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The pool boiling problem in cavities is analyzed from the point of heat transfer by dividing the solution domain into three
rectangular regions which are connected through the interface boundary conditions in the form of the compatibility and the
continuity relationships. The numerical solution is accomplished by using the method of differential quadrature.

INTRODUCTION

Common engineering problems frequently deal with shapes of physical domains having irregular geometries
as contrasted to regular ones which consist of single, uniform shapes, such as rectangular, cylindrical or
spherical. In general, regular domains in which the physical properties are constant are amenable to analytical
solutions. On the other hand, analytical solutions to irregular geometries are not available except in those cases
where the irregular domain can be divided into regular shapes such that the system properties are constant
within these regions, which are connected through the boundaries along which the system variables are
established by the compatibility and the continuity relationships. Several recent examples of these applications
are reports by : Hsieh and Su (8), who used a superposition technique along with separation of variables for a
cavity geometry; Yi-Zhou and Yi-Heng (11), who used a harmonic function continuation technique on the
torsion problems for bars with irregular cross-sections; and Heggs et al. (7), who analyzed a fin assembly heat
transfer problem by separation of variables. All these examples were restricted to time-independent or
steady-state cases.

However, for problems involving transient-state or steady-state cases with variable system properties,
numerical methods such as finite differences, finite elements, or quadrature are unavoidable.

The purpose of this paper is to demonstrate a general approach for analyzing irregular geometries in either
time-dependent or time-independent systems. This approach, which requires only a few discrete points to
produce numerical solutions, is based on the method of quadrature that was originally proposed by Bellman et
al. (1,2) as a technique for rapid solutions of one- and two-dimensional, initial value problems. Subsequently,
Mingle (9,10) solved a one-dimensional initial and boundary value problem. Civan and Sliepcevich (3,4,5)
extended the technique for multidimensional, steady-state and transient-state boundary value problems, the
models for which may involve partial derivatives and integrals.

Essentially the method of differential quadrature replaces a partial space derivative by a linear weighted sum
of the function values at the discrete points. As a result, a partial differential equation reduces to a set of
algebraic equations if it is time-independent and a set of ordinary differential equations for a time-dependent
case. Numerical solution methods for both cases are well developed.

In the present paper the application of the method of quadrature will be demonstrated only on a problem
involving an irregular geometry.

MATHEMATICAL FORMULATION

For the purposes of the present study consider a transient-state conduction problem in
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an irregular, two-dimensional geometry for a medium whose properties are dependent only on its temperature.
For example, consider the pool boiling of a cryogen in a cylindrical cavity drilled through a solid block, shown
in Fig. 1, whose external surfaces are kept at a constant temperature. The heat transfer is represented by the
following model:

and the boundary conditions in the clockwise direction

For computational convenience the geometrical domain of
interest is separated into three rectangular domains (designated by
the letter p) through the dashed lines as shown in Fig. 1. Next, each rectangular domain is reduced to a unit
square as shown in Fig. 2 by defining the dimensionless distances in X- and Y-directions as, for the pth

rectangular domain,

in which X and Y are measured form the point 0(0,0) shown in Fig. 1,
Lp and Hp are the width and height, and (xpo

, ypo
) is the origin of the

coordinates of the region p.

Thus, by using Equations 9 through 12, Equations 1 through 8 are
normalized. The unsteady-state conduction equation becomes
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Solution of the Problem Using Differential Quadrature

The quadrature method replaces a linear operation, such as an
integration or a differentiation, on a function by a linear weighted
sum of the function values at discrete sample points (2).
Therefore, it can be used to obtain numerical solutions. For
example, consider

Equation 37 is solved for the weighting coefficients, wij, as
described by Civan and Sliepcevich (3,4,5). These coefficients are
then used in Eq. 34 to approximate the derivative at a discrete
point in terms of the function values at all of the discrete points.
Weighting coefficients for other types of linear operations can be
obtained similarly.

In the following the weighting coefficients associated with the
first and second order space derivatives with respect to x or y
variables will be designated by superscripts in the form of a single
and a double x or y, respectively.

When the partial space derivatives are replaced by formulae
given by Civan and Sliepcevich elsewhere (5), Equations 15
through 33 reduce to the following equations, respectively.

Transient heat conduction equation:
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NUMERICAL RESULTS

Numerical solution of Eq. 38 has been accomplished using a
low-order Runge-Kutta-Fehlberg four (five) method as described
by Fehlberg (6) until the steady state is reached. For the
boundaries at which the temperatures are prescribed, these
values were used directly. For the boundaries at which the heat
fluxes (or temperature derivatives) are prescribed, the
temperatures are calculated in terms of the unknown interior grid
point values using Eqs. 57 through 64, which are also used to
calculate the values for the temperatures along these boundaries
following the numerical solution of Eq. 38 for the interior grid

points. Only the steady state numerical solution is presented in Table 1 for the case of L1 = H2 = 0.15 m, L2 = H1

= 0.30 m, h = 568 W/m2 • K, k  = 8.6 W/m • K, T L = -161 °C and To = 0 °C using N = 6 discrete points in the x
and y-directions of each of the three domains.

This steady state numerical solution has been obtained directly by solving Eq. 38 after dropping the time
derivative term and solving the resulting set of algebraic equations simultaneously.

CONCLUSION

The method of quadrature can be applied to problems involving irregular geometry.
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