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PCR Assay Specific for Chicken Feces
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Bacteroidales are fecal anaerobic bacteria that are common in the digestive systems and 
feces of warm-blooded animals. Some strains of Bacteroidales have been reported to be 
host-specific. In this study, Bacteroidales strains from chicken feces were examined for 
their potential use as indicators of chicken fecal contamination. Bacteroidales 16S rRNA 
gene sequences from chicken feces were amplified, cloned and sequenced. Phylogenetic 
analysis was performed using these sequences and published Bacteroidales 16S rRNA 
gene sequences from human and bovine feces. Primers were designed based on puta-
tive chicken feces-specific 16S rRNA gene sequences and the primer pairs were tested 
for specificity in PCR assays. One set of primers, chBact F1 and chBact R16, specifically 
amplified DNA from chicken feces in a PCR assay, but did not amplify wild turkey, cat, 
bovine, or deer fecal DNAs. In addition, DNA from feces contaminated straw-based 
chicken litter produced a product in the PCR assay. However, DNA from feces contami-
nated wood shavings-based chicken litter was not amplified. The PCR assay described 
here may prove a useful tool for the detection of chicken feces and for source tracking in 
watersheds with fecal contamination.  © 2010 Oklahoma Academy of Science.

INTRODuCTION

A current trend in animal production is the 
confinement of large numbers (thousands to 
tens of thousands) of animals in relatively 
small spaces. The resulting large quantities 
of fecal waste must be managed to minimize 
environmental and public health risks. 
Standard tests (e.g., quantitative tests for 
bacteria such as coliforms, Escherichia coli or 
Enterococcus, etc.) can detect fecal contami-
nation, but they do not reveal the source(s) 
of the contamination (Savichtcheva and 
Okabe 2006; Yan and Sadowsky 2007). Un-
derstanding the origin of fecal pollution is 
critical for determining public health risks 
and for determining the actions required 
for remediation. Microbial source tracking 
utilizes fecal microorganisms to trace the 
source(s) of fecal pollution and includes 
microbiological, genotypic, phenotypic, and 
chemical methods (Field and Samadpour 
2007; Stoeckel and Harwood 2007; Wuertz 
and Field 2007).

 Bacteroidales, fecal anaerobic bacteria, 
are abundant in the digestive tracts and feces 
of warm-blooded animals. The presence of 
Bacteroidales species in water is considered 
indicative of fecal contamination (Allsop 
and Stickler 1985; Fiksdal and others 1985). 
Previous studies have shown that Bacteroi-
dales present in the feces of different species, 
or group of species with similar digestive 
systems (e.g., ruminants), are genetically 
distinct. PCR-based assays have been de-
veloped that discriminate between human, 
ruminant (cattle, elk, etc.), pig, and horse 
fecal contamination based on these genetic 
differences (Bernhard and Field 2000b; Dick 
and others 2005; Mieszkin and others 2010). 
Several attempts have been made to develop 
assays that discriminate chicken fecal con-
tamination from other animal feces with 
varying levels of success (Wheeler and oth-
ers 2002; Johnson and others 2004; Hassan 
and others 2007; Lu and others 2007). The 
most recent study describes an assay spe-
cific for chicken fecal contamination based 
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on a Brevibacterium DNA sequence marker 
(Weidhaas and others 2010). In this study, 
Bacteroidales strains from chicken feces were 
examined for their potential use as specific 
indicators of chicken fecal contamination.

MATeRIALS AND MeTHODS

extraction of DNA from feces
 Fecal samples were collected using 
sterile spatulas and transferred into ster-
ile 50 ml centrifuge tubes. Samples were 
transported to the lab on ice and stored at 
−80˚C. Chicken feces and three samples 
of feces contaminated chicken litter (one 
straw, the other two wood shavings) were 
collected from the University of Arkansas 
poultry research farm in Fayetteville, AR. 
Wild turkey and deer feces were collected 
at Sequoyah National Wildlife Refuge near 
Vian, Oklahoma. Cat and bovine feces were 
collected in Tahlequah, Oklahoma. 
 Fecal samples were pooled for DNA 
extraction: equal weights of individual fe-
ces were combined for each DNA sample. 
Each DNA sample contained feces from a 
minimum of two individuals. DNA was 
extracted from feces using a Powersoil 
DNA Isolation kit (MO BIO Laboratories 
Inc., Carlsbad, CA) or by phenol extraction 
(Ausubel and others 1999). Phenol extrac-
tion was used for all avian fecal samples 
including chicken litter. Feces were resus-
pended in sterile water and the aqueous lay-
ers were extracted sequentially with equal 
volumes of equilibrated phenol (pH 7.9), 
phenol:chloroform (1:1) and chloroform. 
DNA samples containing less than 2.0 ng/
µl of DNA were precipitated using sodium 
acetate and ethanol. If initial DNA amplifica-
tion tests were unsuccessful a PowerClean 
DNA Clean Up Kit  (MO BIO Laboratories 
Inc., Carlsbad, CA) was used to further 
purify the fecal DNA. 

PCR amplification of chicken fecal DNA 
and phylogenetic analysis of 16S rRNA 
sequences
Bacteroidales 16S rRNA gene primers, Bac32F 

and Bac708R, were used to amplify chicken 
fecal DNA using the protocol described by 
Bernhard and Field (Bernhard and Field 
2000a; Bernhard and Field 2000b). PCR 
products were cloned using a Zero Blunt® 
TOPO® PCR Cloning Kit with One Shot® 
TOP10 Chemically Competent E. coli (Invit-
rogen Corporation, Carlsbad, CA). Plasmid 
DNA was prepared using a QIAprep Spin 
Miniprep Kit (Qiagen Inc. - USA, Valencia, 
CA) and plasmids were sequenced at the 
University of Arkansas DNA Resource 
Center (Fayetteville, AR). Sequences were 
examined using Bellerophon (Huber and 
others 2004) for putative chimeras. Exact 
duplicate sequences were removed from the 
set prior to alignment. Nucleotide sequences 
of the 16S rRNA genes from this study have 
been deposited in GenBank under accession 
numbers HQ896738-HQ896767. 
 A phylogenetic tree based on Bacte-
roidales 16S rRNA gene sequences from 
chicken, human, and cattle feces was in-
ferred using the neighbor-joining method 
and Kimura-2 parameter model (MacVector 
11.1, MacVector, Inc., Cary, NC). Bootstrap 
values were obtained from a consensus of 
1,000 neighbor-joining trees. Bacteroidales 
16S rRNA gene sequences from non-avian 
sources were obtained from GenBank. Ac-
cession numbers for Bacteroidales 16S rRNA 
gene sequences from human hosts were: 
AB200217-AB200225, AB200228-AB200229, 
and AB215082-AB215084. Accession num-
bers for Bacteroidales 16S rRNA gene se-
quences from bovine hosts were: AJ006457, 
AJ011682-AJ011683, and AJ009933. 

Primer design and testing
 The computer program MacVector was 
used to design primer pairs for PCR assays. 
Putative chicken feces-specific 16S rRNA 
gene sequences were identified based on the 
phylogenetic tree described above. Selected 
sequences were then aligned and consensus 
sequences constructed. Primer pairs for 
PCR assays were designed based on the 
consensus sequences. Forward primers were 
derived from variable regions within the 
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16S rRNA genes while reverse primers were 
derived from conserved regions. Primer 
pairs were tested for host specificity in PCR 
reactions using DNA samples from chicken 
litter and, chicken, wild turkey, deer, cattle, 
and cat feces. All DNA samples used in this 
study successfully produced PCR products 
in assays with Bacteroidales primers Bac32F 
and Bac708R as described above. Reaction 
mixes consisted of 10 ng of DNA (chicken 
fecal and litter samples) or 20 ng of DNA (all 
other fecal samples), 0.4 µM each primer, and 
12.5µl GoTaq Green Master Mix (Promega 
Corporation, Madison, WI) in a final volume 
of 25µl. One primer pair, chBact F1 (CC-
GATGGTTTCAAGGGATTGC) and chBact 
R16 (TCTAAGCATTTCACCGCTACACC), 
was specific for chicken feces producing a 
PCR product of 532 bp. The chBact F1 and 
chBact R16 primer pair was designed using 
the consensus sequence based on chicken 
Bacteroidales 16S rRNA gene clones 2, 8, 28, 
37, and 39. (See phylogenetic tree in Figure 
1 for putative chicken-specific clusters of 
Bacteroidales 16S rRNA gene sequences.) 
Amplification with the chBact F1 and chBact 
R16 primers was performed under the fol-
lowing conditions: 95˚C for 2 min, 27 cycles 
of 95˚C (30 sec), 63.1˚C (30 sec), and 72˚C (40 
sec) with a final extension at 72˚C for 6 min.

ReSuLTS AND DISCuSSION

Thirty partial Bacteroidales 16S rRNA gene 
sequences from chicken feces were aligned 
with corresponding partial Bacteroidales 16S 
rRNA sequences from human and bovine 
feces. Phylogenetic analysis revealed several 
clusters of Bacteroidales 16S rRNA sequences 
from chicken feces that were well separated 
from human and bovine strains (Figure 1). 
Oligonucleotide primers were designed 
using consensus sequences produced from 
putative chicken feces-specific Bacteroidales 
sequences. Several primer pairs were tested 
in PCR reactions containing DNA from 
animal feces, but only one primer pair was 

specific for chicken feces. PCR analysis of 
fecal DNAs with the chBact F1 and chBact 
R16 primer pair showed that chicken fecal 
DNA was amplified, but wild turkey, cat, 
deer and bovine fecal DNAs did not produce 
PCR products (Figure 2). DNA samples 
from chicken litter were also tested in PCR 
assays using the chBact F1 and chBact R16 
primer pair. DNA from straw-based chicken 
litter was amplified while DNA from wood 
shavings-based chicken litter was not ampli-
fied (Figure 2). Although our preliminary 
results are promising, additional testing of 
the assay using other animal feces and addi-
tional samples of poultry litter and chicken 
feces are needed to confirm the validity of 
the assay. 
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Figure 1. Phylogenetic tree of 16S rRNA gene sequences showing the relationships 
between Bacteroidales from chicken feces (this study) and Bacteroidales from human 
and bovine feces (genBank). The tree was inferred using the neighbor joining method 
with Kimura 2-parameter correction. Numbers at nodes represent bootstrap values and 
values <70% are not shown. The corresponding partial 16S rRNA gene sequence from 
Cytophaga fermentans (M58766) was used to root the tree. 
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Figure 2. Results from PCR assays using the chBact F1 and chBact R16 primer pair and 
various DNA samples. A) lane 1, molecular weight standard; lane 2, negative control; lane 
3, 10ng DNA from straw-based chicken litter; lane 4, 20 ng DNA from wild turkey feces; 
lane 5, 20 ng DNA from cat feces; lane 6, 20 ng DNA from deer feces. B) lane 1, molecular 
weight standard; lane 2, negative control; lane 3, 10 ng DNA from wood-shavings based 
chicken litter; lane 4, 10 ng DNA from wood-shavings based chicken litter (different 
sample); lane 5, 10 ng DNA from chicken feces; lane 6, 20 ng DNA from bovine feces. 
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