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MAGNITUDES OF STERIC EFFECTS

INTRODUCTION

We have developed a simple procedure for
ascertaining whether additions to acyclic
alkenes exhibit steric effects which are ei-
ther dependent on the degree of substitu-
tion about the double bond, or are of the
same order of magnitude regardless of the
degree of substitution about the double
bond (1-5).  Such information improves the
understanding of the reaction and its syn-
thetic usefulness.  In this procedure, (a) rela-
tive rates of reaction of a number of repre-
sentative alkenes, with a broad range of elec-
tronic and steric properties are determined;
(b) log krel  (log of the relative rate compared
to that of the reference alkene) of each alk-
ene is plotted against the alkene þ ioniza-
tion potential (IP); and (c) plots and corre-
lation coefficients are examined for linear-
ity and number of lines, with each line rep-
resenting a group of alkenes having steric
effects with similar orders of magnitude in
that reaction.   Alkene IPs are used for com-
parison because they are relatively insensi-
tive to steric effects.

We previously contrasted bromination
of alkenes against hydroboration and
oxymercuration (1) and compared it to a
number of reactions of alkenes involving 3-
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membered intermediates (2).  We deter-
mined that hydroboration and oxymer-
curation each have multiple lines in the plots,
indicating they each have groups of alkenes
with steric effects which are of the same or-
der of magnitude within groups, but differ-
ent from one group to another (1).  However,
bromination gives one line for all alkenes,
indicating that steric effects in that reaction
are of the same order of magnitude for those
alkenes studied, similarly to most of the
other reactions involving three-membered
intermediates (2).  In order to explore the
effectiveness of the procedure, it seemed
desirable to compare bromination to the re-
actions of alkenes with chlorine and with io-
dine; therefore, we report the results of that
comparison.

For chlorination, in nonpolar media and
free from radical contributions (7), relative
rates parallel those of bromine addition.

Hal = Cl, Br
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Studies of alkene iodination explored ad-
sorption (A       B) of the olefin with solid
iodine on a GC column to give a charge-
transfer complex B and complexation
(B          C) from the adsorbed alkene B to
give the molecular complex C (12).

RESULTS and DISCUSSION

Table 1 lists relative rates of reaction (krel) of
representative acyclic alkenes with chlorine
(7), with   bromine (8-11), and with iodine
(12) and also lists alkene IPs and highest oc-
cupied molecular orbital (HOMO) energy
levels.  Relative reactivities in the table are
relative to each other, with 1-hexene selected
as the reference and given the value of 100.
In some cases, IPs were not available and had
to be determined through comparison with
HOMOs, which were calculated as described
previously (2).   Plots of alkene IPs versus
log krel values are shown in Figures. 1-3.
Since a higher IP corresponds to electron re-
moval from a lower-energy molecular or-
bital, IPs were plotted in inverse order on
the y-axis of each plot, in order to make the
plots comparable to those using HOMO en-
ergy levels.  These plots reveal results for
chlorination (one line of correlation with the
correlation coefficient, r = 0.99) which are
very similar to those for bromination (one
line of correlation with r = 0.97).

Results for iodination (12) are more com-
plicated.  Studies were carried out in order
to observe the interaction of olefins with
molecular iodine by using a gas chromato-
graphic (GC) technique.  The results were
analyzed in order to explore both absorption
and complexation of the olefin with iodine
on the column.  Each set of data was further
treated mathematically in two ways: (a) ac-
counting for complexation with untreated
support and (b) not accounting for complex-

ation with untreated support.
The plots for reaction with iodine are

unlike those for chlorination and for bromi-
nation.  In treatments that allowed complex-
ation with the support, adsorption and com-
plexation with iodine gave conflicting re-
sults.  Adsorption showed a grouping ac-
cording to the amount of steric hindrance,
whereas complexation shows no such
grouping.  However, the level of correlation
in these plots is only moderate.

When complexation with support was
not allowed, again adsorption showed the
grouping and complexation does not (Fig-
ures 3a-d).  The level of correlation in these
plots is much higher, especially for adsorp-
tion, which has a correlation coefficient of
0.8 and 0.7 for mono- and di-substituted alk-
enes, respectively.  The manifestation of
grouping for adsorption, but not for com-
plexation, is surprising, because adsorption
should be a much “looser” interaction with
the molecules farther apart.

At first the different results might seem
surprising, but they are easily understood.
Bromination and chlorination are addition
reactions which go to completion.  The reac-
tion with iodine does not go to completion
because it is unfavorable entropically and is
endothermic; it is a reversible complexation
reaction.  Although the iodonium ion is pre-
sumably formed, the equilibrium favors the
reactants.  Therefore, the plot obtained from
reaction with iodine might be expected to
resemble that of alkene complexation with
silver ion (AgNO3) (2).  Comparison of the
two plots does indeed reveal an obvious
similarity.  Each plot has multiple lines, with
positive slopes and good-to-excellent corre-
lations, and groups the alkenes according to
their steric requirements.
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TABLE 1.  Alkene IP’s, HOMOs, and relative reactivities for reaction with chlorine, with bromine,
with iodine.

Figure 1.  Plot of log krel Br2 versus IP for reaction conditions Br2 /NaBr /MeOH (8-11).

Figure 2.  Plot of log krel Cl2 versus IP for reaction conditions Cl2 gas /O2 / dark (7).
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