ENZYMES AND CATALYSTS FOR PURIFICATION OF INDUSTRIAL WASTE WATER

James W. Fulton

Water Resources Research Institute Oklahoma State University Stillwater, Oklahoma

June 30, 1966

.

ENZYMES AND CATALYSTS FOR PURIFICATION OF INDUSTRIAL WASTE WATER

ABSTRACT

The purpose of this study is to initiate research in the use of catalyst and enzyme systems for industrial waste water purification. Records have been assembled on the known undesirable waste water impurities. The literature has been searched for enzyme and bacteria systems which are known to decompose toxic materials. The decomposition of phenolic compounds has been emphasized, as an example. Suggestions for further research have been given.

INTRODUCTION

Catalysts and enzymes have been the object of intensive research during the past thirty years. In particular, industrial applications of these reaction rate accelerators have grown markedly since World War II. Today our fundamental knowledge and technical ability have advanced to a point where these catalysts might be applied to the purification of industrial waste water.

Trace quantities of enzymes and catalysts can accelerate reactions to surprising rates. One molecule of catalase, for example, can bring about the decomposition of 5,000,000 molecules of hydrogen peroxide in one minute at 0°C. This is an extreme example, of course, but does give hope that enzymes exist which could be used in industrial waste waters and could be applied in small enough quantities to be biologically harmless and economically feasible.

Furthermore, these enzyme and catalyst systems can be highly specific. This characteristic is useful because only the desired reaction is accelerated and unwanted side reactions are not promoted. The explanation for this behavior is given by Emil Fischer's famous "lock-and-key" hypothesis. That is, an enzyme and its substrate molecule must fit together in somewhat the same manner as a key fits into a lock. Any deviation and the key will not activate the lock. This characteristic would allow the removal of specific, undesirable impurities from industrial waste water without danger to other compounds.

It is proposed, therefore, that instead of using micro-organism to degrade industrial waste, it might be possible to employ the enzymes directly, thus bypassing the stage of growth of bacteria. This would shorten the treatment time and also make possible the removal of specific toxic chemicals which are not now removed.

The first recovery of an enzyme was made in 1833 by Payen and Persoz (48) when they found that an alcohol precipitate of malt extract contained a thermolabile substance which converted starch into sugar. This substance, which we now call amylase, was named by them diastase. After that time, quite a bit of study was devoted to chemical reactions brought about by living cells. An important step took place in 1897 when Büchner was able to extract enzymes from yeast cells. Until his discovery, the only work with enzymes was done by using living cells such as bacteria and yeast. Büchner showed that his extract, which no longer consisted of living material, brought about the same fermentation as the living yeast cells.

Summer succeeded in crystallizing the enzyme urease in 1926 and Northrop prepared crystalline pepsin in 1930 (45). Since then well over 100 of the more than 700 known enzymes have been crystallized. Today enzymes available commercially are quite expensive, but their cost might be lowered with improved techniques and greater production (eg., 1964 prices (57): catalase, \$0.80/gm; chymotrypsin, \$6.25/gm; tyrosinase, \$38/gm).

In order to be able to apply enzyme catalysis to the purification of industrial wastes, factors affecting the specificity of the enzyme must be determined. Upon deduction of these facts, one might select a particular enzyme system that would catalyze the decomposition of each impurity. Or, if no suitable enzyme system were available, one might "manufacture" suitable enzymes.

These enzymes could then be used in a "chemical reactor" which takes the industrial effluent stream as its feed stream. The toxic chemical in the effluent stream would be rapidly degraded to a harmless product.

ENZYME ACTION

The behavior and activity of enzymes is not yet understood. The extreme activity, specificity, and sensitivity of these catalysts are well known, but no correlations or general laws have been developed which can be used to explain or predict enzyme activity. However, research in this area is impressive and is growing stronger all of the time. The next decade should produce major breakthroughs in this field of study.

In general, the mechanism of enzyme action involves the formation of a unique and highly specific enzyme-substrate complex. As with all catalysts, this "activated complex" is much more reactive than the original component, and the reaction rate is greatly accelerated. The orientation and juxtaposition of the enzyme with respect to the substrate can account for some of the reaction rate increase. These steric factors alone, however, cannot explain the enormous rates of enzyme-catalyzed reactions.

A number of theories on enzyme activity have been suggested, and these are well presented in the literature. Several of these are reviewed here.

BAYLISS'S THEORY (4): The increased rate of reaction is due to an increase of active mass owing to a physical absorption of the reactants by enzyme.

STRAIN THEORY (17): This theory applies to hydrolytic enzymes. Each substrate molecule combines with the enzyme at two points. The combined groups are considered to be so spaced that the two parts of the substrate molecule are stretched, thereby weakening the bond in the substrate and rendering it more susceptible to hydrolysis. QUASTEL'S THEORY OF DEHYDROGENASE ACTION (50): Activation is explained in terms of a polarization of the substrate molecule by a local electric field due to charges on the enzyme surface.

THEORIES OF ENZYME HYDROLYSIS: (a) Taylor's theory (64) assumes a polarization of the bond to be hydrolysed. The polarization is due to the combination between enzyme and substrate by valency bonds, setting up an electronic strain which is conveyed along the substrate molecule by induction to the link to be activated. (b) Scott's theory (56) states that the negatively charged carbonyl oxygen combines by hydrogen bonding with an electrophilic group in the enzyme, which is the essential SH group.

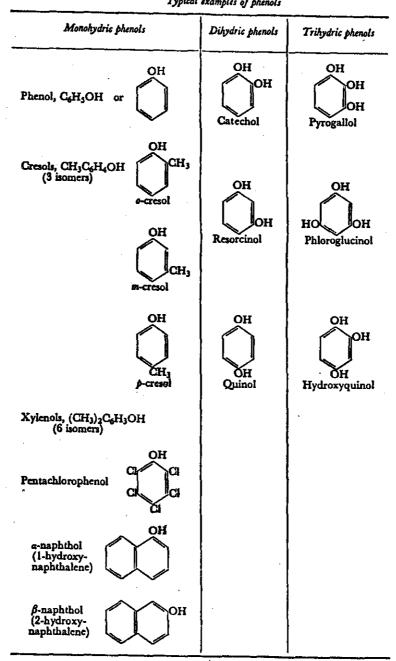
This decreases electron density at the carbonyl oxygen and the approach of hydroxyl ions to the carbon is facilitated. (c) Wilson, Bergmann and Nachmansohn's theory (69) proposes that the enzyme combines with the carbon atom, not with the oxygen atom of the carbonyl group. (d) Swain and Brown's theory (62) involves catalysis by means of a simultaneous electrophilic and nucleophilic attack by two groups in the catalyst. (e) Roswell's "dipositive bond" theory (54) depends on the production of similar and not opposite charges at the two ends of the bond to be hydrolysed. The cause of the weakening of the bond is seen in the electrostatic repulsion between these two like charges. Once the charges have been formed the bond should be ruptured heterolytically by mutual repulsion of the two positively charged atoms composing the bond.

CHAIN REACTION THEORY (13): The first step, chain initiation, is the formation of free radicals by homolytic fission (by symmetrical rupture of a bond), leaving one of the electrons of the bond on each of the atoms concerned. The main reaction, chain propagation, then takes place by the alternation of two steps, each consisting of an attack on a molecule by a free radical, producing a new molecule and another free radical.

ELECTRON CONDUCTION THEORY (9): A kinetic theory of enzymatic oxidation-reduction has been developed considering the enzyme particle to catalyze the oxidation-reduction of two different substrates at two different enzymatic sites on the same particle, with conduction of electrons between the two sites through the enzyme particle. Electron conduction across the solid-liquid interfaces at the two sites is assumed to obey the voltage-current laws valid for electrodes in solution.

ENZYMES AND BACTERIA FOR DECOMPOSITION OF HARMFUL COMPOUNDS

A list of the harmful compounds from industrial wastes have been gathered by Klein (32) and have been reproduced for convenience in Appendix A of this report.


A search of the available literature has revealed a few harmful compounds which are known to be decomposed by enzymes or bacteria.

Har	mful Compounds	Comments	Reference
1.	Acetaldehyde	Acetobacter sub-oxydans T.P.N. and D.P.N., as co-enzymes	30
2.	Acetic Acid	Oxidation by bacteria	16
3.	Anthracene	Degraded by gram-negative mobile rod. This organism possessed the enzymes to oxidize even salicylic acid and catechol.	53
4.	Benzene	Oxidized by pseudomonas aeruginosa, mycobacterium rhodochrous	10 41
5.	Benzoic Acid	Oxidation by A. Chroococcum and A. Beyerinckii; Rhodopseudomonas palustris; azeobacter	55
6.	Carbohydrate	Oxidation by pseudomonas fluorescens	43
7.	Catechol	Metapyrocatechase; catechol 2, 3- oxygenase	44,66
8.	O-chloro-m- cresol	Bacteria	63
9.	0-cresol	Potato phenol oxidase; Lactoperoxidase	29,47
10.	p-cresol	Potato phenol oxidase; Lactoperoxidase	29,47
11.	Denitrification of nitrate	Corynebacterium nephridii	25

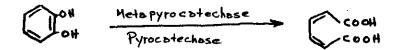
Harm	ful Compounds	Comments	Reference
12.	2:4-Dichloro and 4-chlro-2-methyl- phenoxy-acetic acid	Flavobacterium and achromobacter	21,60
13.	Heparin	Bacterial Enzymes - flavobacterium heparium	49
14.	Hydrogen sulfide	Oxidation by thiobacteriaceae, thiobacteriaeae, S. natans, achromatium and leucothrix	1,14, 16,65
15.	m-Hydroxy- benzoic acid	Degraded by pseudomonas	68,70
16.	2-Methylnaptha- lein	Oxidation by pseudomonas aeruginosa	52
17.	Napthalene	Soil pseudomonas	20,23, 42,67
18.	Nicotinic acid	Pseudomonas fluorescens	5
19.	Nitrile oxidation	Nitrobacter	39
20.	Oxalic acid	Oxalate oxidase (mosses)	12,16
21.	Phenanthren	Genus pseudomonas	53
22.	Phenol	Phenolase Lactoperoxidase	18, 19, 22 24, 47, 58, 63
23.	Phenylacetic acid	Aspergillus niger, penicillium chryogenum	27,33
24.	Phenylalanine	Vibrio O/l Lactobacillus cassei	11, 15, 33, 68
25.	Protocate- chuic acid	Pseudomonas protocatechuic oxygenase	10,51
26.	Salycylic acid	Azeobacter	66,70
27.	Thiocyanate	Thiobacillus, thiocyanoxidans	8,24
28.	Tyrosine	Pseudomonas, psudomonas fluorescens	28,61


ENZYMES FOR DECOMPOSITION OF PHENOLIC COMPOUNDS

Phenols and phenolic compounds are common constituents of many important trade waste, and this section concerns some enzymes which degrade phenolic compounds. This particular series of chemicals was chosen to give a specific example of decomposition possibilities with enzymes. *Typical examples of phenols*

Pyrocatechase

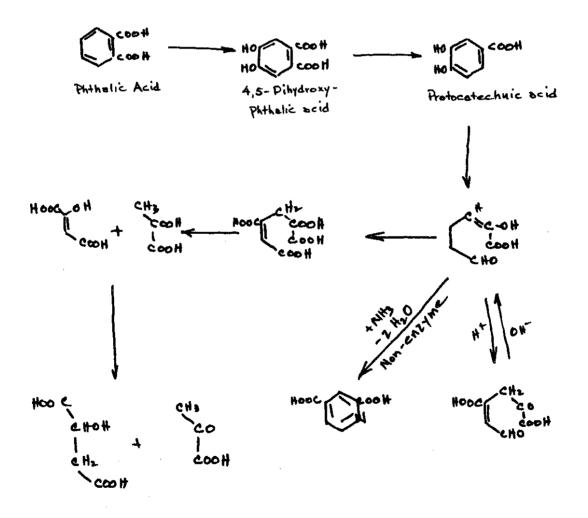
In 1955, Hayaishi and collaborators (26) showed that the cleavage of catechol by the enzyme pyrocatachase involved the utilization of molecular oxygen, not the oxygen of water. Ring openings characteristically consume two atoms of oxygen, and the reaction mechanisms is

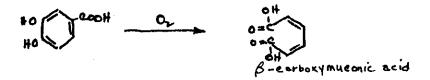


Pyrocatechase shows absolute specificity for both catechol and oxygen. Pyrocatechuic acid and other dihydroxybenzoic acids, homogentisic acid, pyrogallol, dopa, trans-5,6-dihydroxycycle-hexadiene, and p-aminocatechol are among the compounds that fail to serve as oxygen acceptors with this emzyme.

The best-studied enzyme is that obtained from a strain of Pseudomonas that can use trytophan as a carbon source. The 100-fold purified enzyme from Pseudomonas adapted to tryptophan appears to be homogeneous. It has a molecular weight of about 80,000. The activity is rapidly reduced to zero as the pH drops below 7, is maximum between pH 7 and pH 10; then drops rapidly at higher pH value. The affinity for catechol is very great.

Metapyrocatechase

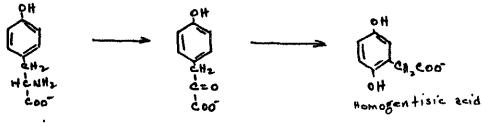

Metapyrocatechase, a catechol-cleaving enzyme, was purified about 17-fold from cell-free extracts of a strain of Pseudomonas (35). This enzyme catalyzed the oxygenation of catechol to 2 - hydroxymuconic semialdehyde. The reaction scheme is as follows:


Optical pH of this enzyme is 7.5 and the Michaelis constant for catechol was calculated to be 0.5 x 10^{-6} M. No inhibition was observed with p-chloromercuribenzuate and metal-binding agents but about 62 and 99% inhibition were observed with 10^{-5} M Ag⁺⁺ and Hg⁺⁺ ions, respectively.

Protocatechuic Oxidase

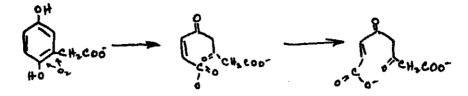
Protocatechuic oxidase is one of the catechol oxygenases. Protocatechuic acid, 3,4-dihydroxybenzoic acid, has been known as a constituent of plants, and was an intermediate in the oxidation of phydroxybenxoic acid by another bacterium, Pseudomonas fluorescens. The degradation of phthalic acid proceeds via protocatechuic acid in a pathway involving unusual reaction which was detected by Ribbons and Evans (11). The reaction pathway is shown as follows:

The oxidation of protacatechuic acid by an enzyme from Pseudomonas fluorescens was studied by Stainer and Ingraham (59) as follows:


This enzyme converts protocatechnic acid to β -carboxymuconic acid, with the uptake of two atoms of oxygen and was identified by MacDonald, et al. (40).

Protocatechuic oxidase was found to be quite specific; catechol, hydroxyhydroquinome, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, o-, m-, and p-hydroxybenzoic acids, and several esters of protocatechuic acid were not oxidized, although catechol and the dihydroxybenzoic acids were found to be competitive inhibitors. Methylene blue failed to replace oxygen in this reaction.

Homogentisic Oxidase


Homogentisic oxidase is an enzyme that catalyzes a step in the principal pathway of tyrosine degradation. The enzyme is found in both microbes and mammals.

Tyrosine is oxidized only after transamination converts it to p-hydroxyphenylpyruvic acid (34). An oxidative decarboxylation then results in homogentisic acid formation in a single step involving migration of the side chain.

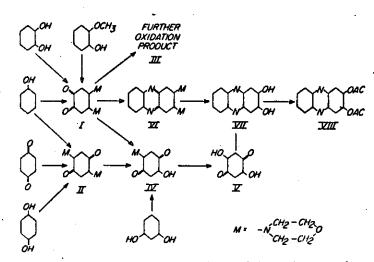
L. Tyrosine

In the study of the nature of the reaction catalyzed by homogentisic oxidase, it was found that the primary product is an isomer, maleylacetoacetic acid, and that is converted enzymatically to the compound of Ravelin and Crandall (34) as follows:

The formation of maleylacetoacetate requires the consumption of two atoms of oxygen, and the two processes occur simultaneously.

New Oxygenase

A new metabolic pathway of catachol by a new oxygenase from Pseudomonas was found by Nishizuka and Hayxishi (46). Catechol is enzymatically converted to stiochiometric quantities of pyruvate, acetate, and CO_2 , and that d-hydroxymuconic semialdehyde, γ -oxalccrotonate and α -keto- γ -hydroxyvalerate are intermediates by this new oxygenase.

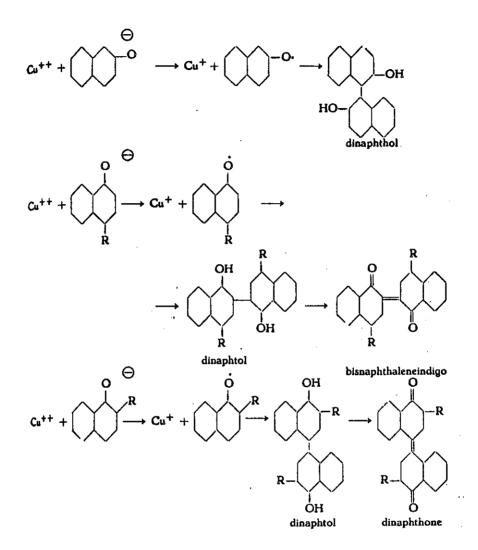


DPN (CH3-CO-CH2-CO-COOH) - H2O = CH3-COOH + CH3-CO-COOH

Reaction mixture 2.0 ml.	Catechol 20 µmoles D P N 4 µmoles Phosphate buff 10 µmoles (pH 8.0) Metapyrocatechase 24 mg enzyme protein	incubation 2 hrs. 35°	Pyruvate: 18.2 μ moles Acetate: 19.8 μ moles CO ₂ : 21.8 μ moles O ₂ Consumption = 41.3 μ moles
	\	/	

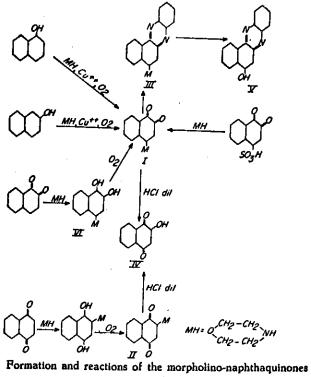
The Phenolase Model of Brackman and Havinga

The mode of action of the enzyme has been studied extensively in model experiments by Brackman and Havinga (7). The oxidation of mono- and dihydricphenols of the benzene series, using morpholinecapric complex as catalyst is shown:

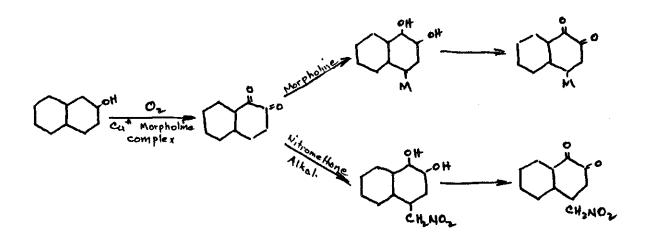


Proof of structure and interrelation of the oxidation products of phenol, catechol, guaiacol, resorcinol and hydroquinone.

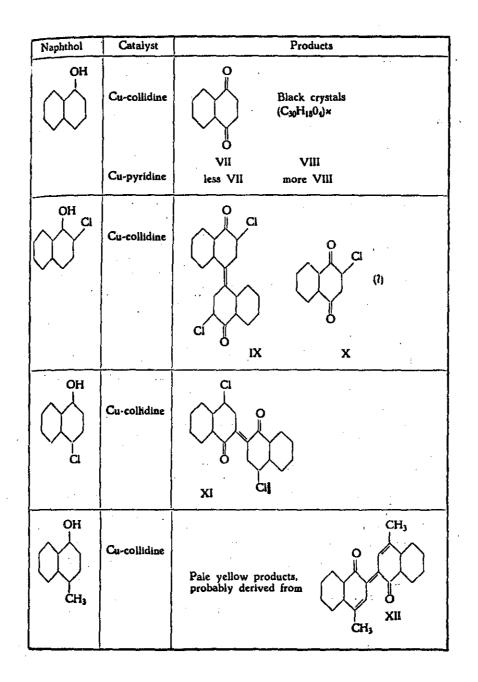
The cresols and xylenols are also readily oxidized under the conditions used in the phenol oxidation. The structure of the products formed is subject to further investigation.

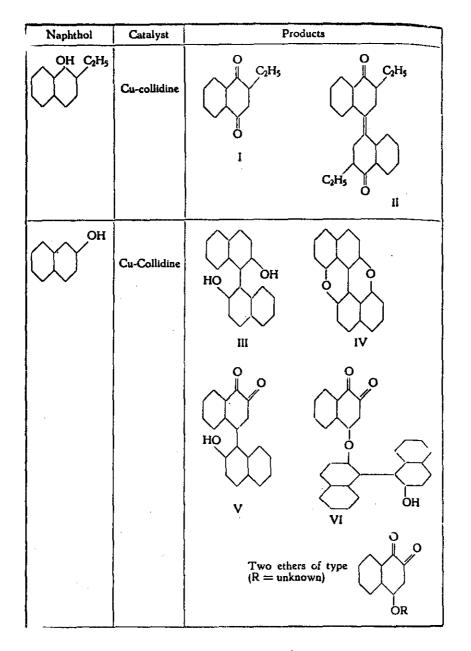

The catalytic oxidation of naphthols is similar to that of the phenols but with one important complication. Because of the relatively low critical oxidation potential of the naphthols as compared with the phenols, a direct oxidation by a cupric complex gives rise to the formation of naphthol free-radicals. These radicals partly dimerize and partly react with other products.

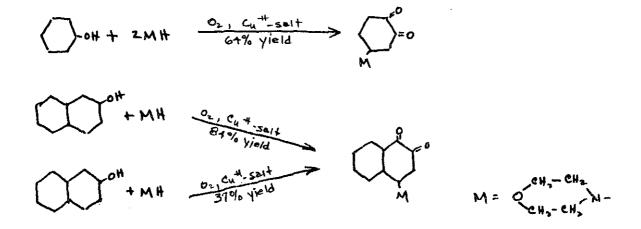
The figure below shows the reaction with naphthol and the influence of substitents on the subsequent reactions of the free radical.

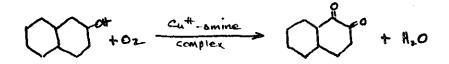


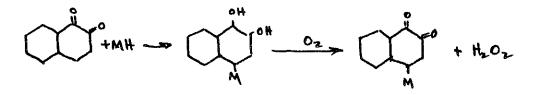
The oxidation of naphthol-2 with oxygen in a methanolic solution of morpholin and copper-acetate proceeds very rapidly at room temperature and the reaction product, 4-morpholino-naphthaquinone-1,2, precipitates in high yields (up to 73%).


The formation and reactions of the morpholino-naphthaquinones are as follows:


The competitive formation of 4-morpholino- and 4-nitromethyl-1,2naphthaquinone from naphthol-2 is:


The reaction products obtained from some phenols are shown in the following table:




They summarized the important reaction as:

They argued that these reactions consist essentially of two phases: (1) A conversion of the monohydric phenol into an orthoquinone.

(2) A spontaneous addition of morpholine to quinone, followed by a rapid autoxidation of the catechol derivative formed.

The catalytic oxidation of phenol has two kinetic peculiarities which are of special importance for the deduction of the reaction mechanism; i.e., the induction period and the critical phenol concentration. Moreover, reactions of this type usually display copper and amine-concentration optima.

SUGGESTIONS FOR FURTHER WORK

.

The next step in this study should be experimental work to determine an enzyme system which might be active in decomposing an industrial waste impurity. Phenol would probably be the best choice for decomposition, because this is a common impurity and some information on its decomposition is available in the literature.

Once the correlations and general quantitative laws are available for a system, the engineering aspects could be studied; i.e., design of a "reactor" for the decomposition reaction.

REFERENCES

- 1. Alexander, M., Introduction to Soil Microbiology (1961).
- 2. Ashmore, P.G., <u>Catalysis and Inhibition of Chemical Reactions</u>, Butterworths, London (1963).
- 3. Baldwin, E., <u>Dynamic Aspects of Biochemistry</u>, Cambridge University Press, Cambridge (1949).
- 4. Bayliss, W.M., <u>The Nature of Enzyme Action</u>, (4th ed.) Longmans, Green and Company, Ltd., London (1919).
- 5. Behrman, E.J. and Strainer, R.Y., J. Biol. Chem., 228, 923 (1957).
- 6. Bender, M.L., Chem and Engr. News, 40, 64 (1962).
- 7. Brackman, W., and Havinga, E., Rec. Trav. Chim., <u>74</u> 937, 1021, 1070, 1100, 1107 (1955).
- 8. Butlin, K.R., Research, Lond., 6, 184 (1953).
- 9. Cope, F.W., Arch. Biochem. and Biophys., 103, 352 (1963).
- Dagley S., Chapman, P.J., Gibson, D.T., and Wood, J.M., Nature, Lond., <u>202</u>, 775 (1964).
- 11. Dagley, S., Evans, C.V., and Ribbons, D.W., Nature 188, 560 (1960).
- 12. Datta, P.K., Meeuse, B.J.D., Engstom, H.V., and Hilal, S.H., Biochem. Biophys. Acta. <u>17</u>, 602 (1955).
- 13. Dixon, M., Enzymes, Academic Press Inc., New York, (1958)
- 14. Doudoroff, P., and Katz, M., Sewage Ind. Waste, 25, 802 (1953).
- 15. Eiduson, S., and Dunn, M.S., J. of Biochem., 219, 175 (1956).
- 16. Ellis, M.M., Bull. U. S. Bur. Fish., <u>48</u>, 365 (1937).
- 17. Eulers, H. von, Z. Physiol. Chem., <u>143</u>, 79 (1925).
- 18. Evans, W.C., Biochem. J., 41, 373 (1947).
- Evans, W.C., and Happold, F.C., J. Soc. Chem. Ind., Lond., 58, 55 (1939).

- 20. Fernley, H. N., and Evans, W.C., Biochem. J., 73, 22 (1959).
- 21. Fleming, J.D., J. Mo. Wat. Sewage Conf. 17, 14 (1946).
- 22. Fromm, P.O., and Schiffman, R.H., J. Wildlife Mgmt., 22, 40 (1958).
- Hamdy, M.K., Sherrer, E.L., Randles, C.I., Weiser, H.H., and Sheets,
 W.D., Bull. Ohio Eng. Exp. Sta. No. 157, 24, 11, (1955).
- 24. Happold, F.G., Johnstone, K.I., Rogers, H.J., and (Mrs.) Youatt, J.B., J. Gen. Microbiol., <u>10</u>, 261 (1954).
- 25. Hart, L.T., Larson, A.D., and McCleskey, C.S., J. Bacteriology, 89, 1104 (1965).
- Hayaishi, O., Katagir, M., and Rothberg, S., J. Am. Chem. Soc. <u>71</u>, 5450 (1955).
- 27. Hockenhull, P.J.D., Walker, A.D., Wilkin, G.D., and Winder, F.G., Biochem. J., <u>80</u>, 605 (1952).
- 28. Jones, J.D., Smith, B.S.W., and Evans, W.C., Biochem. J., 51, Xi (1952).
- 29. Jones, J.R.E., J. Exp., Biol., 28, 261 (1951).
- 30. King, T.E., Cheldelin, V.H., J. Biochem., 220, 177 (1956).
- 31. Klein, L., Aspects of River Pollution, Academic Press, New York (1957).
- 32. Klein, L., <u>River Pollution. II. Causes and Effects</u>, Butterworths London (1962).
- 33. Kluyver, A.J., and van Zijp, J.C.M., Antonie van Leeuwenhoek, J. Microbiol. Serol., <u>17</u>, 375 (1951).
- 34. Knox, W.E., and Edwards, S.W., J. Biol. Chem., <u>216</u>, 479 (1955).
- 35. Kojima, Y., Itado, N., and Hayaishi, O., J. Biol. Chem., 230, 2223 (1961).
- 36. Koshlaud, D.E., Jr., Science, 143, 1533 (1963).
- Laidler, K.J., <u>Introduction to the Chemistry of Enzymes</u>, McGraw-Hill Book Co., Inc., New York, (1954).
- Laidler, K.J., <u>The Chemical Kinetics of Enzyme Action</u>, Oxford University Press, London, (1958).
- 39. Laudelout, H., and Techelen, L.V., J. of Bacteriology, 79, 39 (1960).
- 40. MacDonald, D.L., Stanier, R.Y., and Ingraham, J.L., J. Biol. Chem., 210, 809 (1954).

- 41. Marr, E.K., and Stone, R.W., J. Bacteriology, 81, 425 (1961).
- Ministry of Transport and Ministry of Agriculture and Fisheries, H. M.S.O., Soint Committee on damage to fisheries, Lond. (1930).
- 43. Narrod, S.A., Wood, W.A., J. Biol. Chem., 220, 45 (1956).
- 44. Nishizuka, Y., Ichiyama, A., Nakamura, S., and Hayaishi, O., J. Biol. Chem., <u>237</u>, 268 (1962).
- 45. Northrop, J.H., Kunity, M., and Herriott, R.M., <u>Crystalline Enzymes</u>, (2nd. ed.), Columbia University Press, New York, (1948).
- 46. Oeming, L.F., Sewage Wks. J., 18, 678 (1946).
- 47. Palis, B.D., and Shmukler, H., J. Biol. Chem., 201, 475 (1953).
- 48. Payen, A. and Persoz, J.F., Ann. Chim. (Phys), 53, 73 (1838).
- 49. Payza, A.N., Korn, E.D., J. Biochem., 223, 852 (1956).
- 50. Quastel, J.H., and Wooldridge, W.R., J. Biochem., 21 1224 (1927).
- 51. Ribbons, D.W., and Evans, W.C., J. Biochem., 73, 21 (1959).
- 52. Rogoff, M.H., and Wender, I., J. Bacteriol., 77, 783 (1959).
- 53. Ibid, 73, 264 (1957).
- 54. Rowsell, E.V., J. Biochem., 64, 235 (1956).
- 55. Scher, S., and Allen, M.B., Bacteriol. Proc. (Soc. Am. Bacteriologists), 67 (1960).
- 56. Scott, J.E., Nature, Lond., 172, 777 (1953).
- 57. Sigma Chemical Company, 1964 catalog.
- 58. Skorzynski, B., and Czekalowski, J.W., Nature, Lond., 158, 304 (1946).
- 59. Stanier, R.Y., and Ingraham, J.L., J. Biol. Chem., 210, 799 (1954).
- 60. Steenson, T.I., and Walker, N., J. Gen. Microbiol., 18, 692 (1958).
- 61. Suda, M., and Takeda, Y., Med. J. Osaka University, 2, 37 (1950).
- 62. Swain, C.G., and Brown, J.F., J. Am. Chem. Soc. 74, 2538 (1952).
- 63. Tabak, H.H., Chambers, C.W., and Kabler, P.W., J. Bacteriol., 87, 910 (1964).
- 64. Taylor, D.B., Enzymologia, 2, 310 (1938).
- 65. Vishniac, W., and Trudinger, P.A., Bacteriol. Rev., 26, 108 (1962).

- 66. Voets, J.P., Naturwissenshoften, 45, 1 (1958).
- 67. Washington, State of Washington 64th Ann. Rep. Fish. (1944).
- 68. Water Pollution Research, H.M.S.O. Lond. (1954).
- 69. Wilson, I. B., Bergmann, F. and Nachmansohn, D., J. Biol. Chem., <u>186</u>, 781 (1950).
- 70. Yano, K., and Ariwa, K., J. Gen. Appl. Microbiol., 4, 241 (1958).

VEDENDIX V

TOXIC MATERIALS IN INDUSTRIAL WASTES Taken from Klein (32)

· · · ·

.

Types of industrial waste waters From M. B. ETTINGER, by courtesy of Water and Sewage Works

A. WASTES CHIEFLY MINERAL IN NATURE, OR PARTLY MINERAL AND PARTLY ORGANIC

- 1. Brine wastes
- 2. Mineral washing slurries and suspensions (e.g. stone sawing, sand and china clay washing)
- 3. Mine drainage (pit water from coal mines)
- 4. Pickle liquor wastes (e.g. iron and copper pickling, galvanizing,
 - etc.)
- 5. Electro-plating

- 6. Water softening
- 7. Cooling water from condensers 8. Boiler blow-off 9. Inorganic chemical manufactur-
- ing wastes 10. Battery manufacture
- 11. Coal-washing
- 12. Inorganic pigments 13. Photographic wastes
- B. WASTES CONTAINING CHIEFLY ORGANIC MATERIALS

I. Hydrocarbon wastes

1. Oil wells

15.

- 2. Petroleum refining
- 3. Styrene manufacture
- 4. Co-polymer rubber plants
- 5. Butadiene plants

- 6. Natural rubber processing or
- reclaiming 7. Petrol stations, garages, engineering works

II. Miscellaneous organic chemical wastes

- 8. Munition plants (e.g. TNT, Tet-
- ryl, ammonium picrate, etc.)
- 9. Synthetic pharmaceuticals 10. Synthetic or man-made textile
 - fibres (e.g. rayon, nylon, etc.)
- 11. Organic chemical manufacture
- 12. Paints and varnishes
- 13. Oil and grease processing and refining

III. Phenolic wastes

- 14. Gas plants and by-product coke plants Tar distillation, road oil and

IV. Biological wastes

- (a) Wastes from processing of biological materials and/or from biological processes
- 20. Tanneries and leather trades

creosoting plants

- 21. Pharmaceuticals
- Pharmaceuticals (antibiotics, biologicals; e.g. penicillin) 22. Alcohol industries (brewing and
- distilling) 23. Miscellaneous fermentation industries
- 24. Glue, size and gelatine plants

32. Milk and dairy wastes

33. Corn products plants

(b) Food processing wastes

flax)

29. Laundrics

- Canneries
 Meat packing, slaughterhouse and related trades 34. Beet sugar factories
 - 35. Cane sugar factories
 - 36. Fish processing plants
 - 37. Other food processing and dehydration plants

25. Wool scouring 26. Textile manufacture (natural

27. Floor-cloth manufacture

28. Paper manufacture

fibres; e.g. cotton, wool, silk,

(c) Farm wastes (e.g. piggeries)

C. RADIOACTIVE WASTES

(e.g. atomic energy plants and experimental stations; hospitals and industries using radioactive isotopes)

- 16. Chemical plants
 - 18. Wood distillation
 - 19. Dye manufacturing
- - - 17. Synthetic resin plants

Some chemical substances in industrial wastes

AmmoniaGas and colFluoridesScrubbing plants, fei transistorCyanidesGas manufaSulphidesSulphide diviscose raSulphitesWood pulp ingMineral acidsChemical n D.D.T. n facture, pAcetic acidPickle and Citric acidChromiumPickle and vorksAlkalisCotton and zing, lau PlatingChromiumPlating CadmiumCopperCopper-pla manufacArsenicSheep-dipp Plating, phSulpriderPrexide ProvideArsenicDairies, bi	cture, plating, case-hardening, metal cleaning yeing of textiles, tanneries, gas manufacture, yon manufacture processing, viscose film manufacture, bleach- nanufacture, mines, iron and copper pickling, nanufacture, brewing, textiles, battery manu- hotoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri-
Fluorides Scrubbing plants, fer transistor Cyanides Gas manufa Sulphides Sulphide diviscose ra Sulphites Wood pulp ing Mineral acids Chemical n Acetic acid Pickle and Citric acid Distilleries, Alkalis Optime Alkalis Plating, alu Chromium Plating Nickel Plating Zinc Sheep-dipp Silver Plating, ph Arsenic Sheep-dipp Silver Plating, ph Arsenic Sheep-dipp Sugars Dairies, bi	of flue gases, glass etching, atomic energy tilizer plants, metal refineries, ceramic plants, factories cture, plating, case-hardening, metal cleaning yeing of textiles, tanneries, gas manufacture, yon manufacture processing, viscose film manufacture, bleach- nanufacture, mines, iron and copper pickling, nanufacture, brewing, textiles, battery manu- botoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Cyanides plants, feitransistor Sulphides Gas manufa Sulphides Sulphide Sulphites Wood pulping Mineral acids Uback Acetic acid Pickle and Citric acid Soft drinks Organic acids Distilleries, Alkalis Cotton and Zing, lau Plating Chromium Plating Nickel Plating Cadmium Plating Copper Copper-pla Arsenic Sheep-dipp Silver Plating, ph Hydrogen peroxide Peroxide bi Sugars Dairies, bi	tilizer plants, metal refineries, ceramic plants, factories cture, plating, case-hardening, metal cleaning yeing of textiles, tanneries, gas manufacture, yon manufacture processing, viscose film manufacture, bleach- nanufacture, mines, iron and copper pickling, nanufacture, brewing, textiles, battery manu- botoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- ndries minium anodizing, chrome-tanning
Sulphides Sulphides Sulphites Sulphide diviscose ra Sulphites Wood pulp Mineral acids Ing Mineral acids Chemical n D.D.T. n facture, p Acetic acid Soft drinks Organic acids Distilleries, Tartaric acid Dyeing, with works Alkalis Cotton and zing, latu Lead Plating Nickel Plating Zinc Galvanizing Copper Copper-plating Silver Plating, ph Hydrogen peroxide Prexide bi Sugars Dairies, bi	veing of textiles, tanneries, gas manufacture, yon manufacture processing, viscose film manufacture, bleach- nanufacture, mines, iron and copper pickling, nanufacture, brewing, textiles, battery manu- hotoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Sulphides Sulphides Sulphites Sulphide diviscose ra Sulphites Wood pulp Mineral acids Ing Mineral acids Chemical n D.D.T. n facture, p Acetic acid Soft drinks Organic acids Distilleries, Tartaric acid Dyeing, with works Alkalis Cotton and zing, latu Lead Plating Nickel Plating Zinc Galvanizing Copper Copper-plating Silver Plating, ph Hydrogen peroxide Prexide bi Sugars Dairies, bi	veing of textiles, tanneries, gas manufacture, yon manufacture processing, viscose film manufacture, bleach- nanufacture, mines, iron and copper pickling, nanufacture, brewing, textiles, battery manu- hotoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Mineral acids . ing Mineral acids . Chemical n D.D.T. n facture, p Acetic acid . Pickle and Citric acid . Soft drinks Organic acids . Distilleries, Tartaric acid . Dyeing, wi Alkalis . Cotton and Zing, lau Plating Chromium . Plating Cadmium . Plating Copper . Copper-pla manufac Sheep-dipp Silver . Plating, ph Hydrogen peroxide . Peroxide bi Sugars . Dairies, bi	nanufacture, mines, iron and copper pickling, nanufacture, brewing, textiles, battery manu- hotoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- ndries minium anodizing, chrome-tanning
Acetic acidD.D.T. r facture, r Pickle andCitric acid.Organic acidsDistilleries, Soft drinksOrganic acidsDistilleries, worksAlkalis.Chromium.Lead.Nickel.Plating Cadmium.Chromium.Plating Cadmium.Chromium.Sickel.Copper.Copper.Silver.Plating, phHydrogen peroxide.Sugars.Dairies, bi	nanufacture, brewing, textiles, battery manu- hotoengraving beetroot manufacture, acetate rayon and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Citric acid Soft drinks Organic acids Distilleries, Tartaric acid Dyeing, wi works Alkalis Cotton and Chromium	and citrous fruits fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Organic acids Distilleries, Tartaric acid Dyeing, wi Alkalis Otom and Zing, lau Plating, alu Chromium Plating, alu Lead Plating Cadmium Plating Zinc Galvanizing Copper Copper-pla Mickel Plating Cadmium Plating Cinc Sheep-dipp Silver Plating, ph Hydrogen peroxide Peroxide bi Sugars Dairies, bi	fermentation plants ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Tartaric acid . Dyeing, wi works Alkalis . Cotton and zing, lau Chromium . Plating, alu Chromium . Plating, alu Cadmium . Plating Zinc . Galvanizing Copper . Copper-pla manufac Arsenic . Plating, ph Hydrogen peroxide . Peroxide bi Sugars . Dairies, bi	ne making, leather manufacture, chemical straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Alkalis works Cotton and zing, lau Chromium Plating, alu Lead Battery ma Nickel Plating Cadmium Plating Zinc Galvanizing rubber-p Copper Copper-plamanufac Arsenic Plating, ph Hydrogen peroxide Peroxide bi Sugars Dairies, bi	straw kiering, wool scouring, cotton merceri- adries minium anodizing, chrome-tanning
Chromium	ndrics minium anodizing, chrome-tanning
Lead Battery ma Nickel Plating Cadmium . Plating Zinc Galvanizing rubber-p Copper Copper-pla manufac Arsenic . Sheep-dipp Silver . Plating, ph Hydrogen peroxide . Peroxide bi Sugars Dairies, bi	minium anodizing, chrome-tanning nufacture, lead mines, paint manufacture
Lead Battery ma Nickel Plating Cadmium . Plating Zinc Galvanizing rubber-p Copper Copper-pla manufac Arsenic . Sheep-dipp Silver . Plating, ph Hydrogen peroxide . Peroxide bi Sugars Dairies, bi	nufacture, lead mines, paint manufacture
Cadmium . Plating Zinc . . Galvanizin Copper . . . Copper . . . Arsenic . . Sheep-dipp Silver . . Plating, ph Hydrogen peroxide . Plating, ph Sugars . . Dairies, bi	
Zinc Galvanizin rubber-p Copper Copper-pla manufac Arsenic	
Copper Copper-pla manufac Arsenic Sheep-dipp Silver Plating, ph Hydrogen peroxide . Peroxide bl Sugars Dairies, bu	· · · ·
Arsenic	z, zinc-plating, viscose-rayon manufacture,
Silver Plating, ph Hydrogen peroxide Peroxide b Sugars Dairies, bi	ting, copper pickling, cuprammonium rayon
Silver Plating, ph Hydrogen peroxide Peroxide b Sugars Dairies, bi	ing, fellmongering
Sugars Dairies, bi	otography
Sugars Dairies, but heet sug	caching of textiles, rocket motor testing
wood pr	reweries, preserve manufacture, glucose and ar factories, chocolate and sweet industries, pressing
Starch Food proc	essing, textile industries, wall-paper manufac-
Fats, oils, and grease Wool scou	ring, laundries, textile industries, petroleum s, engineering works
Phenols Gas and contextile in	be manufacture, synthetic resin manufacture, dustries, tanneries, tar distilleries, chemical ye manufacture, sheep dipping
Formaldehyde . Synthetic r	esin manufacture, penicillin manufacture
Mercaptans Oil refiner	es, pulp mills
Tannic acid . Tanning, s	
Hydrocarbons Petro-chen	factories, chemical works

•

.

Alkaline Wastes					
Waste	pH	Alkali(s) present			
Gas liquor	8-9	Ammonia			
Kier liquor (kiering of cotton or straw)	12-14	Caustic soda, sodium carbonate, lime			
Cotton mercerizing wastes .	12-14	Caustic soda			
Chemical manufacturing wastes.	variable	Caustic soda, sodium carbonate, lime, am- monia			
Tannery wastes Wool scouring wastes (untreated)	up to 12 9-10	Lime Sodium carbonate			

Some typical alkaline and acid waste waters

Acid Wastes

.

Waste		рН	Acid(s) present
Mine water	· ·	2.5-6.5	H ₂ SO ₄
		1.0 or less	H ₂ SO ₄
Iron pickle liquor	• •	strongly acid	H ₂ SO ₄ , sometimes HCl, rarely H ₁ PO ₄
Copper pickle liquor	•	strongly acid	H ₂ SO ₄
DDT wastes		very strongly acid	H ₂ SO ₄
Viscose rayon wastes		strongly acid	H ₂ SO ₄
Wood pulp spent sulphite	liquor	2-4	Sulphurous acid (H ₂ SO ₃)
Chemical manufacturing v	wastes.	variable	H2SO4, HCI, HNO3, H1PO4
Munition factory wastes . Wool scouring wastes ('cr	acked'	1–3	H ₂ SO ₄ , ĤNO ₃
with acid)		<4	H ₂ SO ₄

Concentrations of phenols and other organic compounds present in coal carbonization effluents having adverse effects on taste of fish

Compound	Fish lested	Toxicity to fish (threshold value) p.p.m.	Approximate concentration (thres- hold value) at which fish flesh is tainted p.p.m.
Phenol Cresols Coke oven wastes .	trout, carp trout, carp freshwater fish	9·5 10–15 3–5	25 10 0·020·1
Phenols in polluted river	minnows carp rudd carp carp rudd carp, rudd carp, rudd rudd carp, rudd rudd	$ \begin{array}{r} 0.08\\ 10\\ 18\\ 5\\ 15\\ 35\\ 50\\ 160-200\\ 10\\ -2\\ 2\\ 6\\ \end{array} $	0-02-0-15 5 1 2-5 30 20 5 0-5-1 1 0-5 1 3

- - -

- - -

Some important organic compounds toxic to fish and present in trade wastes discharging to streams

Class	Typical examples	Occustence	Approxi- mate lethal concen- tration to fish p.p.m.
Phenols	Phenol, C ₆ H ₃ OH Cresols, ϕ -, m -, and p - C ₆ H ₄ (CH ₃)OH	gas works efflu- ents; coal-tar; chemical wastes; synthetic resin wastes	1–20
Tar bases	Pyridine, C5H5N	gas works effluents	1,000
	Acridine, $C_6H_4 < \begin{bmatrix} N \\ I \\ CH \end{bmatrix} > C_6H_4$	coal-tar	0•7–1•0
Hydro- carbons	Naphthalene, C10H8	gas works efflu- ents; coal-tar	10-20
Aldchydes	Formaldehyde, H·CHO	synthetic resin wastes; penicillin wastes textile wastes	50 (kills trout in 1-3 days)
Cyanogen compounds	Cyanides, e.g. KCN, NH4CN	plating waster; gas liquor	0-04 0-1+ (as CN)
	Cyanogen chloride CNCl	chlorinated gas liquor	0.08
Chlorinated hydro-	DDT, Cl·C ₆ H ₄ Cl·C ₆ H ₄ (dichloro-diphenyl-trichloroethane)	insecticidal sprays; wastes from manufacture	>0·1 (toxic to goldfish)
carbons	Gammexane, y-C6H6Cl6 (y-hexachlorogy/ohexane)	of insecticides	0.035
Mercap- tans	Methyl mercaptan, CH3SH	wood pulp wastes (sulphate pro- cess); oil refinery wastes	kills game fish in 2-6 h)

- -- --

÷

ł

Substance	Fish tested	Lethal concentration p.p.m.	Water type	Expo- sure time hourn
Entire packaged detergents	fathcad minnow	4185	soft	96
". ". ". ". ". ". ". ". ". ". ". ". ". "	33 3 3	15-87	hard	96
alkyl benzene sulphonates	22 E2	4·5-23 3·5-12	soft hard	96 96
polyoxyethylene ester .	fathcad minnow	37	lot	96
odium lauryl sulphate	37 37	38	hard soft	96 96 96 96
	93 93 98 99	5.9	hard	96
sodium tetrapropylene benzene sulphonate	rainbow trout	12	7	6
Builders sodium perborate sodium suphosphate sodium sulphate """"""""""""""""""""""""""""""""""""	fathead minnow rainbow trout fathead minnow 30 30 30 30 30 30 30 30 30 30 30 30 30	920 1120 PO4 > 256 > 704 9000 13,500 1120 PO4 140 1300 29-42 920-1800 100	? ? ? soft hard ? soft hard soft	24 24 24 96 96 24 96 96 96 96 96 96
y y y y y	21 22 23 22	> 1800	hard	96

Lethal limits to fish for Synthetic Detergents and Sosps This Table is based upon the data in HENDERSON, PICKERING and COHEN and Water Pollution Research, 1955.

Lethal limits to fish for some important polluting substances

In this table the concentration values are the lowest at which definite toxic action is indicated by the data in the reference cited. Wherever possible the exposure time is given. It must not be assumed that lower concentrations are harmless and for further information the works cited should be consulted as many include survival curves or tables. Where no reference is given the figures are based on unpublished work by the writer. Most of the data is for temperatures between 15° and 23° C. Concentrations are parts per million unless otherwise stated. Exposure times have been approximated in some cases.

Substance .	Fish tested	Lethal concentration	Exposure time hours	Ref.
Acctic acid .	• goldfish	423	20	1
Aluminium potassium su	l-			1.
phate (alum)	•	100	12-96	1
Aluminium nitrate .	. stickleback	0-1	144	15
Ammonia	. goldfish	2-2-5 NH3	24-96	
3) · ·	. perch	3 N	20	55
33 • •	, roach	3 N	5	. 55
	, rainbow trout	3 N	2	- 55
Ammonium chloride	• 23 28	500	17	79
Ammonium sulphate	•	1000	14 /	79
Amyl alcohol	goldfish		161	្រះ
Aniline	. minnow	200	48	
Arsenic compounds	brown trout	100	48	1
Sodium arsenite .	. minnow	17-8 As	36	79
Sodium arsenate .		234 As	15	79
Barium chloride	goldfish	5000	12-17	l ï
	salmon	158	?	80
Barium nitrate	stickleback	500 Ba	180	15
Bromine	goldfish	20	15-96	1 1
Butyl alcohol	· · · · ·	250	7-20	1 4
Cadmium chloride .		0-017	9-18	4
Cadmium nitrate .	 stickleback 	0-3 Cd	190	15
Calcium hydroxide .	. goldfish	100		
- •	-	(pH 11-1)	?	18 J
Calcium nitrate .		6061	43-48	1 4
n n .	. stickleback	1000 Ca	192	15
Carbon dioxide	various spp.	100-200	7	2
Carbon monoxide .	•	1-5	I-10	2
Chloramine	. brown trout fry	0-06	2	82
Chlorine	. rainbow trout	0.03	2	83
39 • •	•	0.08	2	46
»» · ·	. brook trout	0.5-1.5	2	84
	. goldfish		96	1
Chromic acid	+ н	200	60-84	[!
Citric acid	• 33	894	4-28	i
Cobalt chloride	*	10	168	
Cobalt nitrate	. stickleback	15 Co	160	15
Copper nitrate	•	0.02 Cu	192	14
н н •	. rainbow trout	0.08 Cu	20	72
<u></u>	. salmon	0.18	?	80
Copper sulphate	. stickleback	0.03 Cu	160	4
Cupric chloride	. goldfish	0.019	5-7	1 *

Substance	Fish tested	Lethal concentration	Exposure time bours	Ref.
Cresylic acid Cyanogen chloride	goldfish	1	6-48 ?	1
17.1.1.1.1.1.1	rainbow trout goldfish	0.25 c.c./l.	6-11	85
Ferric chloride	stickleback	pH 4-8	144	15
Herbicides*	STICE CONCE		411	
Aminotriazole	coho salmon	325	48	86
	bluegill	10,000	48	86
Baron	chinook salmon	2.3	48	86
_ » • • • •	largemouth bass	4-6	24	86
Dowpon .	coho salmon	340	48	86
Diquat	chinook salmon	28-5	48	86
D ¹¹ · · · ·	rainbow trout	60	96	86
Diuron	coho salmon	16	48	86
Endothal	chinook salmon	136 0-08	48 24	86
F.98 (Acrolein) .	51 53 min bour trout	0.065	24	86
Hyamine 1622	rainbow trout coho salmon	53	48	86 86
Kuron	chinook salmon	1.23	48	86
	largemouth bass	3.5	24	86
N 6	coho salmon	110	48	86
	various spp.	40	240	86
Omazene	chinook salmon	0-83	48	86
Phygon XL	largemouth bass	0-07	48	86
Simazine	chinook salmon	6.6	48	86
Sodium TCA	>> >>	>870	48	86
Hydrochloric acid	stickleback	pH 4-8	240	15
	goldfish	pH 4-0	4-6	1
(See also Figure 30)				Ι.
Hydrogen sulphide	23 ·	10	96	1
Insecticides*		0.000	06	
Aldrin	rainbow trout	0·028 0·05	96 24	87
BHC .	goldfish	2.3	96	60 87
BHC (6.5 per cent	gotariza	4 .3	50	01
gamma isomer).	rainbow trout	3	96	88
Chlordane	goldfish	0.082	96	87
	rainbow trout	0.5	24	60
Chlorothion.	fathcad minnow	3.2	96	87
Co-ral	bluegill	0-18	96	87
DDT	goldfish	0.027	96	87
yy • • • •	rainbow trout	0.5	24	60
39 • • •	_>>> >>>	0.32	36	63
• • • •	salmon	0.08	36	63
		0.072	?	89
Dieldrin	brook trout	0·032 0·037	36 96	63
	goldfish bluegill	0.037	90 96	87 87
73 • • •	rainbow trout	0.005	24	60
Dipterex	fathead minnow	180	96	87
D !	bluegill	0.064	96	87
Endrin	goldfish	0.0019	96	87
	carp	0.14	48	65

* The references cited should be consulted for the chemical names of these compounds, the degree of purity of the preparations used for the tolerance tests, and the methods employed for making the test solutions.

Substance		Fish tested	Lethal concentration	Exposure time hours	Ref.
Insecticides (cont.)	<u></u>		·		
Endrin .	• •	fathead minnow	0-001	96	87
EPN	• •		0.2	96	87
Guthion .		bluegill	0.005	96	87
	• •	fathead minnow	0.093	96	87
Heptachlor .	• •	rainbow trout	0.25	24	60
11 •	• •	goldfish	0.23	.96	87
Malathion	• •	bluegill	0.019	96	87
	• •	fathcad minnow	12-5	96	87
Methoxychlor	• • •	rainbow trout	0.05	24	60
		goldfish	0-056	96	87
OMPA .	· ·	fathead minnow	121	96	87
Parathion .	• •	31 31	1-4-2-7	96	87
Para-oxon .	• •	10 II	0.33	96	87
Sevin	• •		13	96	87
_ P) * *	• •	bluegill	5-6	96	87
Systox .	• •	fathead minnow	3.6	96	87
Toxaphene .	• •	rainbow trout	0.05	24	60
· • •	• •	goldfish	0.0056	96	87
TEPP"	• •	carp	01	?	90
	• •	fathcad minnow	1.7	96	87
actic acid	• •	goldfish	654	6-43	1
.cad nitrate	• •	minnow	0-33 Pb	?	7
29 91	• •	stickleback	0-33 Pb	5	7
20 DD	• •	brown trout	0·33 Pb	?	7
P2 22	• •	stickleback	0-1 Pb	336	14
37 3 7	• •	goldfish	10	12	14
ead sulphate	• •	rainbow trout	1 Pb	100	72
	• •	goldfish	25 Pb	96	6
Magnesium nitrate	•	stickleback	400 Mg	120	15
Mercuric chloride	•		0-01 Hg	204	15
viethyl alcohol	• •	goldfish	0·25 c.c./l.	11-15	4
Naphthalene	• •	salmon	3.2	2	80
Nickel chloride	•	perch	20		51
Nickel chioride	• •	goldfish	10	200	
Nitric acid	• •	stickleback	1 Ni	156	15
Dxalic acid .	• •	minnow	pH 5-0		7
Oxygen	• •	goldfish	1000	1	
	• •	rainbow trout	3 c.c./ l. *		45
	• •	cel	1 c.c./l.*	-	45
Nascent oxygen	• •	coho salinon	2	720	41
Ozone .	• •	various species	0-033	2	91
Phenolic substances	• •	91 JJ	0.01	3	91
ortho-cresol		minnow	60	<u> </u>	00
para-cresol .	• •	1 THURDOM,	60	2 2 2 4	92
-	• •	rainbow trout	50 5		92 21
phenot	• •	minnow	5 20	2	92
-	• •	rainbow trout	6	7	92 21
97 • •	• •		9	3	
	• •	perch	1 -	1	51
Potassium chromat		goldfish rainbow trout	10 75	72 60	
Same and the second		immon nont	13	00	79

• These are said to be the minimum tensions at which the animal is able to extract its normal requirement of oxygen from the water.

Substance	. Fish tested	Lethal concentration	Exposure time hours	Ref.
Potassium chromate	1	195 Cr	68	93
Potassium chromate	largemouth bass rainbow trout	195 Cr 57	72	93 79
rotassium dichromate .		500	72	
37 37 57 57 57 57 57 57 57 57 57 57 57 57 57	goldfish		118	
Potassium cyanide	93	0.4 CN		4
75 35 * *		0.1-0.3	96	
22 23 · ·	rainbow trout	0.13 CN	2	21
" », "», • •		0.07 CN	70	18
Potassium nitrate	stickleback	70 K	154	- 15
Potassium permanganate .	goldfish	10	12-18	
н н н н	various species	3-5		68
Pyridine .	perch	1000		51
	goldfish] 1·87 c.c./l.	1030	4
Quinoline	perch	30	1	51
Silver nitrate	stickleback	0-004 Ag	180	15
Sodium chlorate	goldfish	>1000	120	1 1
Sodium chloride	**	10,000	240	1 1
Sodium cyanide	stickleback	1.04 CN	2	11
• • •	various species	1	?	20
Sodium fluoride	goldfish	1000	60-102	11
Sodium hydroxide		pH 10.6	168	2
(See also Figure 30)		- .	1 -	
Sodium nitrate	stickleback	6000 Na	180	15
Sodium sulphide		4-5 S	2	1.11
	brown trout	15	2	29
Sodium sulphite	goldfish	100	96	1
Strontium chloride		10.400 Sr	17-31	4
Strontium nitrate	stickleback	1500 Sr	164	15
Sulphuric acid	goldfish	pH 3-9	5-6	1
Tannic acid	**	1 100	1 180	l i
	salmon	4.8	7	l 80
Tartaric acid	goldfish	1 100	200	1 ī
Zinc sulphate	stickleback	0-3 Zn	204	1 14
• ,	goldfish	100	120	'i
39 35 - • • 33 29 - • •	rainbow trout	0.5	64	1 10

~

.

- ¹ ELLIS, M. M., Detection and measurement of stream pollution, Bull. U.S. Bur. Fish., 48 (1937) No. 22, 365-437
- ² DOUDOROFF, P. and KATZ, M., Critical review of literature on the toxicity of industrial wastes and their components to fish. I. Alkalies, acids and inorganic gases. II. Metals as salts, Sewage industr. Wastes, 22 (1950) 1,432-58; 25 (1953) 802-39
- ³ HYNES, H. B. N., The biology of polluted waters, Liverpool University Press, 1960
- ⁶ POWERS, E. B., The goldfish (*Carassius carassius*) as a test animal in the study of toxicity, *Illinois biol. Monogr.*, 4 (1917) 127-93
- ⁵ CARPENTER, K. E., A study of the fauna of rivers polluted by lead mining in the Aberystwyth district of Cardiganshire, Ann. appl. Biol., 11 (1924) 1-23
- ⁶ CARPENTER, K. E., On the biological factors involved in the destruction of river-fisheries by pollution due to lead-mining, Ann. appl. Biol., 12 (1925) 1-13
- ⁷ CARPENTER, K. E., The lethal action of soluble metallic salts on fishes, Brit. J. exp. Biol., 4 (1927) 378-90
- ⁸ CARPENTER, K. E., Further researches on the action of metallic salts on fishes, *J. exp. Zool.*, 56 (1930) 407-22
- ⁹ WESTFALL, B. A., Coagulation film anoxia in fishes, *Ecology*, 26 (1945) 283-7
- 10 LLOYD, R., The toxicity of zinc sulphate to rainbow trout, Ann. appl. Biol., 48 (1960) 84-94
- ¹¹ JONES, J. R. E., The oxygen consumption of Gasterosteus aculeatus L. in toxic solutions, *J. exp. Biol.*, 23 (1947) 298-311
- ¹² JONES, J. R. E., A further study of the zinc-polluted River Ystwyth, *J. Anim. Ecol.*, 27 (1958) 1-14
- ¹³ AFFLECK, R. J., Zinc poisoning in a trout hatchery, Aust. J. Mar. Freshw. Res., 3 (1952) 142-69
- ¹⁴ JONES, J. R. E., The relative toxicity of salts of lead, zinc and copper to the stickleback (*Gasterosteus aculeatus L.*) and the effect of calcium on the toxicity of lead and zinc salts, *J. exp. Biol.*, 15 (1938) 394-407
- ¹⁵ JONES, J. R. E., The relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (Gasterosteus aculeatus L.), J. exp. Biol., 16 (1939) 425-37
- ¹⁶ NICHOLSON, J. A., Lander's Veterinary Toxicology, 3rd ed. (revised) Baillière, London, 1945
- 17 GOODMAN, L. S. and GILMAN, A., The pharmacological basis of therapeutics, 2nd ed., Macmillan, New York, 1955
- ¹⁸ HERBERT, D. W. M. and MERKENS, J. C., The toxicity of potassium cyanide to trout, *J. exp. Biol.*, 29 (1952) 632-49
- ¹⁹ DOWNING, K. M., The influence of dissolved oxygen concentration on the toxicity of potassium cyanide to rainbow trout, *J. exp. Biol.*, 31 (1954) 161-4
- 20 BRIDGES, W. R., Sodium cyanide as a fish poison, Fish. Bull., U.S., 253 (1958) 1-11
- ²¹ ALEXANDER, W. B., SOUTHGATE, B. A. and BASSINDALE, R., Survey of the River Tees. Pt. II. The Estuary—Chemical and Biological, *Tech. Pap. Wat. Pollut. Res., Lond.*, No. 5 (1935)
- ²² BASSINDALE, R., SOUTHGATE, B. A. and PENTELOW, F. T. K., The effect of cyanides on the gill colour of fish, *J. Mar. biol. Ass. U.K.* (n.s.), 18 (1933) 671-6
- 23 BRINLEY, F. J., Studies on the physiological effects of hydrogen cyanide, Biol. Bull., Wood's Hole, 53 (1927) 365-89
- 24 WUHRMANN, K. and WOKER, H., Experimentelle Untersuchungen über die Ammoniak- und Blausäurevergiftung, Schweiz. Z. Hydrol., 11 (1948) 210-44

- ²⁵ SOUTHOATE, B. A., Treatment and disposal of industrial waste waters, H.M.S.O., London, 1948
- ²⁶ DOUDOROFF, P., Some experiments on the toxicity of complex cyanides to fish, Sewage industr. Wastes, 28 (1956) 1,020-40
- ²⁷ MILNE, D., Disposal of cyanides by complexation, Sewage industr. Wastes, 22 (1950) 1192
- ²⁸ JACQUES, A. G., The kinetics of penetration. XII. Hydrogen sulphide, *J. gen. Physiol.*, 19 (1936) 397-418
- ²⁹ LONGWELL, J. and PENTELOW, F. T. K., The effect of sewage on brown trout (Salmo trutta L.), J. exp. Biol., 12 (1935) 1-12
- 30 SHELFORD, V. E., An experimental study of the effects of gas wastes upon fishes, with especial reference to stream pollution, Bull. Ill. Lab. nat. Hist., 11 (1917) 381-412
- ³¹ BLACK, E. C., FRY, F. E. J. and BLACK, V. S., The influence of carbon dioxide on the utilization of oxygen by some freshwater fish, *Canad. J.* Zool., 32 (1954) 408-20
- ³² ALABASTER, J. S., HERBERT, D. W. M. and HEMENS, J., The survival of rainbow trout (Salmo gairdnerii Richardson) and perch (Perca fluviatilis L.) at various concentrations of dissolved oxygen and carbon dioxide, Ann. appl. Biol., 45 (1957) 177-88
- ³³ KROCH, A. and LEITCH, I., The respiratory functions of the blood of fishes, *J. Physiol.*, 52 (1919) 288-300
- ³⁴ BLACK, E. C., The transport of oxygen by the blood of freshwater fish, Biol. Bull., Wood's Hole, 79 (1940) 215-29
- ³⁵ ALDERDICE, D. F. and WICKETT, W. P., A note on the response of developing chum salmon eggs to free carbon dioxide in solution, J. Fish. Res. Bd Can., 15 (1958) 797-9
- ³⁶ WIEBE, A. H., Biological survey of the upper Mississippi River with special reference to pollution, Bull. U.S. Bur. Fish., 43 (1927) 137-67
- ³⁷ THOMPSON, D. H., Some observations on the oxygen requirements of fishes in the Illinois River, Bull. Ill. Lab. nat. Hist., 15 (1925) 423-37
- ³⁸ SHELFORD, V. E., Equipment for maintaining a flow of oxygen-free water, and for controlling gas content, Bull. Ill. Lab. nat. Hist., 11 (1918) 573-5
- ³⁹ FRY, F. E. J., A fractionating column to provide water of various dissolved oxygen content, *Canad. J. Technol.*, 29 (1951) 144-6
- 40 Water Pollution Research, 1956, H.M.S.O., London, 1957
- ⁴¹ DAVISON, R. C., BREESE, W. P., WARREN, C. E. and DOUDOROFF, P., Experiments on the dissolved oxygen requirements of cold-water fishes, Sewage industr. Wastes, 31 (1959) 950-66
- ⁴² SHEPARD, M. P., Resistance and tolerance of young speckled trout (Salvelinus fontinalis) to oxygen lack, with special reference to low oxygen acclimation, J. Fish. Res. Bd Can., 12 (1955) 387-446
- ⁴³ KATZ, M., PRITCHARD, S. and WARREN, C. E., Ability of some salmonids and a centrarchid to swim in water of reduced oxygen content, *Trans. Amer. Fish. Soc.*, 88 (1959) 88-95
- ⁴⁴ FRY, F. E. J., The oxygen requirements of fish, in Biological problems in water pollution, Trans. 1959 Seminar R. A. Taft San. Eng. Cent., Tech. Rep. W 60-3, Cincinnati, 1960
- 45 DAM, L. VAN, On the utilization of oxygen and regulation of breathing in some aquatic animals. Drukkeris 'Volhanding', Groningen, 1938
- 46 Water Pollution Research, 1958, H.M.S.O., London, 1959
- 47 ALDERDICE, D. F., WICKETT, W. P. and BRETT, J. R., Some effects of temporary exposure to low dissolved oxygen levels on Pacific salmon eggs, J. Fish. Res. Bd Can., 15 (1958) 229-49
- 48 WUHRMANN, K., ZEHENDER, F. and WOKER, H., Über die fischereibiologische Bedeutung des Ammonium- und Ammoniakgehaltes fliessender Gewässer, Vjschr. naturf. Ges. Zürich, 92 (1947) 198-204
- 49 WUHRMANN, K., Sur quelques principes de la toxicologie du poisson, Bull. du C.B.E.D.E., (1952) No. 15
- 50 EDMUNDS, C. W. and GUNN, J. A., Cushny's text book of pharmacology and therapeutics, 11th ed., Churchill, London, 1936
- 51 Ministry of Transport and Ministry of Agriculture and Fisheries. Detailed Biological and Chemical Reports on Tars used for Roadsurfacing, H.M.S.O., London, 1930

- ⁵² DOWNING, K. M. and MERKENS, J. C., The influence of dissolved oxygen concentration on the toxicity of unionized ammonia to rainbow trout (Salmo gairdnerii Richardson), Ann. appl. Biol., 43 (1955) 243-6
- ⁵³ LLOYD, R. and HERBERT, D. W. M., The influence of carbon dioxide on the toxicity of unionized ammonia to rainbow trout (Salmo gairdnerii Richardson), Ann. appl. Biol., 48 (1960) 399-404
- ⁵⁴ ALLAN, I. R. H., HERBERT, D. W. M. and ALABASTER, J. S., A field and laboratory investigation of fish in a sewage effluent, *Fish. Invest.*, *Lond.* Ser. I., 6 (1958) 2, 76 pp., H.M.S.O., London
- 55 Water Pollution Research, 1954, H.M.S.O., London, 1955
- ⁵⁶ HENDERSON, C., PICKERING, Q. H. and COHEN, J. M., The toxicity of synthetic detergents and soaps to fish, *Sewage industr. Wastes*, 31 (1959) 295-306
- 57 Water Pollution Research, 1955, H.M.S.O., London, 1956
- ⁵⁸ HERBERT, D. W. M., ELKINS, G. H. J., MANN, H. T. and HEMENS, J., Toxicity of synthetic detergents to rainbow trout, *Water & Waste Treatm. J.*, 6 (1957) 394-7.
- ⁵⁹ BROWN, A. W. A., Insect control by chemicals, Wiley, New York and London, 1951
- 60 MAYHEW, J., Toxicity of seven different insecticides to rainbow trout, Salmo gairdnerii Richardson, Proc. Iowa Acad. Sci., 62 (1955) 599-606
- ⁶¹ LANGFORD, R. R., The effect of DDT on freshwater fishes, In 'Forest spraying and some effects of DDT', Dept. Lands Forests Ontario Canada, Div. Res. Biol. Bull., 2 (1949) 19-37
- ⁶² BURDEN, E. H. W. J., A case of DDT poisoning in fish, Nature, Lond., 178 (1956) 546-7
- ⁶³ HATCH, R. W., Relative sensitivity of salmonids to DDT, Progr. Fish-Culturist, 19 (1957) 89-91
- 64 YOSHIHARA, T. and FUJIOKA, J., The toxicity of chemicals on fish—II. The estimation of the effectiveness of insecticides on the young carp, Cyprinus carpio L., Bull. Jap. Soc. sci. Fish., 22 (1957) 641-4
- ⁶⁵ IATOMI, K., TAMURA, T., ITAZAWA, Y., HANYU, I. and SUGIURA, S., Toxicity of endrin to fish, Progr. Fish-Culturist, 20 (1958) 155-62
- 66 SPRINGER, P. F., Insecticides-boon or bane? Audubon Mag., 58 (1956) 128-30; 176-8
- 67 WEISS, C. M., Response of fish to sub-lethal exposures of organic phosphorus insecticides, Sewage industr. Wastes, 31 (1959) 580-93
- ⁶⁸ LAWRENCE, J. M., Preliminary results on the use of potassium permanganate to counteract the effects of rotenone on fish, Progr. Fish-Culturist, 18 (1956) 15-21
- 69 JONES, J. R. E., The reactions of Pygosteus pungitius L. to toxic solutions, J. exp. Biol., 24 (1947) 110-22
- 70 STUART, T. A., Spawning migration, reproduction and young stages of loch trout (Salmo trutta L.), Scottish Home Dept. Freshw, Salmon Fish. Res., 5 (1953) 39 pp., H.M.S.O., Edinburgh
- ⁷¹ LARSEN, K. and OLSEN, S., Ochre suffocation in fish in the River Tim Aa, *Rep. Danish biol. Sta.*, 50 (1950) 3–27
- 72 Water Pollution Research, 1959, H.M.S.O., London, 1960
- 73 DOUDOROFF, P., ANDERSON, B. G., BURDICK, G. E., GALTSOFF, P. S., HART, W. B., PATRICK, R., STRONG, E. R., SURBER, E. W. and VAN HORN, W. M., Bio-assay methods for the evaluation of acute toxicity of industrial wastes to fish, Sewage industr. Wastes. 23 (1951) 1380-97
- ⁷⁴ WUHRMANN, K. and WOKER, H., Statistische Überlegungen zu toxikologischen Experimenten und Fischvergiftungen in freien Gewässern, Schweiz. Z. Hydrol., 12 (1950) 79–93
- ⁷⁵ WARREN, E., On the reaction of Daphnia magna (Straus) to certain changes in its environment, Quart. J. micr. Sci., 43 n.s. (1900) 199-224
- ⁷⁶ WUHRMANN, K. and WOKER, H., Die Giftikeit von Phenol für verschiedene Fischarten, Schweiz. Z. Hydrol., 12 (1950) 271-87
- 77 JONES, J. R. E., Antagonism between salts of the heavy and alkaline earth metals in their toxic action on the tadpole of the toad (Bufo bufo bufo L.), J. exp. Biol., 16 (1939) 313-33
- 78 ALLAN, I. R. H., ALABASTER, J. S. and HERBERT, D. W. M., Recent studies on toxicity and stream pollution, Wat. Sanit. Engr., 5 (1954) 109-12

- 79 GRINDLEY, J., Toxicity to rainbow trout and minnows of some substances known to be present in waste water discharged to rivers, Ann. appl. Biol., 33 (1946) 103-12
- 80 State of Washington 64th Ann. Rep. Fish., 1944
- ⁸¹ SANBORN, N. H., The lethal effect of certain chemicals on fresh water fish, Canning Tr., 67 (1945) 10-12; 26
- 82 COVENTRY, F. L., SHELFORD, V. E. and MILLER, L. F., The conditioning of a chloramine treated water supply for biological purposes, *Ecology*, 16 (1935) 60-6
- 83 TAYLOR, R. S. and JAMES, M. C., Treatment for removal of chlorine from city water for use in aquaria, U.S. Bur. Fish., Doc. No. 1,045: Rep. U.S. Comm. Fish. (1928) App. 7, 322-7
- 84 Pyle, E. A., Neutralizing chlorine in city water for use in fish-distribution tanks, Progr. Fish-Culturist, 22 (1960) 30-33
- ⁸⁵ ALLEN, L. A., BLEAZARD, N. and WHEATLAND, A. B., Formation of cyanogen chloride during chlorination of certain liquids: toxicity of such liquids to fish, *J. Hyg., Camb.*, 46 (1948) 184-93
- ⁸⁶ BOND, C. A., LEWIS, R. H. and FRYER, J. L., Toxicity of various herbicidal materials to fishes, in *Biological problems in water pollution*,
 - Trans. 1959 Seminar R. A. Taft San. Eng. Cent., Tech. Rep. W 60-3
- ⁸⁷ HENDERSON, C., PICKERING, Q. H. and TARZWELL, C. M., The toxicity of organic phosphorus and chlorinated hydrocarbon insecticides to fish, in Biological problems in water pollution, Trans. 1959 Seminar R. A. Tafl San. Eng. Cont., Tech. Rep. W 60-3
- ** Water Pollution Research, 1953, H.M.S.O., London, 1954
- 89 GAGNON, A., La toxicitée du DDT pour le saumon de l'Atlantique (Salmo salar Linné) et les alevins de truite (Salvelinus fontinalis Mitchell), Canad. J. Zool., 36 (1958) 479-87
- 90 HEMPHILL, J. E., Toxaphene as a fish toxin, Progr. Fish-Culturist, 16 (1954) 41-42
- 91 HUBBS, C. L., The high toxicity of nascent oxygen, Physiol. Zool., 3 (1930) 441-60
- 92 JONES, J. R. E., The reactions of the minnow, Phoxinus phoxinus (L.), to solutions of phenol, ortho-cresol and para-cresol, *J. exp. Biol.*, 28 (1951) 261-70
- 93 FROMM, P. O. and SCHIFFMAN, R. H., Toxic action of hexavalent chromium on largemouth bass, J. Wildlife Mgmt, 22 (1958) 40-44
- 94 WELLS, M. M., The reactions and resistance of fishes to carbon dioxide and carbon monoxide, Bull. Ill. Lab. nat. Hist., 11 (1918) 557-69
- 93 JONES, J. R. E., A further study of the reactions of fish to toxic solutions, *J. exp. Biol.*, 25 (1948) 22-34
- ⁹⁶ JONES, J. R. E., The reactions of fish to water of low oxygen concentration, *J. exp. Biol.*, 29 (1952) 403-15
- 97 FORBES, S. A., The effects of stream pollution on fishes and their food, Nat. Hist. Circ. Ill. geol. Surv., (1926) 13
- 98 SHELFORD, V. E. and ALLEE, W. C., The reactions of fishes to gradients of dissolved atmospheric gases, J. exp. Zool., 14 (1913) 207-66
- 99 JONES, B. F., WARREN, C. E., BOND, C. E. and DOUDOROFF, P., Avoidance reactions of salmonid fishes to pulp mill effluents, Sewage industr. Waster, 28 (1956) 1403-13
- 100 WHITMORE, C. M., WARREN, C. E. and DOUDOROFF, P., Avoidance reactions of salmonid and centrarchid fishes to low oxygen concentrations, *Trans. Amer. Fish. Soc.*, 89 (1960) 17-26
- 101 BEAK, T. W., Tolerance of fish to toxic pollution, J. Fish. Res. Bd Can., 15 (1958) 559-72
- 102 ALABASTER, J. S., The effect of a sewage effluent on the distribution of dissolved oxygen and fish in a stream, J. Anim. Ecol. 28 (1959) 283-91
- 103 JONES, J. R. E., An ecological study of the River Rheidol, north Cardiganshire, Wales, J. Anim. Ecol., 18 (1949) 67-88
- 104 BERG, K., Physiographical studies on the River Susaa, Folia limnol. scand., No. 1 (1943) 174 pp.
- 105 MURRAY, M. J., Survey of some northern Indiana streams with special reference to trout production, Invest. Lakes, 1 (1928-38) 79-99

- 106 Ministry of Health. Prevention of River Pollution. Report of the Rivers Prevention Sub-Committee of the Central Advisory Water Committee (Chairman: S. R. Hobday). Appendix C, 69-76, H.M.S.O., London, 1949
- 107 MARKOWSKI, S., The cooling water of power stations: a new factor in the environment of marine and freshwater invertebrates, J. Anim. Ecol., 28 (1959) 243-58
- ¹⁰⁸ Ross, F. F., The operation of thermal power stations in relation to streams, *J. Inst. Sew. Purif.*, No. 1 (1959) 16-26
- ¹⁰⁹ HEILBRUNN, L. V., An outline of general physiology. 3rd ed., Saunders, Philadelphia and London, 1955
- 110 BELEHRADEK, J., Temperature and living matter, Borntraeger, Berlin, 1935
- 111 COCKING, A. W., The effects of high temperatures on roach (Rutilus rutilus). I. The effects of constant high temperatures, *J. exp. Biol.*, 36 (1959) 203-16
- ¹¹² BRETT, J. R., Some lethal temperature relations of Algonquin Park fishes, Univ. Toronto Stud. biol. Ser. No. 52 (1944) 49 pp.
- ¹¹³ BRETT, J. R., Some principles in the thermal requirements of fishes, Quart. Rev. Biol., 31 (1956) 75-87
- 114 COCKING, A. W., The effects of high temperatures on roach (Rutilus rutilus). II. The effects of temperature increasing at a known constant rate, J. exp. Biol., 36 (1959) 217-26
- ¹¹⁵ FRY, F. E. J., BLACK, V. S. and BLACK, E. C., Influence of temperature on the asphyxiation of young goldfish (*Carassius auralus L.*) under various tensions of oxygen and carbon dioxide, *Biol. Bull.*, *Wood's Hole*, 92 (1947) 217-24
- ¹¹⁶ GIBSON, E. S. and FRY, F. E. J., The performance of the lake trout, Salvelinus namaycush, at various levels of temperature and oxygen pressure, Canad. J. Zool., 32 (1954) 252-60
- ¹¹⁷ FRY, F. E. J. and HART, J. S., Cruising speed of goldfish in relation to water temperature, *J. Fish. Res. Bd Can.*, 7 (1948) 169-75
- ¹¹⁸ FISHER, K. C. and ELSON, P. F., The selected temperature of Atlantic salmon and speckled trout and the effect of temperature on the response to an electrical stimulus, *Physiol. Zoöl.*, 23 (1950) 27-34
- ¹¹⁹ BROWN, M. E., The growth of brown trout (Salmo trutta Linn.). III. The effect of temperature on the growth of two-year-old trout, J. exp. Biol., 22 (1946) 145-55
- 120 MENZIES, W. J. M., Sea trout and trout, Arnold, London, 1936
- 121 LLOYD, R., The toxicity of ammonia to rainbow trout (Salmo gairdnerii Richardson), Water & Waste Treatm. J., 8 (1961) 278-9
- 122 GARDNER, J. A., Report on the respiratory exchange in freshwater fish, with suggestions as to further investigations, Min. Ag. Fish., Fish. Invest. Ser. I. 3 (1926) 1-17
- 123 BISHAI, H. M., Upper lethal temperatures for larval salmonids, J. Cons. int. Explor. Mer., 25 (1960) 129-33
- 124 BLACK, E. C., Upper lethal temperatures of some British Columbia freshwater fishes, J. Fish. Res. Bd Can., 10 (1953) 196-210
- 125 HUNTSMAN, A. G., Death of salmon and trout with high temperature, 7. Fish. Res. Bd Can., 5 (1942) 485-501

ADDITIONAL REFERENCES FOR LETHAL LIMITS

- APPLECATE, V. C., HOWELL, J. H. and HALL, A. E., (jun.)., Toxicity of 4,346 chemicals to larval lampreys and fishes, *Fish. Bull.*, U.S., No. 207, Washington, 1957
- CLEMENS, H. P. and SNEED, K. E., Lethal doses of several commercial chemicals for fingerling channel catfish, Fish. Bull., U.S., No. 316, Washington, 1959
- RUDD, R. L. and GENELLY, R. E., Pesticides: their use and toxicity in relation to wildlife, Calif. Fish and Game, Game Bull., No. 7, Davis, 1956