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Growth rates of four fishes during 1982, a flood year, were compared to those of previous years by back calculation from
scales and, for one species, by comparison with previous mean length measurements. Calculated growth increments in 1982
were significantly larger than in the previous years for blacktail shiner (Notropis venustus), smallmouth buffalo (Ictiobus
bubalus), and tidewater silverside (Menidia beryllina). Striped bass (Morone saxatilis) did not exhibit increased growth rates in
1982. Two extreme flood events during and prior to the 1982 growing season are postulated to have been the cause of the
observed changes in growth rates. These events caused large increases in the area flooded by the reservoir and in the
allochthonous inputs to the reservoir. Decreased abundance of some fishes due to emigration via floodgates also occurred. The
mechanism by which the flood events caused higher growth rates in some fishes is unknown, but may be related to a change in
reservoir productivity due to increased inputs and/or to density-dependent growth in some fishes. Striped bass growth rates
may have decreased in 1982 due to a winterkill of the threadfin shad (Dorosoma petenense) population, which reduced prey
availability.

INTRODUCTION

Lake Texoma is a large (36,000 ha), multipurpose reservoir located in Oklahoma and Texas. The
reservoir was impounded in 1944 by the Denison Dam, at the confluence of the Red and Washita rivers.
The water level exhibits large annual fluctuations due to evaporation, drawdown, flood control, and
removal of water by the city of Dallas, Texas. Comparison of weekly average water levels from 1980
through 1983 demonstrates a seasonal trend of peak floods in the spring and occasional floods at other
times of the year (Fig. 1). The exceptionally large floods of
October 1981 and May/June 1982 caused an increase in the
surface area to over 50,000 ha. These large floods led to the
deposition of large amounts of suspended materials from the
Red and Washita rivers and to a decrease in the number of
fishes in the reservoir due to releases downstream through the
flood gates (1). Changes in the reservoir caused by increased
allochthonous inputs, increased area, and decreased numbers of
some fishes are hypothesized to have caused an increase in
growth rates for some fishes during the flood year.

Between-year variations in the growth rates of fishes have
been associated with year-class strengths, food availabilities,
and temperature differences (2-4). Although
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the influence of allochthonous inputs on the productivity of reservoirs is known to be important (5), no
published data were found on the effect of fluctuations in the amount of allochthonous inputs on the relative
productivity of a reservoir in temperate regions. In contrast, the role of the magnitude of annual floods in the
productivity of tropical river systems is well established (6, 7). Southern plains reservoirs such as Lake Texoma
provide a situation analogous to African river systems described by Welcomme (6) in that floods are seasonal
and result in large organic matter inputs. Likewise, variation in the amount of allochthonous inputs may be a
cause of changes in growth rates of temperate-reservoir fishes, as it is in some tropical systems (7).
Density-dependent growth regulation is another possible cause of year-to-year variation in the growth rates of
reservoir fishes.

The occurrence of two flood events of a large magnitude in Lake Texoma prior to and during one growing
season (1982) provided an opportunity to examine the influence of flooding on reservoir fishes. We compared
growth rates of four fishes between an extreme flood year and previous years.

METHODS

During June and July of 1983 and 1984, fishes were sampled in the Red River arm of Lake Texoma, in and
near Mayfield Cove (see published description (8). Striped bass (Morone saxatilis) were sampled with a 1.8-m x
90-m gill net with 6-cm bar mesh set at midwater depths (5 m in 10 m water). Smallmouth buffalo (Ictiobus
bubalus) were sampled with a 1.8-m x 90-m gill net with 10-cm bar mesh set on the bottom, at depths of 7 to 12
m. Striped bass and smallmouth buffalo were sampled in 1983. Scale samples and total length measurements
were taken on both of these species.

Blacktail shiner (Notropis venustus) and tidewater silverside (Menidia beryllina) were sampled from the
littoral area of Mayfield Cove with a 2-m x 12-m, 1-cm-mesh bag seine and preserved in 5% formalin. Scale
samples and total length measurements were taken on preserved blacktail shiners sampled in 1983 and 1984.
Because the maximum age of tidewater silversides in Lake Texoma is about 16 months (9), only one year-class
of adults is available for sampling in summer. Since sampling occurred in 1983 and the intent was to compare
growth in 1982 with previous years, back calculation of growth rates was not conducted for this species. Instead,
total length measurements of the 1982 year-class were taken in June 1983 and compared to similar ones taken in
1980 (9). The measurements taken by Hubbs (9) were for females only, while the 1983 sample included an
unknown percentage of males, which are smaller than females (9).

Scale samples from the three other species were examined for putative annuli and aged by back calculation
(10). The lack of validation of age determination from scales limits the conclusions of this study (11).
Comparisons of calculated mean growth increments were made within age classes for three species. These were
tested for significant differences using a t-test for unequal sample size (12). The mean lengths for all adult
silversides measured in 1983 were compared to ripe females measured in 1980 (9) by an unequal variance t-test
(12).

RESULTS

The mean length of the 1982 year-class tidewater silverside was significantly greater than that of the 1979
year-class (P < 0.001). The mean length measured in 1983 was 86.6 mm (95% CI = 82.3,90.9; SE = 2.0 mm; n
= 21), while the mean length of those measured in 1980 was 75.5 mm (95% CI = 74.1,76.9; SE = 0.5 mm; n =
361). The occurrence of a bimodal length distribution separated adults and juveniles. Therefore, adult length
measurements taken in 1983 represented growth in 1982 and early 1983.

The growth rates of blacktail shiners in 1982 were higher for all three age classes than growth rates in 1981
or 1980 (P < 0.001) and higher than age II growth rates in 1983 (P < 0.01; Fig. 2). Growth rates of 1983 and
1982 age I blacktail shiners were not significantly different. The blacktail shiner had a maximum estimated age
of 3 years and data from the second summer allowed comparisons of all three age classes. The results presented
here include pooled estimates of the three age
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classes in which estimates were obtained during both study years.
Growth rates of age II and age III smallmouth buffalo in 1982 were greater than pooled averages of

previous years' growth rates (P < 0.01 and 0.1, respectively; Fig. 3). Growth of age I smallmouth buffalo in 1982
was not significantly different than in previous years.

Striped bass growth was not consistently different in 1982 than in previous years (Fig. 4). The only
difference among calculated lengths was that age II growth in 1982 was less than in 1981 (P < 0.05), which in
turn was less than growth in 1980 (P < 0.01). Growth rates of age III striped bass were not significantly different
in 1982 and 1981. Since no age I striped bass was sampled in 1983, growth of that age group cannot be
estimated for 1982.

DISCUSSION

One possible explanation for the changes in growth rates between 1982 and previous years is Lee's
phenomenon (13). While this cannot be negated owing to the lack of long-term data and scale validation, there
are several reasons for doubting Lee's phenomenon as the causal agent of observed changes in growth rates.
Back calculation was not used in determining growth rates of tidewater silversides, which exhibited the most
distinct increase in growth of the species studied. As can be seen with the three species for which back
calculation was used, a linear decrease in growth rates with older age classes (as would be predicted from Lee's
phenomenon) did not occur and there appears to be a large amount of year-to-year variation in the growth of
these species in Lake Texoma (Figs. 2,3, and 4).

Higher growth rates in 1982, as compared to previous years, were found for most observed age classes in
three of the four species. The fourth species, striped bass, had no similar trend in its calculated growth rates.
These species are diverse in size, habitat use, and trophic position. Possible causes for the observed increase in
growth rates for the three species include changes in temperature, food abundance, or fish density.

The only observed difference in the water temperature of Lake Texoma in 1982 as compared to the other
years in this study was a slower warming of the waters in 1982, presumably because of the increased volume of
the reservoir (W.J. Matthews, Univ. of Okla. Biological Station, personal communication). If slower warming
had any effect, it would probably be to decrease the growth rates of these warmwater fishes.

Matthews et al. (1) reported that large but unquantified numbers of striped bass and presumably other fishes
were passed through the flood gates of Denison Dam in 1982. Along with changes in the distribution and
condition of larval fishes noted by Matthews (14), this decrease in the number of fishes in Lake Texoma could
have created the opportunity for density-dependent changes in growth rates. The effects of density on the growth
of some warmwater fishes has been quantified by Swingle and Smith (15) and is presumed to
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be one of the major controlling factors in fish growth (16).
The large input of allochthonous materials and the increase in flooded lowlands caused by the fall 1981 and

spring 1982 floods in Lake Texoma could have increased the productivity of the system and thereby influenced
the growth rates of some fishes. Presumably, increased inputs of nutrients and detritus would differentially
affect the growth of some fishes, depending on whether an increased input was being directly consumed (i.e., a
detritivore) or being taken up by prey such as zooplankton. The timing of increased growth and the relative
contribution of increased allochthonous inputs, increased habitat, or density-dependent effects on growth were
not discernible from our data.

The bottom-feeding smallmouth buffalo is an opportunistic feeder which presumably would take advantage
of the increased inputs and forage area (17). Age I smallmouth buffalo, which did not show an increase in
growth in 1982, may reside upstream from the reservoir where spawning occurs and not be able to take
advantage of the influence of a flood event in the reservoir. In contrast, tidewater silversides and blacktail
shiners are wide-ranging forage fishes that frequent shallow, in-shore areas during daylight (18). These species
could have taken advantage of the newly flooded land and seasonably shifting food supply. Tidewater
silversides are also known to exhibit growth responses to population density (19).

In Lake Texoma, striped bass feed almost exclusively on gizzard (Dorosoma cepedianum) and threadfin
shad (D. petenense) (W.J. Matthews, personal communication). A winterkill of threadfin shad in 1981-1982
nearly eliminated this species from the lake in 1982 (14). Decreased forage supply may have caused the decrease
in growth rate of age II striped bass in 1982.

The role of allochthonous inputs into reservoirs becomes
increasingly important in the aging, dystrophication stage (20).
Any effects of year-to-year variation in the magnitude of
allochthonous inputs will also become more pronounced in older
reservoirs. Matthews (14) has shown that the turbid inputs of
major floods in Lake Texoma affect the distribution and
condition of some larval fishes. In addition, we have
demonstrated changes in growth rates of some individual fishes
during a flood year. While growth rates apparently increased for
some individual fishes, the lack of population dynamics
information precludes the description of this phenomenon as an
increase in total fish production in Lake Texoma.
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