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It is shown that distance-preserving maps defined on an abelian lattice ordered group
determine the cardinal summands, and conversely. Those distance preserving maps
defined on sublattices of the abelian lattice ordered group that can be extended to the
whole group are characterized. Also, it is shown that an abelian lattice ordered group
has the property that all such maps are extendable to the whole group if and only if it is

strongly projectable.

INTRODUCTION

The order structure on an abelian lattice
ordered group allows for the definition of a
“distance” function in a natural way. For
an element g in an abelian lattice ordered
group G it is standard to let |g]| = g \V/ (-g).
We can then define a function §:
GXxG—G by ¥g1,82)= |g1—82 |- Swamy
(6) calls such a distance function a metric,
and the lattice ordered group together with
the metric is labelled an autometrized
space. He then discusses the geometry of
these autometrized spaces.

An important notion in the study of
structures with distance functions is that of
distance-preserving maps. Let G be a lattice
ordered group and L a sublattice of G con-
taining 0. A map f:L—G is called a
congruence if |f(x)—f@)|= |x-y|
for all x,yeL . An isometry is a congruence
from G to G. In (7) Swamy shows that
every isometry f can be written in the form
f@&)=Tk)+y where yeG and T:G—G
is an isometry, a group automorphism, and
an involution (i.e., 77 = T).

In this note we show that isometries are
directly related to the structure of the lat-
tice ordered group. More specifically, the
isometries can be completely determined by
the cardinal summands. Furthermore, we
consider the question of when congruences
can be extended to isometries. A condition
is given which is necessary and sufficient for
an arbitrary congruence to be extended to
an isometry, and it is then shown that all

congruences on an abelian lattice ordered
group G can be extended to isometries if
and only if G is strongly projectable.

Recall that G is a cardinal sum of 4 and
B (written G = 4 * B) if and only if G is a
direct sum of 4 and B where 4 and B are
convex [-subgroups of G. Hence, an element
(a,b) of G is positive if and only if both a
and b are positive. For each xeG let x* =
x VO and x™ = (=) VO. Hence, |x| =x V
(=) =x" +x andx =x* -x". f XCG
then the positive cone of X is X*=
{x €X|x>0} and the polar of X is X! =
{yeG| |x] N]y| = 0 for all xeX}. An
abelian lattice ordered group is said to be
strongly projectable if every polar is a cardi-
nal summand. For other basic properties of
lattice ordered groups see Bigard et al. (2)
or Fuchs (4).

DETERMINING ISOMETRIES

Throughout this paper G will denote an
abelian lattice ordered group. Every such
group can be written as a subdirect product
of totally ordered groups G, acA. We will
denote the oth component of x €G cll G,
by x,,

The following lemma and theorem are
due to Swamy [7].

LEMMA 1. Let LCG be a sublattice
containing 0 and let f:L -G be a con-
gruence. Given aeL and aeA, either
f&)o=—a,+f(a),+x, for all xel or
f)o=a,+f(a),—x,for all xeL.
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THEOREM 2. If f:G—G is an
isometry of the abelian lattice ordered
group G, then there exists a unique involu-
tory, isometric group automorphism T of G
such that f (x)=T(x)+f (0) for allx ¢G.

Theorem 2 says that if we can determine
all involutions that are isometries and auto-
morphisms of the group G, then we can
determine all isometries of G. The next two
theorems show that these involutions are
directly related to the structure of the lat-
tice ordered group.

THEOREM 3. Let G be an abelian lat-
tice ordered group. For an involutory,
isometric group automorphism T of G set
A={T®)* |xeG*},B={T() |xeG*}, 4
=A-A, and B =B-B. Then G= A * B.

PROOF. Let T be an involutory,
isometric group automorphism of G. Since
T is an isometry |T(x)|, = |x]|, for all
x € G, o € A. Hence, T(x), = % x, since
each G, is totally ordered. If x, # 0 and
T(x), = x, for some x ¢G and fixed a €A,
then |y, ~x,| = [T0), - TC)s| = [T0),
~x,|. But then either y, = T(y), or 2x, -
Yo = T(), The second of these is impossi-
ble since x, # 0, so T(y), = y, forally e G.
If T(x)s = -x4 for some x € G, B ¢ A, then
we must have T(y); = -y, for all y € G
Now let A = {Tx)*|x e G*}. Ifxy e G*
and a € A, then T(x + y), = £(x + y), so
Tx +y), = x, + y,or Tx + y), = =x, -
Ve Thus, T(x + y)* = T(x)* + T(y)* and
wehave A + ACA U Tx)" >y>0inG,
then y, > 0 implies T(x), > 0 so T(y), #
¥, Hence, T(y), = y, for all & € A and we
have T(y)* = y ¢ G* making 4 convex. Set
A = A-A, and A becomes a convex I-
subgroup of G. Let B = {T(x) |xeG™}
and B = B-B. As was the case for 4, we
get B to be a convex l-subgroup of G
Furthermore, A NB = {0}, and if y e G*
then y, = T(y), = T()& oy, = ~T(¥), =
T(y),s0y = T(y)* + T(y)" e A + B. Thus,
G=A%+B |

Thus, if the isometries are known, then
the cardinal summands can also be calcu-
lated. For if f:G—G is an isometry, then

the map 7:G—G defined by T() =
f&x)-f(0) is an isometric, involutory group
automorphism.

Conversely, if the cardinal summands of
an abelian lattice ordered group are known,
then all isometries can be given.

THEOREM 4. Let G be an abelian lat-
tice ordered group and suppose G =4 * B.
Then there exists an involutory, isometric
group automorphism T of G such that 4 is
the subgroup generated by {T(x)* |x ¢ G*}
and B the subgroup generated by {T(x)"|x
eG*}.

PROOF. Suppose G = A * B. Then
every element x of G can be written
uniquely in the form x = x, + xz with x, €
A and xz ¢ B. Define T:G—G by x—x, ~
xp Then T is clearly an involutory, isometric
group automorphism. Let A = {T(x)" |x ¢
G*'},B={Tk) |xeG*},[A] = A -4,
and [B] = B-B. Ifx,eA", xzeB" then
xy = T@xy) = T(x)" €A and x5 = T (xp)
= T(xg) €B. Thus, 4 = [4] and B = [B].

EXAMPLE 1. Let C[0,1] be the set of
continuous functions on the closed interval
[0,1]. Then C[0,1] forms an abelian lattice
ordered group under pointwise addition and
order. It is clear that C[0,1] has no non-
trivial cardinal summands and so the only
involutory, isometric group automorphisms
are Ti(x) = x and T,(x) = —x where x ¢
C[0,1]. Thus, all isometries are of the form
fix) =x + aorfyx) = x +aforalxe
C{0,1] and fixed a ¢ C[0,1].

EXAMPLE 2. 1t is known that a free
abelian lattice ordered group has nontrivial
cardinal summands if and only if it is of
rank one (1). Thus, if G is such a group of
rank greater than one, then its isometries
are all of the form fi(x) = x + a or f,(x)
= —x + a as in Example 1.

EXTENDING CONGRUENCES
TO ISOMETRIES
In considering congruences defined on
sublattices of G, it is natural to ask when
these congruences can be extended to all of
G. Proposition 5 characterizes those



congruences which can be extended to
isometries while Theorem 6 gives necessary
and sufficient conditions on the abelian lat-
tice ordered group for all congruences to be
extendable to isometries.

Let L be a sublattice of G containing 0.
For a congruence f:L—G let T;:L—G be
defined by Ty(x) = f(x) - f(0). Let 4 =
{7;(()6)+ | x € L} and B = {T;(x)"|x ¢
L ™}. Using this notation we get the follow-
ing results.

PROPOSITION 5. A congruence
f:L—G can be extended to an isometry
f:G—G if and only if G = 4 % B where A
2Aand BDB.

PROOF. (i) Suppose f can be extended
to an isometry f:G—G. Let T:G—G be
defined by T(x) = f(x) - f(0). Then T
agrees with 7, on L. Let A, =
{Tx)*" |xeG*}, By = {T(x) |xeG*'}, A
= A, —A,, and B = B; - B;. Then 424,
B 2B, ANB = {0}, and both A4 and B are
convex [-subgroups. As in the proof of
Theorem 3 we get T(x,) = x, or T(x), =
—x, for allx €G, aed, sox = T(x)* + T(x)"
forallx eG*. Thus, G = 4 % B.

(ii) Suppose G = 4 * B where 424
and B2B. Every xeG © can be written
uniquely as x = x, + xp where x,eA and
xgeB. Define f (xy) = f(0), + x4, f (xp) =
fOp - xp and F) = F(ra) + F ().

Then for x,y €G, |x-y| = |x; + x5 -y, —
yel = lxyla + lIxylp = lxyls +
ly=x|p = [@)a + 0x)p| = |xg -y, +

yg —xp| = [ (F(0) +x, —xp) - (f(0) + y, -
ys)| = IF@ - F0)|. Thus, f:G—G is an
isometry. If x eL then x,eA and xzeB so
f@) = T,@) + f0) = Tyl + Tyxp) +
fQ0), + f(0)p_ = x4 —xp + f(0)4 + f(0)p =
f (x). Hence f extends f.

The above proposition can be applied to
characterize those lattice ordered groups
with the property that every congruence can
be extended to an isometry.

THEOREM 6. Let G be an abelian lat-
tice ordered group. Then the following are
equivalent.

(1) Every congruence f:L—G, where L
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is a sublattice of G' containing 0, can be
extended to an isometry.

(2) G is strongly projectable.

PROOF. (1) = (2). If S CG then S* «
St CG. For xe(S1)*, ye(S*H)* let
f(x+y) = x-y. Then f:S* x S** -G is a
congruence and so it can be extended to an
isometry f:G—G. But then G = 4 * B
where 4 D {f(x)* |xe (St * S)*}
(1) and BO{f(x) |xe(S* * S*1)*} =
($**)* by Proposition 5. Therefore, B =
AL C(SY)y = st and A = BLg (sH)!
=Sts0G =St x5

(2) = (1). Suppose G is strongly pro-
jectable and f:L—G is a congruence. Then
G = A* x A4'" where 4 = {T;(x)*|
xeL*}. Since A*2B = {T;(x)"|xelL"}
and 41+ DA, Proposition 5 says that f can
be extended to an isometry of G.

]
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