAGE=5 NUDE	2 WAS NOT FOUND IN T	HE CLASS C WELLS		
	Č.					
10.50	ĩ	300 N2(M)=1				
0091	1	400 CONTINUE				
0092	•	DO 108 L=1.	LMAX			
0093		M=N1(L)				
0094		N=N211)				
0095		$B(L) = \{BL(M)\}$	+BL(N))*.5			
0096		989 D(L)=(SLX(M)+SLX(N))/2B(L)			
0097		P(L)=Y(L)+C	DEFFA			
098		108 CONTINUE				
	· C*	****	*****	****	* * * * * * * * * * * * * * * * * * * *	۶C
						-

.

					· ·	
FERTHAN IV G	LEVEL 1	.9	MA IN	DATE = 72348	13/00/09	PAGE
	ç	OUTPUT OF I	INITIAL CONDITION	DATA & HEADINGS	ç	
	L C******	*****	****	*****	C _**************	
0099	WR	ITE(6, 200)			·	
0100	A M	RITE(6,670)				
0101	19 19 19 19	(11E10;201) (N) [Te16: 202)	M, NWELLU(M), A(M), S	LIMJ,BLIMJ,HIMJ,M=1,MMA.	X)	
0102	W F	RITE(6,203)(1		$3 \cdot P(L) \cdot B(L) \cdot D(L) \cdot I = 3 \cdot I M$	Δ Χ)	
C104	WF	RITE(6,204) L	LIST, MAJUR, MINOR, E	RROR, COEFFA		
0105	TI	IME2=TIME+FLC	GAT(LIST)			
0106	WA	RITE(6,205) 1	TIME, TIME2			
0107	U U S A	J 000 1=1;MMA \\{T}=\\\{T}=X	AX 0.01			
6106	666 HT	(Q(1)=XQ(1)+((N(T(1)=H(1)				
0110	DÜ) 255 I=1,MMA	A X			
0111	255 ¥R	(()=AQ())				
0112] 150 L=1,LM/	Δ X			
0113	50 04	L)=2.*8(L)				
0114	120 PL	\ L J + J+ F \ L J **********	*****	****	* ****	
	c				C	•
	С	START OF MA	ATH MODEL	START OF MATH MODEL	C	
*	C			****	C	
0115	L+++++	10=0.0	*** * * * * * * * * * * * * * * * * * *	** * * * * * * * * * * * * * * * * * * *	* *** * * * * * * * * * * * * * * * *	•
C116	00) 600 LISTS=1	1,LIST			
0117	DC	1=0.0				
0118	DL	J 601 M=1,MM4	AX			
0119		XY(M)=0.				
0120	- 601 Au	13(M]≕ 0. 13(M]≕ 0.				
0122	DE	0 500 MAJORS	=1.MAJOR			
0123	IT	ER=0				
C124	DC	3 400 MINDRS:	=1, MINOR			
0125	1 11	IME=TIME+DEL1	A			
0120	UU # 0	J Z M≕1+MMAX][M]=∆MAY1/PI	I (M) . H(M) I			
0128	2 SA	Q(M)=SAU(M)4	+AUS(M)			
C129	10	DRY = 0				
0130	3 DC) 4 M=1,MMAX	(_ , _ ,			
0131	RE	-LAXIM)=A(M)/	/UCLIA KIAMAYI/DIIMA SIJAA	1-60/N11		
0132	2 P F	\m\=KCLAX\M}ª =\${M}=\$∆∆1M}ª	-:AMAAL:DE[M];H1M] -S[M]	J-80(M)]		
0134	11	ER=ITER+1	w 1 1 1 1			
C135	IF	(1 TER. GT. 30))wRITE(6,598)			
0136	IF	(ITER.GT.30)	MM=IFIX(TIME-1966	•O}*4		
0137	If	FITER.GT.30	FCU TU 900			
6138	00 *-) D L=1,1LMAX				
0130	n= M≖	-N2(L)				
0139 0140	1.1-		X1(0.,H(M)+H(N)-B(L) }		
0139 0140 0141	Yt	\ \ =P\ \ *AMA/				
0139 0140 0141	Ċ Y((L)=P(L)*AMA/				
0139 0140 0141	C C C PREVE	ENT FLOW FROM	M A DRY POLYGON			
0139 0140 0141	C C C PREVE C	ENT FLOW FROM	M A DRY POLYGON			
0139 0140 0141 0142	Y C C PREVE C IF C	ENT FLOW FROM = (H(N)-H(M))	M A DRY POLYGON 1701,703,711			

	• • • •	4	• •				
FUK IRAN	14 6	LEVEL	19	MAIN	DATE = 72348	13/00/09	PAGE 0006
0143		701	IF(H(M)-BL((M))703,703,705			
0144		703	Q(L)=0.				
0145		_	GO TO 770				
		C C FLI	OW FROM N TO	T M. N MUST NOT HE DR	y .		
		č			•		
0146		711	IF(H(N)-BL((N) 1703.703.705			
0147		705	CONT INUE				
C148			Q(L)=Y(L)*((H(M)-H(N))			
0149		770	CONTINUE	· · · · · · · ·			
C15C			RELAX(M)=RE	ELAX(M)+Y(L)			
C151			RELAX[N]=RE	ELAX(N)+Y(L)			
0152			RES (M)=RES ((M)-Q(L)			
C153		5	RES(N)=RES((N)+Q(L)			
C154		8	DO 12 M=1,M	MMA X			
0155			RELAX(M)=1.	•O/RELAX(M)			
0156			$H(M) = AMA \times 1$	((H(M)+RELAX(M)*RES()	()),BL(M))		
0157			IF(QS(M))12	2,9,9			
0158		9	IF(H(M)-SL((M))11,11,10			
6159		10	QS(M) = RES(M)	4)			
0160			RES(M)=0.				
0161			H(M) = SL(M)				
C162			GU TO 12				
0163		11	US(M)=0.				
0164		12	CONTINUE				
C165			DU 13 M=1,M	MAX			
0166		6.3	IFLERKUK-AU	35 (KES (M)) 1 3 3, 1 3, 1 3			
0167		22	100 9-100 941	(MI13,34,3			
0140				L			
0109		13	TETTNUM ANDE	5 4 00 300			
0171		200	16310K11400	NNYA NAAAAA			
0171	ii.	370	1 F (H (M) - B ()	MAAA MII201.201.205			
0173		391	.lDRY≞1	((1)))))))))			
0174		271	- CRY(M)≠DRY((M)+RES(M)			
0175		395	CENTINUE				
0176		400	CONTINUE		· .		
0177			TSTEP(1-KB))=TIME		•	
C178			KB=KB+1				
		C ****	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	******	* * * * * * * * * * * * * * * * * * * *	C
		C				· · · · · · · · · · · · · · · · · · ·	C
		С	CALL FCR	R COEFFA & SY FOR A N	EW TIMESTEP	(C
		C				1	C
		C * * * *	****	****	****	******	C
C179			CALL	SK(AS, H, PL, SCL, BL, CU	EFFA, BEL, KK, TIME, ITER, E	L,A)	
C18C			IF(ITEK.EQ.	-1)MM=IFIX(IIME-1966	• 0]*4		
0181		640	11111EK.EQ.	-1160 10 900			
0103		249	UU 348 171	1 MMAA			
0165		240	00 560 J=1.			•	
0104		550	00 JJ0 1-14	/ BICAA INITT/TILAH/TI			
0102		00	K Δ=K Δ+1				
C1x7		,	KKK=KKK+ 1				
0188			ÚST=0-				
0189			00 403 M=1.	. MMAX			
0190			IF(US(M))40	03.403.401			
0191		401	WRITE(6. 402	2)M. US(M)			
0192			UST=UST+GS ((M)			

ORTRAN IV	G LEVEL 19	MAIN	DATE = 72348	13/00/09	PA
01.93	403 CUNTINUE				
C194	ĐŪ 256 I	=1,MMAX			
0195	IF(KK.EC	1.1)SAQ(I)=WR(I)*1.00			
0195	256 CONTINUE				
(157	KK=KK+1	•			
6193	DO 250 1	(= 1. MHAY			
(160	ICIES L				
0200	TEINN EN	1+2+3A9(1)-00(1)+1+00			
0200		1+3F3AULI=WKLLI=1+00			
0201		1+412 VALTI=MK(TI+100.	·		
0202	250 CUNTINUE	•			
0203	BOU CUNTINUE	· · · · · · · · · · · · · · · · · · ·			
0204	00 254 1	I=I,MMAX			
C2C5	VUL(I) ≠4	↓↓↓↓¥ (H()-BL())	•		
C206	IFCVOLU	.).GE.—AQ(I})WR(I)≠AQ(I)			
0207	IF(VOL()	L).LTAQ(I))WR[I]=-VOL((1)		
0208	Z=-AQ(I)				
C209	DC1=0C14	+WR(I)			
0210	WC(I)=VO	JL(I)*160.0/AS(I)			
0211	WNN(I)=	ABS(WR(I)/WC(I))			
0212	IFEWNNEL	(1, 1, 1, 0) WNN $(1) = 1, 0$			
0213	TETVOL O	1).6FAu(1))#RITE(6.260) WINNETS.T.VOLETS.Z		
0214	LEC VOLCE	1.1TAu(11) WRTTE/6.261	ISANNET TATUELETT. 7		
1216	254 Aut Dew	////			
5215 6216	204 NG(1)-NG	5010. 5010. 5000			
0210	5000 DO 5005				
6217 6314	1000 DU 2003				
0210	LOOD DEVINE				
	DUUS DRTIMI = P	QIMJ-URTIMJ+UELIA	OUMANE		
6220	WKIIELD	50027M,NWELLUIM7,AQIM7,	DRYLMJ		
0221	5005 CUNTINUE	2			
C222	5010 CUNTINUE	:			
0223	UC10=UC1	10+961			
0224	1F (MUD (L	.ISTS;NYAW].NE.OJGO TU 6	500		
0225	WRITE(6,	252) NYAW, DC10			
0226	DC10=0.0)			
0227	600 CONTINUE	<u>-</u>			
	C ************************************	* * * * * * * * * * * * * * * * * * * *	******		
	C END C	JE MATH MODEL .	END OF MATH MODEL	C C	
	C			C	
	6	****		۲	
	C FINAL	LOUTPUT : WATER LI	EVEL VS TIMESTEP	Ŭ	
	C	ACCUMULA	TIVE DRAWDOWN VS TIMEST	EP C	
	ć	(PRINTE)	OUTPUT & PLOTS)	Ū.	
	Ċ			C	
2020	(************************************	· · · · · · · · · · · · · · · · · · ·	********	* * * * * * * * * * * * * * * * * * * *	
0228	900 WRITELO	/3017			
0229	WRITELC	,0011			
023U		-10 44 13			
1231	00 210 1	.=10;MM;10			
222	WRITEL6,	242111151EP(1,J)+L=L+L3	¦ yJ=LLyLJ		
3233	00 529 1	1 = 1 = 3			
C234	529 WRITE(6)	,5431			
0235	00 511 1	i= i≠ 24			
9236	511 wRITE(6,	544) I, (HS(1, J), J=LL, L)			
Ç237	DU 530 I	.=1+3			
3238	 530 WRITEL6; 	5431			

•

FORTRAN IV	G LEVEL 19	MAIN	DATE = 72348	13/00/09	PAGE 0008
0240	WRITE16,	301)			
0241	WRITE(6,	668)		,	
0242	NN= 1				
0243	DU 512 N	=10,MM,10			
0244	WKITELO,	54511(151EP(1,J),1=1,1)	• J=NN+ N]		
0245		=1;3			
0246	0/2 WRLIE(0)				
0241	512 UU 213 1 513 UD 175/5	ELEMMAN EADAT (DHEELA) ISNN NA			
0240	212 WRITE(0)	-1 2		-	
0250	514 WRITELA.	-173 543)			
0251	512 NN=NN+10	2-31			
0252	WRITE (6.	3011			
0253	CALL PLO	IS			
0254	CALL APL	DT (TST EP . DH. MM.)			
	C *******	****	*******	******	
	č			č	
	C FDRMA	T STATEMENTS	FORMAT STATEMENTS	C	
	C			C	
	C ********	*****	******	*******************	
0255	14 FORMAT (1	7,F8.0)			
025¢	100 FORMAT(2	([7,1X,17,1X,F10,2,1X)	,17,1X,17,1X,F10.2}		
0257	101 FORMAT(3	110}			
C258	102 FORMATIS	F13.4)			
0259	104 FURMAILI		.1.0;11X;F11.0)		
0260	200 FURMALL	MATHEMATICAL MODE	L UF GRUUNDWATER FLU	W IN A MU	
		ACES 1/// 24 IN	TERTOR NUDES AND 108	POLTGON CO	
0261	201 EDRMAT (1	4.11X.17.10X.4HAS= .E8.	1.4X.4HSI = .E.8.1.4X.4HB	L = .E8.1.4X	
9201	O BHRINI	$(= -F8_{-1})$	11 · · · · · · · · · · · · · · · · · ·		
6262	202 FORMATIA	/////7H BRANCH 4X . 2 CHBE	TWEEN WELL NUMBERS 4X.1	9 HP SEUD O- PER	
	2 MEABILIT	Y,3X,17H BOTTOM ELEVATI	ON, 6X, 10H THICKNESS//1		
0263	203 FURMAT(I	6,9X,17,3X,17,7X,3HK=	F8.4.10X,3HB= F8.1,9X,	3HD= ,F8.1)	
0264	204 FÜRMAT{/	////7H LIST =16/8H MAJE	DR =15/8H MINOR =15/8H E	RROR =F8.2/	
	19H COEFF	A =F7.4)			
C265	205 FORMATLA	////16H SIMULATION FROM	4 ,F8.2,3H T0,F8.2)		
0266	252 FURMATII	7,* YEAR ADJUSTED	(ITHDRAWAL = ',F15.2)		
C267	253 FORMAT(WELL ", IS, " HAS	HIT BOTTOM)		
0268	260 FORMAT(F	10.0, WELLS ARE NE	EDED AT NODE , 110,	NODE CAPACI	
	Q1Y=•;F10	.1, DEMAND= , F10.1,	DEMAND & NUDE CAPACI		
6269	261 FURMATIF	TO.O, WELLS AKE NU	EDED AL NUDE'; 110;	NUDE CAPACI	
C 3 7 6	91 T= *; F 10 201 EOGMAT(1	•1; UEMAND= ; 10•1;	UEMAND > NUDE CAPACI	1 ** }	
0270	201 FURMATIE	31 NODE IA 38 AUASA ED 3 111			
0272	ADS SORMATIS	700 TATAL SHREACE ELAW	- E10-11		
0272 0073	547 E DOMATIC	10.10F10.51			
0274	543 ENRMAT(1	H0)			
0275	544 FORMAT (10.10F10.2}			
0276	545 FURMAT(WELL NO +10F10.2)			
0277	598 FORMAT(OVERFLOW	• 3		
0278	667 FORMAT(DISPLAY OF WAT	ER LEVEL CORRESPOND	TO TIME ST	
	QEP*///)				
0279	668 FURMAT(DISPLAY OF ACC	UMULATIVE DRANDOWN VS	TIMESTEP#/	
	9//)				
0280	670 FORMATI	NUDE WELL NO	AREA	SURFACE EL	
	ພEV BE	DRUCK ELEV WATER LE	EVEL •///)		
C281	1210 FORMAT(2	F10.2,15)			
0282	5002 FORMAT()	H 4HNODE 15,16H STATE	NELL NO. 19,31H WITH EXP	ECTED WITHDR	

•

FORTRAN	I۷	G LEVE	L 19	MAIN	DATE = 72348	13/00/09
C283		1100	IRAWALS OF 0 FORMATIIN	F10.0,19H ACRE FT RI +19HTROUBLE AT MESSI	EDUCED TO F10.0, BH ACRE AGE 14,9HWELL NO. 17,11H	FT) SUB SCRIPT
0284		1110	0 FURMAT(1H	,10F12.11	DSCRIPT 147	
C285		1000	STUP 0 WRITE(6,1	1000) MESS, 11, 111, JJ	لالله	
C287 C288			STOP END			

PAGE 0009

FORTKAN	IV G	LEV	EL	19	SK	DATE =	72348	13/30/09	PAGE	0001
0001 0002 0003		c		SUBRDUTINE SK(AS,H,P DIMENSIUN AS(24),H(2 NLA=5	L,SCL,BL,CUEFFA,BE 4),PL(4),SCL(24)	EL•KK•T) BL{24)	LME+ITER+EL+A) EL(4)+A(24)			
		C		NL INDICATES THE	NUMBER OF LAYERS U	JSED IN	THE MODEL			
0004 C0C5 C0C6		c		NL=4 AVH=0.0 DD 1 I=1,24						
		C C		CHECK IF WATER LE	VEL HIT BEDROCK ;	IF SO,	STOP OPERATIO	N		
CCO7 0008 0009		0000 0000	9 1	IF(H(I).LE.BL(I))WR] FORMAT(" WELL NC)2F10.2} IF(H(I).LE.BL(I))RET AVH=AVH+{H(I)-BL(I)) AH=AVH/24.0 AT=AH-BEL	ITE(6,9)I,H(I),TIME D 9,I5,9 HAS JURN	E R EACHEI	D BOTTOM A	т		
		с с		COMPUTATIONS OF V	NEIGHED AVERAGE VAN	LUES OF	K & SY			
CC1C C011 C012 C013 C014				IF(NL.EQ.1)GO TO 23 DO 20 I=2,NLA IF(I.EQ.NLA)GO TO 23 IF (AH.GE.EL(I)) ML= IF(AH.GE.EL(I)) GO	3 =1 3 TO 21					
0015 CC16 0017 0018			20 23	CONTINUE IF (AH.GE.BEL) COEFFA= IF (AH.GE.BEL) SY= SCL(GO TO 10	= PL (NL) NL)					
C019 0020 CC21 0022			21	CUEFFA=PL(ML-1)*(AH- SY=SCL(ML-1)*(AH-EL(IF(ML.EQ.NL)COEFFA=C IF(ML.EQ.NL)SY=SY/AT	-EL{ML}}+PL{NL}*(E ML}}+SCL(NL)*(EL{) CDEFFA/AT 0	L(NL)-BI NL)-BEL	EL))			
0023 0024 0025 0026 0026				COEF=0.0 SPY=0.0 NNN=NL-ML 10 22 T=1.NNN	. •)					
0028 0029 0030			22	CUEF=PL(ML)*(EL(ML)- SPY=SGL(ML)*(EL(ML)- ML =ML+1 CUEFET = / CUEF + COEFET	-EL{ML+1}}+COEF -EL{ML+1}}+SPY					
0032		C.		SY=(SPY+SY)/AT						
		c c		COMPUTE WITHDRAWA	AL FROM NODES FOR A	A TIMES	TEP			
C033 0034 C035 0036 0037 C038			10 3	DO 3 I=1,24 A (1)=AS(I)*SY IF(ITER.EQ.O)RETURN IF(KK.GT.4)KK=1 WRITE(6,100)TIME,KK FORMAT(1H0,* TIME	(,AH,COEFFA,SY,ITEF =≠*,F10.2,* SEA	R S ON= * , II	5, ' AV E SA	T THICK		
0039 0040				INESS=",F10.27" AN ITERATION=",I5) RETURN END	VE PERMEABILITY≕⁴	,F10,6,	• AVE SY≖•,	+10.6,"		

FORTKAN	11	G	LE VE L	19	APLUT	DATE = 7	2348	13/00/09	PA	GE	0001
0061 0002			-	SUBROUTINE APLOTITS DIMENSION TSTEP11+4	TEP,DH,MM) 00;,DHC24,400;,XC4	00)+Y(400	01				
		4	c c	NP INDICATES NUMBER	OF HYURUGRAPHS TO	BE PLOTI	TED				
E 990				NP=24							
0004				J=MM-1							
0005				1+L=1+L							
0006				J2=J+2							
0007				XIN=FLOAT(J/40)+2.0)						
0008				XAX=0.0							
0009				DO 1 I=1,j							
0010			1	X(1)=TSTEP(1,1)							
CO11				X{J1}=1966.25							
0012				X(J2)=10.0							
			C								
			C	START OF PLOTTING							
		(2								
0013				DO 2 1=1,NP							
CO14				00 3 L=l,J							
0015			3	Y{L}=DH(I+L}							
0016				Y(J1)=0.0							
0017				Y(J2)=40.0							
0018				CALL PLOTC(XAX,-11.	0,-3)						
0019				0. 0=XAX							
0020				CALL PLOTC(XAX,0.5,	-31						
CO21				CALL AXIS(0.0,0.0,	TIME YEAR -9,XIN,	0.0.X(J1)),X(J2)]				
0022				CALL AXIS (0.0,0.0,	ACCUMULATIVE DRAWD	ĴWN.FT',	24,10.0,90.0,	Y(J1),Y			
			·	Q(J2))							
0023				CALL LINE(X, Y, J, 1, 0),64]						
0024				FPN=FLOAT(I)							
0025				CALL SYMBOL(1.0,9.0),0.35,*WELL *,0.0,	5)					
0026				CALL NUMBER (999.0+9)99.0,0.35,FPN,0.0,	-1)					
CO27				CALL PLOTC(XAX+-11.	.0,-3)						
0028				XA X=XIN+3							
0029			2	CONTINUE							
C03C				RETURN							
CC31				END							