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Abstract:  Current guidelines for Macrobrachium rosenbergii advise introduction into outdoor 
ponds when water is > 16⁰ C. However, little is known about possible interactions between 
diet quality and temperature tolerance. We examined use of seven rations for prawns raised at 
suboptimal temperatures. Juvenile prawns readily consumed all seven rations presented. Growth 
and survivorship were best on shrimp- and silkworm-based rations; whereas, the poorest growth 
was on fishmeal- and Black Soldier Fly larvae meal (BSFLM)-based rations. Soybean-, cricket-, 
mealworm-, and fishmeal-based diets had similar survivorship. Mortality occurred within 24 hr after 
each feeding of the BSFLM-based diet, possibly related to antimicrobial compounds produced by 
BSFL. Prawns raised at lower temperatures may require better quality feed compared to guidelines 
based on previous studies at ideal temperatures. Producers must determine whether it is better to 
stock prawns at higher rates or feed more expensive rations to manage survivorship of juvenile at 
lower temperatures.

Introduction

Ectotherms face continuous challenges 
imparted by interactions between the kinetics of 
their physiology and the quality of their diets. 
The rates at which stress response, pathogen 
defense, digestion, and growth ensue are 
directly tied to ambient temperature. This is 
a problem for outdoor production of the Giant 
River Prawn (Macrobrachium rosenbergii) in 
temperate regions.  This is a tropical species 
of significant commercial importance that is 
native to rivers of the East Asian continent 

and surrounding Islands (New 1990; New 
2002; New 2005). Temperatures of 26 – 
31⁰C (Sabdifer and Smith 1985) or 25 - 32⁰C 
(Zimmermann 1998) are considered ideal for 
growth (New 1990; Satapornvanit 2006). The 
critical thermal minima for this species when 
acclimated to temperatures of 20 - 30⁰C are 
10 – 16.24⁰C for postlarvae and 10.5 – 16.98⁰C 
for juveniles (Herrera et al. 1998; Manush et 
al. 2004). Food consumption is significantly 
reduced when temperatures fall below 25⁰C 
(Newman et al. 1982). Prawns start to manifest 
a physiologically compromised state with acute 
or slow changes in temperature below 15⁰C and 
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are severely compromised with acute drop from 
20⁰C to 10⁰C (Chung et al. 2012). Prawns raised 
for seven days under exposure to Lactococcus 
garvieae at 20⁰C demonstrate low phagocytic 
activity, tolerance to ammonia and salinity 
(Cheng et al. 2003) and impeded immunological 
responses due to a sudden drop in temperature 
from their thermal ideal (28⁰C) to 22⁰C (Chang 
et al. 2015). Mortality is substantially elevated 
as temperatures fall below 12⁰C (Satapornvanit 
2006). Urea-N excretion is minimal at 17⁰C 
and rises with temperature (Chen and Kou 
1996). Growth nearly doubles for every 5⁰C 
increase in temperature from 20 to 36⁰C, without 
an appreciable change in conversion ratio 
(Faranfarmaian and Moore 1978). However, 
growth is more erratic at lower temperatures 
(Whangchai et al. 2007). Guidelines suggest 
cultivation temperatures should be above 16⁰C 
(Herrera et al. 1998; New 2002). However, 
observations in research settings generally 
demonstrate higher survivorship than actually 
observed in commercial settings (Tidwell et al. 
2005). 

Diets resulting in higher survival and 
growth also tend to impart better responses to 
stressors (Racotta et al. 2003).  Research with 
prawns has related temperature stress effects on 
neuroendocrine responses (Chang et al. 2015), 
oxygen consumption (Farmanfarmaian and 
Moore 1978; Chen and Kou 1996; Niu et al. 
2003; Manush et al. 2004), nitrogen excretion 
(Chen and Kou 1996), pH and ion balance 
(Cheng et al. 2003), food consumption (Niu et 
al. 2003), growth (Farmanfarmaian and Moore 
1978; Niu et al. 2003), and survivorship (Herrera 
et al. 1998; Chung et al. 2012; Manush et al. 
2004). Additional nutritional studies with the M. 
rosenbergii are numerous; however, little work 
has approached the currently growing interest in 
more sustainable fish meal replacements such as 
insect meal. 

Oklahoma has never had a prawn industry 
in the state despite apparent suitability of its 
climate and unique aquaculture infrastructure 
characteristics (McCallum and Tilahun [In 
Press]). Guidelines for earliest dates to 
stock ponds in Oklahoma are lacking. We 

set up a laboratory experiment comparing 
performance of juvenile freshwater prawns 
fed seven different diets comprising corn meal 
and selected protein feedstuffs. The study was 
conducted at temperatures comparable to those 
observed in surface waters in Oklahoma in 
late April through early May to help formulate 
guidelines for outdoor pond culture of prawns 
for Oklahoma producers and to test potential 
interactions between temperature, stress and 
diet.  We hypothesized that prawns would 
grow slower at cooler temperatures and have 
lower survivorship than typically expected 
at higher temperatures, and that prawns may 
perform better on arthropod- and crustacean-
based protein sources than on soybean or 
fishmeal diets. We predicted that growth 
and survivorship would be higher when fed 
arthropod- and crustacean-based protein sources 
than on fishmeal or soybean meal.

Materials and Methods

Prawns were obtained from Stickfin’s Fish 
Farm (St. Augustine, Florida) and housed 
communally for one week after arrival in 
aerated 40-L aquaria containing moderately hard 
synthetic freshwater made with reagent grade 
chemicals (U.S. E.P.A. 2002). Following that 
week, 105 prawns were individually housed in 
125 ml Pyrex Erlenmeyer flasks containing 100 
ml of synthetic freshwater.  An inverted Pyrex 25 
ml flask was inserted into the neck of each larger 
flask to prevent contamination from airborne 
particulate.  Each prawn was placed in a weigh 
dish and excess water removed using a transfer 
pipette and then weighed on an electronic 
analytical balance to the nearest 0.001 g. Next, 
each prawn was then placed in its flask where it 
resided for the duration of the study (28 days).

Water quality was monitored weekly and 
water was changed if it became cloudy or 
otherwise fouled. The pH (7.4 – 7.8), hardness 
(160 – 180 CaCO

3
/L), and alkalinity (57 – 64 

CaCO
3
/L) never exceeded the typical range 

for moderately hard synthetic freshwater (U.S. 
E.P.A. 2002). Temperature was maintained at 
21⁰C throughout the study.
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We obtained commercial fish meal and 
soybean meal from a local feed store (Stillwater 
Milling Company, Stillwater, Oklahoma). Dried 
silkworm pupae (Bombyx mori), mealworm 
larvae (Tenbrio molitor), “river” shrimp from 
Chubby Mealworms (Las Vegas, Nevada) and 
dried crickets (Acheta domesticus) came from 
Fluker Farms (Port Allen, Louisiana). Dried 
black soldier fly larvae (Hermetia illucens) 
came from Enviroflight, LLC (Yellow Springs, 
Ohio). Feedstuffs were ground and mixed 
with a household coffee grinder. Rations were 
balanced on a 35% protein basis (Table 1; New 
2002; although even higher protein levels are 
effective [Millikin et al. 1980]) using bakery 
grade yellow corn meal (Quaker Oats Company, 
Chicago, Illinois).  Prawns (n

total 
= 105 prawns, 

n = 15 prawns/treatment) were fed one of each 
ration (n = 7 treatments) ad libitum throughout 
the study, although the quantity varied according 
to bodyweight. Guidelines suggest prawns 
should be fed 10-20% of the total bodyweight 
(New 2002), but this is based on bulk weights, 
not individual measures. Because of this, it was 
impractical to feed such small quantities at the 
onset of the study. Each prawn received 15% of 
its last measured bodyweight. If food remained 
after 24 hr, we would reduce the quantity by 
10% as fed on the next feeding. If food was 
consumed after 24 hr, we increased the feeding 
rate by 10% as fed, and added the additional 
quantity to the flask. Food was delivered by 
sprinkling the dried meal on the water surface. 

If food settled on the bottom began to mold, 
we siphoned it off with a transfer pipette for 
disposal.

Daily observations of molting and mortality 
were recorded.  At the end of the study, all 
remaining prawns were weighed. Growth 
data were tested for normality using an 
Anderson-Darling test. We compared the 
weight gain between treatments using a one-
way ANOVA with a Tukey means comparison 
test.  Survivorship and molting frequency was 
compared between groups using Chi Square. 
We used an alpha = 0.05 to assess significance.

Results

In all cases, prawns readily consumed food 
when presented and could be seen feeding on 
remaining food particles until the next feeding. 
None of the prawns consumed 100% of the food 
offered after 24 hrs, with obvious remnants of 
food typically remaining for days.  Prawns 
did not perform equally well on all rations. 
Growth (F

6, 104 
= 4.69, P < 0.001) varied among 

treatments (Table 2, 3). Growth data were not 
normally distributed (A2 =16.56, P < 0.001) so 
we transformed these data using the normalize 
function in MiniTab 13.0. Prawns gained weight 
better on shrimp (-0.060, -1.708) and silkworm 
pupae (-0.040, -1.688) than on fishmeal. They 
also gained better on shrimp (-0.303, -1.9506) 
and silkworm pupae (-0.283, -1.931) than on 
black soldier fly larvae. No other significant 
differences in growth were observed.   

There were marginal differences in 
survivorship (ꭓ2 = 10.81, df = 6, P = 0.094) 
among treatments.  Prawns survived equally 
well when fed fish meal, soybean meal, ground 
mealworms and ground crickets (ꭓ2 = 4.42, df 

 
Fish 
meal 

Soybean 
meal 

Shrimp 
meal 

Cricket 
meal 

Black 
Soldier 

Fly meal 

Silkworm 
pupae meal 

Mealworm 
meal 

Corn 
meal 

DM % 90.12 91.26 92.40 93.0 95.7 94.0 94.8 88.0 
Protein % 70 40 50 64 37 45 53.6 7.4 
Fat % 14.82 18.48 13.13 19.0* 14.2* 29% 29.2 1.8 
Gross energy 
MJ/KG DM 

21.9 19.7 19.1 21.8* 23.8 25.8** 24.4** 13.8 

Crude Fiber % 2.22% 7.10% 1.2% 8.5 7.0% 6% 18.5 7.4% 
*Finke 2002  
**http://feedipedia.org 

Table 1. Nutritional breakdown on an as fed basis of the eight ingredients used to formulate 
diets for juvenile freshwater prawns (Macrobrachium roosenbergii).  
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= 4, P = 0.352). They performed just as well 
when fed ground shrimp or silkworm pupae (ꭓ2 

= 0.196, df = 1, P = 0.158). Prawns had higher 
survivorship when fed shrimp meal or silkworm 
pupae meal than when fed black soldier fly or fish 
meal (ꭓ2 =10.84, df = 3, P = 0.013).  There were 
no observed differences in molting frequency (ꭓ2 

= 5.64, df = 6, P = 0.464) among treatments.  

Within 24 hours of first feeding black soldier 
fly larvae to prawns, 27% died; whereas, the 
other feeds had 93 – 100% survivorship after 
24-hr (Total 24-hr survivorship on other feeds 
= 97.8%). Mortality rose to 40% by the fifth day 
when fed the Black Soldier Fly larvae meal-
based ration. After seven days, remaining food 
particles (mostly corn meal) were removed from 
all flasks, and new feed introduced. Then, 24-hr 
after being again fed the Black Soldier Fly larvae 
meal-based ration, another 47% of prawns died, 
with a total mortality of 93.3% in this treatment. 
The single remaining prawn survived until the 
end of the study, but its growth was negligible. 

Discussion

Temperature and nutritional stress manifest 
in physiological trade-offs for ectotherms, and 
our results provide evidence that when raised 
at suboptimal temperatures freshwater prawns 
appear to become more sensitive to food quality 
compared to previous studies performed at ideal 

temperatures. Wild prawns feed on aquatic 
invertebrates, detritus and algae (Balaz and Ross 
1976).  Previous studies on nutrition of prawns 
were conducted within the thermal optima for 
this species and largely determine fishmeal 
and soybean meal to be adequate protein feeds 
(Hasanuzzaman et al. 2009; Gupta et al. 2007; 
Koshio et al. 1992) although reports as low as 
11% survivorship on fishmeal are known (Kumlu 
1999). Addition of shrimp oil to a balanced diet 
doubled the final biomass of prawns (Sandifer 
and Joseph 1976). Further, post-larvae fed 
entirely on Artemia nauplii perform well (Barros 
and Valenti 2003; New 2002). In general, 
prawns performed acceptably on proven protein 
sources (shrimp meal, soybean meal) but 
growth and survivorship on less suitable feeds 
(fishmeal, Black Soldier Fly larvae meal) was 
less impressive.  Arginine, one of three key 
amino acids thought to be important to prawns 
(e.g., Methionine, Lysine [D’Ambramo and 
Sheen 1994]) is generally more abundant in 
soybean and shrimp meals than fish meal (Watts 
1968); however, amino acid requirements have 
been difficult to elucidate (Reed and D’Abramo 
1989).  

Differences in survivorship and growth may 
be explained by changes in feeding behavior, 
more efficient digestion, and more effective 
stress responses when temperatures are warm 
compared to suboptimal. The time prawns spend 

 

 

Protein source 
Starting BM (g) 

Mean (SE) 

Ending BM* 
(g) 

Mean (SE) 

Growth* (g) 
Mean (SE) 

Molts 
(n) 

Survivorship 
(%) 

Fish meal 0.020 (0.002) 0.022 (0.002) 0.002 (0.001) 4 6.7 
Soybean meal 0.020 (0.002) 0.028 (0.004) 0.008 (0.004) 4 33 
Shrimp  0.025 (0.002) 0.039 (0.004) 0.015 (0.003) 8 86.7 
Silkworm  0.018 (0.001) 0.033 (0.006) 0.016 (0.006) 10 66 
Mealworm 0.030 (0.002) 0.035 (0.003) 0.014 (0.009) 6 40 
Cricket 0.023 (0.002) 0.025 (0.003) 0.003 (0.001) 13 40 
Black Soldier 
Fly 

0.026 (0.002) 0.027 (0.002) 0.0003 (0.0003) 3 6.7 

Overall 0.023 (0.001) 0.030 (0.001) 0.008 (0.002) 48 42 
*Ending body mass (BM) and growth are the averages for those that survived to the end of the 
study; whereas, starting BM includes the entire starting population. 

Table 2. Performance of juvenile Giant Freshwater Prawns (Macrobrachium rosenbergii) on 
seven diets at the lower threshold of thermal tolerance.  

Table 3.  ANOVA table for the response of growth to different foods.
 
Source DF SS MS F P 
Food type 6 15.778 2.630 4.69 < 0.001 
Error 98 54.997 0.561   
Total 104 70.775    
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feeding is known to decline with temperature 
(Niu et al. 2003).  Consequently, when at optimal 
temperatures, prawns may increase consumption 
sufficiently to overcome the minor inadequacies 
of amino acid composition. However, when 
housed at sub-optimal temperatures, feeding 
behavior is suppressed and they cannot fully 
accommodate for reduced limiting nutrient 
supply, leading to poorer performance. 
Further work is needed to elucidate amino 
acid needs of prawns (Mukhopadhyay et al. 
2003; D’Ambramo and Sheen 1994) so that 
informed supplementation with imperfect feeds 
is possible.  

Physiological processes in all ectotherms are 
tied to the ambient temperature (Wilmer et al. 
2004; Manush et al. 2004; Manush et al. 2006), 
including digestion in prawns (Kumlu 1995; 
Newman et al. 1982). Each of these ingredients 
require different residency times and enzyme 
assemblages to digest and absorb, and each 
enzyme operates in an ideal temperature range.  It 
is likely that digestive enzyme activity in prawns 
was suppressed by lower temperatures, leading 
to inefficient digestion of less perfect feeds. 
Further, as a kinetically controlled biochemical 
process, production of non-essential amino acids 
is altered at lower temperatures. Combined with 
feeding behavior, digestion and biochemical 
processes could explain why prawns fed fish, 
soybean and shrimp meal perform well at 
optimal temperatures; whereas, survival and 
growth is much reduced at cooler temperatures. 

Unlike other ingredients in this study, freeze 
dried black soldier fly larvae appear unsuitable 
for feeding prawns, at least at suboptimal 
temperatures. Significant mortality occurred 
within 24 hours of feeding fly meal to the 
prawns. Black soldier flies are known to harbor 
compounds with antimicrobial properties 
(i.e., defensin-like peptide4, a 40 amino acid 
AMP; Elhag et al. 2017; Park et al. 2015) 
sufficiently powerful to suppress growth of 
Escherichia coli,  Salmonella spp., antibiotic 
resistant Staphylococcus aureus, and gram 
positive Pseudomonas aeruginosa (Lalander 
et al. 2015; Liu et al. 2008). Their excretions 
are also known to inhibit growth in the larvae 

of other dipterids (Bradley and Sheppard 1984). 
This insect has been fed successfully to poultry 
(Cullere et al. 2016; Elwert et al. 2010; Dluokun 
2000), livestock (Veldkamp and Bosch 2015; 
Veldkamp et al. 2012), dogs and cats (Bosch et 
al. 2014), and fish (Shakil Rana et al. 2015; Tran 
et al. 2015; Sealey et al. 2011; St-Hilaire et al. 
2007).  

Previous studies of black soldier fly 
larvae meal for decapod diets exist, though 
not for M. roosenbergii. Growth of juvenile 
white shrimp (Litopenaeus vannamei) was 
increasingly suppressed as black soldier fly 
larvae meal became a higher proportion of 
the diet (Cummins et al. 2017).  Weight gain, 
final body weight, feed conversion ratio, and 
specific growth rate of shrimp became less 
acceptable as the dietary component of black 
soldier fly larvae meal increased. Survivorship 
of these shrimp was much higher than in our 
study (~91% vs. 6.7%). Other than the species 
involved, the primary differences in these two 
studies is that ours involved much younger/
smaller animals (initial prawn BW = 0.023 g 
+/- 0.001 vs. initial shrimp BW = 1.24 +/- 0.01 
g), diets with a much larger component of black 
soldier fly meal, smaller housing (100 ml vs. 
110 L), individualized housing (vs. communal), 
and we maintained a lower temperature (21⁰C 
vs 29.5⁰C). These differences provide several 
avenues for the vastly different survivorship 
levels. The younger prawns may have less 
developed functional immune/stress response 
systems.  Stress and immune responses are 
known to undergo ontogenetic changes as an 
organism grows (Manning and Turner 1976). 
The larger soldier fly component in the feed 
should deliver a larger dose of antimicrobial 
chemicals. The larger housing and resultant 
larger water volume used with white shrimp may 
be sufficient to dilute feed-borne compounds 
in the water column to non-toxic levels.   The 
differences in temperature may also be a 
significant factor. Prawns were already under 
thermal and potentially nutritional stress.  These 
two stressors are known to participate in a trade-
off system that provides added risk to additional 
stressors (Padmanabha et al. 2011; Cotter et al. 
2011; Karasov et al. 2007). Considering that 
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as an ectotherm, all physiological processes 
are bound to thermal optima (Wilmer et al. 
2004), the stress response of prawns may be 
compromised by low temperature making them 
more susceptible to chemical stressors like those 
produced by soldier fly larvae. A confounding 
element to these results is that we did not 
provide perches for molting behavior. This may 
have provided across-the-board higher mortality 
(McCallum et al. 2018).  

Black soldier fly has also been proposed for 
use in human diets (Wang and Shelomi 2017; 
Dossey and Morales-Ramos 2016; van Huis 
et al. 2015; Boland et al. 2013). The recent 
findings above suggest that incorporation of 
black soldier fly meal into the human food chain 
should be done with great consideration. The 
compounds black soldier fly larvae produce 
could lead to new strains of microbes afflicting 
humans and animals that are highly resistant to 
antibiotics. Further, there has been no testing 
to determine if these compounds have long-term 
health effects for the organisms ingesting them, 
or if these compounds could be transferred from 
food animals to humans.  Until such studies are 
undertaken, it seems prudent to avoid using this 
protein source for humans or animals intended 
for human consumption.  Other insects in this 
study do not appear to hold such risks.  Thus far, 
we have found little evidence that the scientific 
community has considered the risks associated 
with antimicrobial compounds in black soldier 
flies. It has been more focused on heavy 
metal accumulation in the larvae, microbial 
decontamination prior to processing, and food 
allergies (Rouge and Barre 2017; Wang and 
Shelomi 2017).

Fish, shrimp, and soybean meals are among 
the most commonly used protein sources in 
animal feeds, including prawns (Hasanuzzaman 
et al. 2009; Koshio et al. 1992). Fish and shrimp 
meal continue to be sourced from wild fisheries 
and are increasingly expensive (Carter and 
Hauler 2000), thus discounting the sustainability 
of aquaculture operations (Love et al. 2014; 
Gatlin et al. 2007). Further, they can harbor 
contaminants from the wild environment (Costa 
2007; Dorea 2006; Hardy 2002; Galindo-Reyes 

et al. 1999). Using soybean meal eliminates 
dependence on wild stocks for protein and 
reduces the contaminant problem, but brings an 
array of other environmental issues connected to 
crop farming such as pesticide use (van Meter et 
al. 2018; Mitsch et al. 2001; Pimentel et al. 1993). 
Soybean meal also contains phytoestrogens 
(Coward et al. 1993), which may adversely 
impact invertebrate reproductive potential, 
growth and development (Jefferson et al. 2005; 
Ryokkynen and Kukkonen 2006; McCallum et 
al. 2013). Hence, there are good reasons to desire 
alternatives to these two products, especially in 
aquaculture and aquaponics, the latter of which 
prides itself on being sustainable (Forchino et al. 
2017; Konig et al. 2016; Goddek et al. 2015). If 
the freshwater prawn industry is positioned as a 
sustainable alternative to wild-caught shrimp, it 
can carve a larger place in the market and likely 
draw higher prices. Abandoning less-sustainable 
feed ingredients is an important step to reaching 
this goal (Sánchez-Muros et al. 2014). Although 
in its infancy, carefully selected and prepared 
insect meals may serve this purpose (Rumpold 
and Schlüter 2013).  

The performance of prawns at temperatures 
similar to those in April – May in Oklahoma 
suggest that if producers intend to stock ponds 
that early, they will need to feed very high 
quality feeds or stock ponds at higher levels than 
typically recommended to ensure a harvestable 
product.  Alternatively, producers could cover 
small ponds with greenhouse structures to 
extend the season (Pillai et al. 1999), restrict 
production to indoor recirculating or aquaponics 
facilities, or wait until later in the year when 
water temperatures are more suitable to stock 
ponds with juvenile prawns.   
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