Physical Sciences
 + +

ANGULAR CONSTANTS OF MICROCRYSTALLINE PROFILES AND SILHOUETTES IN THE CONCLUSIVE IDENTIFICATION OF SUBSTANCES. III. ACETANILIDE, ASPIRIN, MERCUROUS ACETATE, PHENOBARBITAL, POTASSIUM CHLORATE, SULFONAL, TRIONAL, VERONAL. NOTES.
Arthur Curtls Shead, Norman, Oklahome
This third paper in the sertes is devoted to the microcrystallization and angular measurements of slightly water soluble ($0.25-3.5$ pct.) compounde that have some pharmaceutical or toxicological importance. Such substances cannot be subjected to the same technique required by the lees soluble group as overly large, too coarse or irregularly outlined forms would recult. Rapid cooling and violent agitation in small test tubee ($\%$ " $\times 8^{\prime \prime}$) tend to favor the amaller and more perfect crystals, while pouring off the
mother liquor from the sllde followed by careful and repeated blotting by Illter paper removes the excess which would later crystallize as a fringe upon the useful forms first appearing. The crystallization takes place from a partially saturated solution as hot as is compatible with the separation of the solute in the solid condition. With the exception of luminal, which was allowed to cool spontaneously with removal of the first more perfect crop for examination, the compounds listed yielded forms suitable for measurement.

Acetantitide ylelds mostly hezagonal crystals having two apicial angles of 99.5° with four others each of 130.2°. Truncation of the apicial angles yields in place of each, two angles of about 140°. Acetanilide crystals are not stable in air and are photographed while freshly formed.

Aaptrin yields mostly hexagons with apicial angles of 119.7° with four others, each of 120.3°. The crystals show perfect cleavage in the direction connecting the apicial angles and afford brilliant interference colors under crossed nicols. Aspirin is stable in the air.

Mercurous acetate crystallizes from hot water or hot dilute acetic acid solutions in parallelograms. hexagons or combinations of the two. The acute angle of the paralellogram is 83.5°; the obtuse angles of the parallelogram and two apicial angles of the hexagon are 97° and the other four angles of the heragon are 131.5°.

Phenobarbital (luminal) generally crystallizes in longitudinally striated "latha" with jagged ends. At times it crystalizes on slow cooling without aeftation, with good forms, especially in the earlier crops. Sublimation at $120^{\circ}-140^{\circ}$ also affords useful forms in some part of the preparation. By elther method hexagons, parallelograms and modifications in either of two facies may be found. One facies yields hexagons with two apex angles of 113.4° and four others of 123.3° each which also appear as obtuse angles in a parallelogram having an acute angle of 56.7°, half the apex angle of the hexagon. The other facies consists of a hexagon having two apex anglee of 122.1° and four others, each of 119.5°. The corresponding parallelogram was not noted though it is possible. The crystals are not clear because of the strong tendency to a fibrous structure. Colors under crossed nicols are not strong. Compare with the closely related veronal.

Potussium chlorate yields parallelograms with an acute angle of 79.8 ${ }^{\text {² }}$ and an obtuse angle of 100.3°.

Sulfonal usually separates as small rectangles. Some few diagnostic forms may appear especially by spontaneous evaporation of thin fllms of solution saturated at room temperature. A 95.1° angle appears as the obture angle of a paralielogram (acute angle of 85°) and as the two apicial angles of a hexagon having four other angles each of $132.5^{\circ} \mathrm{c}$. f. the closely related trional.

Trional crystallizes below its melting point $\left(76^{\circ} \mathrm{C}\right)$ mostly as large parallelograms with an acute angle of 86.5° and an obtuse angle of 93.5°. An extinction angle of $42-44^{\circ}$ lies apparently in the diagonal connecting the acute angles of the parallelogram.

Urea nitrate described in the first paper of this series is here illustrated.
Veromal or barbital crystallizes from hot dilute HCl solution (to transpose any sodium sait) as parallelograms (acute angle 36.4°; obtuse angles of 1444°) with extinction angles of $18-20^{\circ}$. The interference colors are ramarkably brilliant. Rectangular forms of no diagnostic value also appear.

NOTES

Modiscations of the simpie parallelogram, hexagon and combinations of the two are trequently encountered among crystal forms. The simplest ructil unit is the paraliologram. From this, by trupoation of the aconte
angle, the heragon may be derived. This form has the obtuse angle of the parallelogram for four of its angles (b) and its two apicial angles

$$
(a)=\frac{720^{\circ}-4 \mathrm{~b}}{2}
$$

The hexagon may be bisected through its aplcial angles to form an iscosceles trapezoid with acute angles equal to half the apex angles of the original hexagon and the same obtuse angles. The parallel sides of the hexagon may approach each other closely to produce an elongated lath-like form with no alteration of angles but of profoundly different appearance. The apex angles of the hexagon may be truncated even to the extent of producing a rectangular form. Triangles may result by obliterating all the hexagon except the apex angle, etc.

Sometimes two different facies of a given substance appear. These result from the more or less equal development of two different aspecta (e.g. two different pinacoids) of the crystal.

Notwithstanding the possibilities, the simplest forms are generally the most prominent and little confusion results in practice.

SUMMCARY

This paper gives angular and other constants for pharmaceutically and toxicologically important substances, shows how certain closely related substances, chemically indistinguishable, can be readily differentiated by profle angle measurements, and discusses modifications of simple parallelograms and hexagonal crystal forms that may be encountered.

