CRYSTAL LAKE REVISITED

Robert A. Lynch and L. A. Pfiester
Department of Botany-Microbiology, University of Oklahoma, Norman, OK 73019

Abstract

A comparison of the algal flora of Crystal Lake, Cleveland County, Oklahoma observed by Leake in 1938 is made with that found by the authors forty years later. One hundred-two algal taxa previously unobserved in the state of Oklahoma are reported. Preserved collections are stored in the Department of Botany-Microbiology at the University of Oklahoma.

INTRODUCTION

Prior to the year 1929 almost nothing was known about the algae of Oklahoma. In that year Dr. C. E. Taft began a survey resulting in a number of papers on algae common to the state (1-8). Since then publications on the algae of Oklahoma have been sporadic, correlating understandably with the presence in the State of those interested in "lower" plants (9-30; 41). The first extensive examination of the algae of one body of water in Oklahoma was that by Leake (11) in which she studied the algae of Crystal Lake from 1938 to 1943. The present study, which revisited the algae of Crystal Lake forty years later, compares the algal flora found in 1978 with that observed by Leake in her study and in the process adds 102 new taxa to the state record (Table 1).

MATERIALS AND METHODS

Crystal Lake is approximately 800 m long from north to south and 250 m at its widest point. Its deepest basin measures 3 m . The lake lies on the southwest corner of the intersection of Porter and Rock Creek Road in Norman, Oklahoma. The area surrounding the lake is covered by mixed short-grass prairie with a few scattered trees. Flowering plants in the lake were Polygonum lapathifolium L., Myriophyllum spicatum L., many sedges and rushes, and a few cattails.

Ten sampling sites were chosen to correspond to various microhabitats in the lake area. A total of 690 samples were collected at each of these stations on each of 31 sampling dates from Oct. 20, 1977 to Oct. 13, 1978. Plankton tows, rock scrapings, plant squeezings, and log scrapings were taken at each station. In addition collections were made between sampling stations when different specimens were observed.

Algal samples were examined fresh when possible and preserved in Transeau's solution when delayed examination necessitated. All algae exclusive of the diatoms were identified.

RESULTS AND DISCUSSION

Three hundred twenty-three taxa were collected and identified over the one-year period with most of the algal divisions represented. A breakdown of these 331 taxa into divisions is shown in Table 1:

```
Chlorophyta 179 Pyrrhophyta }
Cyanophyta 96 Xanthophyta 1
Euglenophyta 45 Chrysophyta 1
```

A comparison of algal taxa collected in 1977-1978 with Leake's results reveals a number of similarities and differences (Table 2). Chlorophyta populations tended to be similar while Cyanophyta and Euglenophyta populations differed. Lake identified 155 taxa while 165 were identified in our study. Diversity increased among Chlorococcales and decreased in Zygnematales (Table 2). Diversity in the Euglenophyta populations rose from 8 taxa reported by Leake to 45 taxa found in our study. Most of this increase was in species of Euglena and Trachelomonas, both of which are very abundant today. The most striking change was in the Cyanophyta. We were able to identify 92 taxa while Leake only reported 8 in her study. Although we feel certain that more than 8 taxa were present during Leake's study and that the low number merely represents the most commonly occurring species, we believe the population in this division has increased greatly.

It would be very difficult to pinpoint a cause for the changes in the algal flora that have taken place over the last 40 years. The chemistry of the lake has changed considerably since Leake's time and this

TABLE 1. Taxa identified, their seasonal occurrence and relative abundance as indicated by k (rare), O (occasional), C (common), A (abundant). *Indicates new state record.

Relative
Organism Abundance Seasonal Occurrence

Chlorophyta:

Chaetophorales:
Aphanochaete repens A. Braun
Coleochaete orbicularis Prings.
Stigeoclonium tenue (Ag.) Kuetz.
Charales:
Chara globularis var. virgata (Kuetz.) R. D. W. Wood Chara vulgaris L.

Cladophorales:
Cladophora insignis (C. A. Ag.) Kuetz.
Pithophora oedogonia (Mont.) Wittrock
Rhizoclonium crassipelitum West and West
Rbizoclonium fontanum Kuetz.
Rbizoclonium bieroglyphicum (C. A. Ag.) Kuetz.
Basicladia crassa Hoffman and Tilden
Chlorococcales:
Acanthosphaera Zachariasi Lemm.

* Ankistrodesmus convolutus Corda

Ankistrodesmus falcatus var. tumidus West and West
Ankistrodesmus spiralis (Turner) Lemm.
Characium sieboldii A. Braun
Coelastrum cambricum Archer
Coelastrum sphaericum Naegeli
Coelastrum microporum Naegeli
Crucigenia rectangularis (A. Braun) Gay

* Crucigenia lauterbornei Schmidle

Crucigenia truncata Smith
*Crucigenia apriculata (Lemm.) Schmidle var.
truncata (G. M. Smith) Ahlstrom and Tiffany
Crucigenia irregularis Wille
Dictyosphaerium pulchellum Wood
Dictyosphaerium ebrenbergianum Naegeli
*Dimorphococcus lunatus A. Braun
*Gloeotaenium loitelsbergianum Hansg.
Lagerbeimia citriformis (Snow) G. M. Smith
Micractinium pusillum Fresenius
Nephrocytium limneticum (G. M. Smith) G. M. Smith
Oocystis borgei Snow
Oocystis crassa Wittr.
Oocystis elliptica W. West
Oocystis eremosphaeria G. M. Smith
Oocystis parva West and West
Oocystis pusilla Hansg.
Oocystis solitaria Wittr. in Wittr. and Norstedt
Oocystis lacustris Chodat
Pediastrum Boryanum (Turp.) Menegh.
Pediastrum duplex var. reticulatum Lagerheim
Pediastrum simplex var. duodenarium (Bailey)
Rabenhorst
Pediastrum tetras (Ehr.) Ralfs.
Pediastrum tetras (Ehr.) Ralfs, var. tetraodon (Corda) Rabenhorst
Planktosphaeria gelatinosa G. M. Smith
Scenedesmus acutiformis Schroeder
Scenedesmus arcuatus Lemm.
Scenedesmus arcuatus Lemm. var. platydiscus G. M. Smith
Scenedesmus armatus var. chodatii G. M. Smith
Scenedesmus basiliensis Bohlin
Scenedesmus denticulatus Lagerheim
Scenedesmus quadricauda (Turp.) de Breb.
Selenastrum minutum (Naeg.) Collins
*Selenastrum Bibrianum Reinsch
*Selenastrum Westii G. M. Smith

O	A,My,Ju, \mathbf{N}
0	My, Ju, Jy
0	O,N,Mr,Ap
A	My, Ju, Jy,Ag,S
A	My, Ju, Jy,Ag,S
0	Ap, My, Ju, Jy
0	Ap,My,Ju,Jy
C	O,N,Ap,Ju
C	O,N,Ju, Ju, Jy
C	O,N,Ap,My,Ju
C	$\mathrm{O}-\mathrm{O}$
O	Ag
C	My, Ju
C	O,N,Ap,My,Ju,Jy, Ag
O	O,N
R	O,N
0	Ag
O	Ju, Jy, Ag,S,O,N
C	Ju, Jy, Ag,O,N
C	My, Ju, Jy, N
A	My
O	Ju, Jy, Ag
C	My,Ju,Jy,Ag,S
C	Ap,My
R	My
R	My, Ju
R	Ap
C	Ju, Jy, Ag, S
R	Ag
R	Ag
0	Jy
O	O,N,My
C	Ap,My, Ju, Jy, Ag
C	O,N,D,My,Ju,Jy,Ag,S
0	O,N,D,Ap,Ju,Jy
C	Ap,My,Ju, Jy
O	My, Ju, Jy
C	O,N,D,My,Ju, Jy, Ag,
R	Ju, Jy
A	Ap,My,Jun,Jy,Ag,S,O,N
O	\mathbf{N}^{\prime}
0	N,O,My,Ju
A	O,N,Mr,Ap,My
C	O,N,My
R	Jy
R	S
C	N,Ap,My
0	O,N,My
0	N
C	Ap, My, Ju, Jy
A	$\mathbf{M y}, \mathrm{Ju}, \mathrm{Jy}, \mathbf{A g}$
A	$\mathrm{O}-\mathrm{O}$
R	N
R	S
R	\mathbf{N}

Table 1. (continued)
Relative
Organism
Abundance Seasonal Occurrence
Sorastrum spinulosum Naegeli
Tetraedron constrictum G. M. Smith
Tetraedron gracile (Reinsch.) Hansgirg
Tetraedron minimum (A. Braun) Hansgirg
Tetraedron pusillum (Wallich) West and West
*Tetraedron quadratum (Reinsch) Hansgirg
Tetraedron regulare var. incus Teiling
Tetraedron trigonum (Naeg.) Hansgirg
*Tetrastrum beteracanthum (Norstedt) Chodat
*Trochiscia aspera (Reinsch) Hansgirg
Trocbiscia reticularis (Reinsch) Hansgirg
Westella botryoides (W. West) de Wildeman
Westella linearis G. M. Smith
Cylindrocapsales:
*Cylindrocapsa conferta W. West
Oedogoniales:
*Bulbochaete mirabilis Wittr.
Bulbochaete pygmaea Pringsheim
Bulbochaete sp.
Oedogonium aerolatum Lagerheim
Oedogonium capitellatum Wittr.
Oedogonium cardiacum (Hass.) Wittr.
Oedogonium crassiusculum Wittr.
*Oedogonium globosum Nordst.
Oedogonium gracilius (Wittr.) Tiffany
Oedogonium Howardii G. S. West
Oedogonium irregulare Wittr.
*Oedogonium urceolatum Nordstedt and Hirn in Hirn Oedogonium spp.

R	Jy, Ag
R	
O	$\mathbf{M y , J u}, \mathrm{Jy}$
C	Jy, Ag
0	Jy
C	My, Ju, Jy
C	N,Ap, My
O	My, Ju, Jy, Ag
R	\mathbf{N}
R	Ag
R	Ag
R	Ju
R	Ju
0	$\mathbf{M y}$, Ju, Jy
C	Jy
C	Jy
C	O,N,Ap,My,Ju,Jy
0	Ag
0	S
0	Jy
0	My, Ju, Jy
0	Jy
C	Jy
A	Ju, Jy, Ag
0	My
0	Ag
A	$\mathrm{O}-\mathrm{O}$
A	O,N,Ap,My,Ju,Jy
R	S
A	Ju, Jy, Ag
C	My, Ju, Jy, Ag
A	Ju, Jy, Ag
R	Jy
A	$\begin{aligned} & \text { O,N,D,Jn,F,Mr,Ap,My, } \end{aligned}$
A	$\mathbf{O , N , M r , A p , M y , S}$
C	O,N,D,Ap,My,Ju
0	My, Ju, Jy, Ag
C	Jy, Ju, Jy, Ag
0	Ap, My
0	Ju
O	N,D
C	$\mathrm{O}-\mathrm{O}$
O	Mr,Ap, My
R	S
C	My, Ju, Jy, Ag
A	O-O
C	Ju, Jy, Ag
C	Mr, Ap, My, Ju, Jy, Ag
O	O,N,D
C	Ap, My, Ju, Jy
0	My, Ju, Jy, Ag
0	O,N,D,My,Ju
0	O,N
C	D, My, Ju, Jy
C	O,N,D
0	O,N,D,My,Ju,Jy

Tetrasporales:
Asterococcus limneticus G. M. Smith

* Elakatothrix viridis (Snow) Printz.

Gloeocystis ampla (Kuetz.) Lagerheim
Gloeocystis gigas (Kuetz.) Lagerheim
Gloeocystis vesiculosa Naegeli
*Palmodictyon viride Kuetz.
Sphaerocystis schroeteri Chod.
Tetraspora lacustris Kenn.
Ulotrichales:
Radiofilum conjunctivum Schmidle
Ulothrix subconstricta G. S. West
Ulothrix subtilissima Rabenhorst
Volvocales:

* Chlamaydomonas globosa Snow
* Chlamydomonas polypyrenoideum Moew.
* Cblamydomonas pseudopertyi Pascher

Chlamydomonas spp.
Eudorina elegans Ehr.

* Gonium formosum Pascher

Pandorina morum (Muell.) Bory
Phacotus lenticularis Ehr. (Stein)
Pleodorina californica Shaw
Volvox aureus Ehr.
Zygnematales:

* Artbrodesmus pbimus var. occidentalis West and West

Closterium eboracense (Ehr.) Turner
Closterium Leibleinii Kuetz.
Closterium parvulum var. maius West f. maius
Closterium venus var. apollonionsis Croasdale
Cosmarium angulare Johnson

* Cosmarium angulare var. canadensis Irenee-Marie
*Cosmarium aphanichondum Nordst.

O,N,D
Ap,
My,
O,N
ju, y
$\mathbf{O}, \mathbf{N}, \mathbf{D}, \mathbf{M y}, \mathrm{Ju}, \mathrm{Jy}$

Table 1. (continued)

Organism	Relative Abundance	Seasonal Occurrence
Cosmarium bireme Nordst.	O	My, Ju
Cosmarium biretum de Breb.	0	O,N,D,Ap,My
Cosmarium Blyttii Wille	C	Ag, ${ }^{\text {S }}$
Cosmarium crenulatum var. tumidulum Insam and Krieger	O	Jy, Ag, S
Cosmarium depressum (Naegeli) Lundell	A	O,N,D,Jn,F,Mr,Ap
Cosmarium formulosum Hoffman	C	Ag, ${ }^{\text {d }}$
Cosmarium Garrolense Roy and Biss.	O	O,N,D
Cosmarium granatum de Breb.	A	Ap, My, Ju, Jy, Ag, ${ }^{\text {S }}$
Cosmarium granatum de Breb. var. subgranatum Nordst.	O	
Cosmarium bumile (Gay) Nordst.	C	O,N,My,Ju, Jy
Cosmarium impressulum Elfving	C	Ap,My,Ju, Jy, Ag
*Cosmarium Luindellii var. ellipticum West	C	O,N,D,Ap,My,Ju,Jy
Cosmarium margaritatum. (Lund.) Roy and Biss.	A	S,O,N
Cosmarium moniliforme (Turp.) Ralfs.	0	Ap,My,Ju,Jy
Cosmarium porrectum Nordst.	A	My,Ju,Jy,Ag,S
Cosmarium pseudoprotuberans Kirchn.	0	N,My, Ju, Jy
Cosmarium portianum Archer	O	
Cosmarium Novae-Semliae var. sibericum Boldt	O	S
Cosmarium quadratum Lundell var. minus Nordst.	O	My, Ju
Cosmarium reniforme (Ralfs.) Archer	C	O,N,D,Ap,My
*Cosmarium rectangulare var. bexagonum (Elfv.) Nob.	O	My, Ju
* Cosmarium regnellii Wille	C	Ap,My,Ju,Jy, Ag
*Cosmarium seelyanum Wille	C	Ap,Ju, Jy
*Cosmarium subocthodes Schmidle	C	N,O,Ap,My,Ju, Jy
Cosmarium subprotzimidum Nordst.	C	Ag, ${ }^{\text {d }}$
Cosmarium umbiculatum Lutkem	C	O,N
Cosmarium turpinii de Breb. var. podolicum Gutwinski	0	Jy
*Cosmarium variolatum Lendell var. cataractum		
Raciborski	C	Jy, Ag, S
Euastrum binale (Turp.) Ehr. f. bians W. West	C	My, Ju,Jy
Euastrum dubium Naegeli	C	O,N,D,Ap,My,Ju,Jy,Ag,S
Euastrum insulare (Wittr.) Roy	C	Ap, My, Ju, Jy
Euastrum insulare (Wittr.) Roy var.?	C	
*Euastrum turneri West var. turneri f. turneri	C	O,N,My,Ju,Jy
Micrasterias truncata var. truncata f. semiradiata (Naeg.) Cleve	C	O,N,Ap,My,Ju
Mougeotia sp.	C	O,N,D,Mr,Ap,My,Ju, Jy
*Netrium digitus var. rectum (Turner) Kreiger	C	O,N,D,J,F,Mr, Ap,My, Ju, Jy
Penium margaritaceum (Ehr.) de Breb.	R	
Sirogonium stictum (Engl. Bot.) Kuetz.	R	My
Spirogyra communis (Hass.) Kuetz.	A	Ap
Spirogyra irregularis Naegeli	A	Ap
Spirogyra Juergenskii Kuetz.	A	Ap,My,Ag,S,O
Spirogyra punctata Cleve	A	Ap,My
Spirogyra spreeiana Rabenhorst	A	Ju, Jy, Ag
$\underset{*}{\text { Spirogyra spp. }}$	A	$\mathrm{O}-\mathrm{O}$
* Staurastrum bicoronatum Johnson var. tridentatum Taft	C	Ag,
*Staurastrum bineanum var.? Rabenhorst	C	Mr,Mr, Ap, My, Ju, Jy
*Staurastrum floriferum W. \& G. S. West	C	$\mathrm{D}, \mathrm{O}, \mathrm{N}$
Staurastrum gracile var. nanum Wille	O	Ap,N,O
Staurastrum polymorphum var. pusillum West	O	N,D,My
Staurastrum setigerum Cleve	R	Jy, Ag
Staurastrum striolatum (Naeg.) Archer	C	Ju,Jy
* Staurastrum turgescens De Not.	C	My, Ju, Jy, Ag, S
* Staurastrum vestitum Ralfs.	C	$\mathbf{O}, \mathbf{N}, \mathbf{J u}, \mathrm{Jy}, \mathrm{Ag}, \mathrm{S}$
*Zygnemopsis americana Transeau	A	S
Cyanophyta:		
Chroococcales:		
*Aphanocapsa biformis A. Braun	O	Jy,Ag
Aphanocapsa delicatissima West \& West	O	Ju, Jy, Ag
*Aphanocapsa elachista West \& West	R	Ag, S
Aphanocapsa pulchra (Kuetz.) Rabenhorst	C	Ju, Jy, Ag
*Aphanocapsa rivularis (Carm.) Rabenhorst	C	O,Ju, Jy, Ag
Aphanothece nidulans P. Richter	R	Jy
*Aphanothece clathra G. S. West	R	0

Table 1. (continued)

Organism	Relative Abundance	Seasonal Occurrence
* Aphanothece gelatinosa (Henn.) Lemmermann	R	Jy,Ag
*Chroococcus dispersus (V. Keissler) Lemm.	O	My,Ju,Jy,Ag
Chroococcus limneticus var. subsalsus Lemm.	A	O,N,D, Jn,F,Ap,My
Chroococcus minor (Kuetz.) Naegeli	O	Ju, Jy, ${ }^{\text {d }}$
* Chroococcus Prescottii Drouet and Daily	C	My,Ju, Jy, Ag,S
Chroococcus turgidus (Kuetz.) Naegeli	C	N,D,Ap, My, Ju, Jy, Ag,S
Cbroococcus varius A. Braun	O	Jy
Coelosphaerium kuetzingianum Naegeli	C	Ju, Jy, Ag
Coelosphaerium pallidum Lemm.	C	My, Ju, Jy, Ag, S
* Dactylococcopsis acicularis Lemm.	C	Jy
* Dactylococcopsis fascicularis Lemm.	O	My, Ju, Jy
* Gloeocapsa polydermatica Kuetz.	R	S
* Gloeocapsa luteo-fusca Martens	A	Ju, Jy
Gloeothece rupestris (Lyngb.) Bornet in Wittr. \& Norstedt	R	$\mathrm{Ag}^{\text {a }}$
Gomphosphaeria aponina Kuetz	C	$\mathrm{N}, \mathrm{Mr}, \mathrm{My}, \mathrm{Ju}, \mathrm{Jy}, \mathrm{Ag}, \mathrm{~S}$
Gomphosphaeria lacustris Chod.	C	$\mathbf{M y}, \mathbf{J u}, \mathbf{J y}, \mathbf{A g}$
* Marssoniella elegans Lemm.	O	My,Ju, Jy
Merismopedia elegans A. Braun	C	My, Ju, Jy
Merismopedia glauca (Ehr.) Naegeli	C	My, Ju, Jy
Merismopedia punctata Meyen	C	Jy
Merismopedia tenuissima Lemm.	O	Jy
Microcystis aeruginosa var. major (Wittr.) G. M. Smith	A	Ju, Jy,Ag,
Microcystis flos-aquae (Wittr.) Kirchner	A	Ju, Jy, Ag
Microcystis incerta Lemm.	A	O,N,D,Ap,My,Ju,Jy,Ag,S
* Rhabdoderma sigmoides fa. minor Moorl \& Carter	R	
* Synechococcus aeruginosa Naegeli	R	Jy, Ag
Hormogonales:		
Anabena aequalis Borge	O	My, Ju, Jy
* Anabena ambigua Rao, C. B.	C	Jy
Anabena affinis Lemm.	A	Ap,My, Ju
Anabena circinalis Rabenhorst ex. Born. et Flahault	A	Ju, Jy
* Anabena fertilissima Rao, C. B.	C	$\mathbf{A g}$
Anabena flos-aquae (Lyngb.) de Breb.	A	Ju, Jy, Ag
Anabena planktonica Brunthaler	A	Ju,Jy
* Anabena oscillarioides Bory ex. Born. et Flahault	0	S
* Anabena sphaerica Born. et Flah.	A	
Anabena spiroides Klebahm	A	My,Ju,Jy
* Anabena torulosa (Carm.) Lagerh. ex. Born. et Flahault	O	Jy
*Anabena vagnicola Fritsch et Rich	\bigcirc	Ag
Anabena inaequalis (Kuetz.) Bornet et Flahault	O	My
* Aulosira implexa Born. et Flah.	A	Ju, Jy, Ag, S
*Calothrix marchica var. intermedia Rao, C. B.	C	My, Ju, Jy, Ag, ${ }^{\text {S }}$
* Calothrix parietana (Naeg.) Thuret	A	$\mathrm{Jy}, \mathrm{Ag}, \mathrm{S}$
* Calothrix scytonemicola Tilden	R	S
* Cylindrospermum stagnale (Kuetz.) Born. et Flah.	A	Jy,Ag,
*Forteia bossei (Fremy) comb. nov.	R	S
Gloeotrichia echinulata (J. E. Smith) P. Richter	A	Ju, Jy, Ag
* Gloeotrichia pisum Thuret ex. Born et Flah.	C	Jy, Ag
*Hapalosiphon intricatus West \& West	R	S
* Hydrocoleum homeotrichum Kuetz.	R	S
Lyngbya aerugineo-caerula (Kuetz.) Gomont	O	Ag
* Lyngbya kuetzingiana Kirchner	0	Ag
Lynbybya major Meneghinii	O	$\mathrm{O}-\mathrm{O}$
* Lyngbya mesotrichia Skuja	C	Jy,Ag
Microcoleus sp.	R	\mathbf{N}
*Nostoc carneum Ag. ex. Born. et Flah.	O	Jy
Nostoc hatei Dixit	0	$J u, J y$
Nostoc linckia (Roth) Bornet ex. Born. et Flah.	C	Ju, Jy, Ag
* Nostoc paludosum Kuetz. ex. Born. et Flahault	O	${ }^{\mathbf{A g}}$
*Nostoc punctiforme (Kuetz.) Hariot Oscillatoria agardbii Gomont	\bigcirc	O,N,Ju, Jy
Oscillatoria agardhii Gomont	0	My, Ju
Oscillatoria amphibia C. A. Agardh Oscillatoria mphigranulata van Goor	C	My,Ju,Jy
Oscillatoria amphigranulata van Goor	\bigcirc	Jy
Oscillatoria formosa Bory	O	My, $\mathbf{M r}, \mathbf{A p}$
*Oscillatoria hamelii Fremy	$\stackrel{\text { C }}{ }$	Ju, Jy,Ag

Table 1. (continued)
Relative
Organism Abundance Seasonal Occurrence

Oscillatoria limnetica Lemm.
*Oscillatoria proteus Skuja
Oscillatoria sancta (Kuetz.) Gomont
Oscillatoria subbrevis Schmidle
Oscillatoria tenuis C. A. Agardh
*Oscillatoria tenuis var. tergetina (Kuetz.) Rabenh.
*Pbormidium inundatum Kuetz.
*Phormidium tenue (Menegh.) Gomont
Pbormidium uncinatum (Ag.) Gomont
*Rivularia aquatica De Wilde
*Rivularia beccariana (De Not.) Born. et Flahault
*Rivularia globiceps G. S. West

* Scytonema hofmanni Ag. ex. Born. et Flahault
* Spirulina Norstedtii Gomont

Spirulina major Kuetz.
Chamaesiphonales:
Chamaesiphon incrustans Grunow
O My,Ju,O,N
Euglenophyta:

Euglenales:
Colacium vesiculosum Ehr.
Euglena acus Ehr.
Euglena acus var. rigida Huebner

* Euglena convoluta Korshikov

Euglena gracilis Klebs.
Euglena proxima Dangeard
Euglena oxyuris Schmarda

* Euglena sanguinea Ehr.
* Euglena spadix Gojdics

Euglena spirogyra Ehr.
*Lepocinclis fusiformis (Carter) Lemm.

* Lepocinclis glabra Orez.
*Lepocinclis ovum (Ehr.) Lemm.
* Lepocinclis Playfairiana Defl.

Pbacus caudatus Huebner
Pbacus longicauda (Ehr.) Dujardin
Phacus pseudoswirenkoi Prescott
Phacus pyrum (Ehr.) Stein
Phacus triqueter (Ehr.) Dujardin
*Trachelomonas acanthostoma (Stokes) Deflandre
*'Trachelomonas acuminata var. amphora Playf.
Trachelomonas armata var. longispina (Playf.) Deflandre
*Trachelomonas bacillifera var. minima Playf.
Trachelomonas charkowiensis Swirenko
*Trachelomonas dubia (Swir.) Defl.

* Tracbelomonas gibberosa Defl.
*Trachelomonas gracillima Balech.-Dast.
Trachelomonas granulosa Playfair
*Trachelomonas globularis var. punctata Skuja
Trachelomonas hispida (Perty) Stein
Trachelomonas hispida var. coronata Lemm.
*Trachelomonas horrida Palmer
*Trachelomonas lacustris Drez.
Trachelomonas oblonga Lemm.
*Trachelomonas pulcherrima var. minor Playfair
Trachelomonas robusta Swir. em. Defl.
*Trachelomonas rotunda (Playf.) Defl.
*Trachelomonas scabra Playf. aus Defl.
*Trachelomonas schauinslandii (Lemm.) Defl.
*Trachelomonas triangularis var. Defl.
*Trachelomonas verrucosa var. zmiewika (Swir.) Defl.
Trachelomonas volvocina Ehr.
Trachelomonas superba (Swir.) Difl.

O	Ap,My, Ju
C	N,Ap,My
C	O,N
C	Ju, Jy, Ag, ${ }^{\text {S }}$
C	O,N,Ap,My,Ju,Jy
O	N, Ju, Jy
R	N,Ap
A	Jy, Ag
R	Ag
O	Ag,S
0	N,S,O
R	S
C	Ju, Jy, Ag
O	N,My,Ju,Jy
R	
C	N,Ap,My,Ju, Jy
R	Jy
O	N
R	N
O	O,N
0	My, Ju,Jy
C	Mr, My, Ju, Jy, Ag, ${ }^{\text {S }}$
R	
A	Jy, Ag
A	My,Ag,S
O	My, Ju, Jy
R	Ag
O	O,N,D,Jn, \mathbf{F}_{i}
R	$\stackrel{\mathrm{Ag}}{\mathrm{O}} \mathrm{O}$
C	N,My
C	Jy
0	Jy
C	Ju, Jy
C	N,Ap
C	$\mathbf{N , D , F , M r , J n}$
\bigcirc	My, Ju, Jy
R	Jy
O	My, Ju
$\xrightarrow{\mathrm{O}}$	Jy My , Ju, Jy
A	O-O
R	Jy,Ag

Table 1. (continued)

Organism	Relative Abundance	Seasonal Occurrence
Xanthophyta:		
Heterosiphonales: Vaucheria gemineata (Vauch.) de Candolle	C	O,N,Ap,My,Jn
Chrysophyta:		
Heterococcales: Peroniella planktonica G. M. Smith	0	My, Ju, Jy
Chrysomonadales: Mallomonas caudata var. macrolepis Conrad	0	Ju, Jy, Ag, ${ }^{\text {S }}$
Pyrrophyta:		
Dinococcales: *Cystodinedria sp. *Cystodinium bataviense Klebs. *Stylodinium globosum Klebs. *Tetradinium javanicum Klebs.	C A C O	$\begin{aligned} & \mathrm{Jy}, \mathrm{Ag}, \mathrm{~S} \\ & \mathrm{Ag}, \mathbf{S} \\ & \mathrm{O}, \mathrm{~N}, \mathrm{Ag}, \mathrm{~S} \\ & \mathrm{Ag}, \mathrm{~S} \end{aligned}$
Dinocapsales: *Gloeodinium montanum Klebs.	A	Jy, Ag, S, O
Peridiniales: Ceratium birundinella (O. F. Muell.) Dujardin Peridinium bipeps Stein Peridinium gatunense Nygaard *Woloszynskia reticulata Thompson	$\begin{aligned} & \mathrm{C} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{Jy}, \mathrm{Ag} \\ & \mathrm{Ag}, \mathrm{~S} \\ & \mathrm{Ag}, \mathrm{~S} \\ & \mathrm{Ag}, \mathrm{~S} \end{aligned}$

Table 2. Genera and numbers of species of algae identified.

Chlorococcales		Zygnematales	
1978	1938-1943	1978	1938-1943
Acanthosphaera (1)	Ankistrodesmus (1)	Arthrodesmus (1)	Artbrodesmus (1)
Ankistrodesmus (3)	Characium (1)	Closterium (4)	Closterium (14)
Characium (1)	Coelastrum (1)	Cosmarium (31)	Cosmarium (39)
Coelastrum (3)	Kirchneriella (2)	Euastrum (5)	Cylindrocsytis (1)
Crucigenia (5)	Oocystis (2)	Micrasterias (1)	Desmidium (2)
Dictyosphaerium (2)	Pediastrum (5)	Mougeotia (1)	Dichotomum (1)
Dimorphococcus (1)	Scenedesmus (3)	Netrium (1)	Euastrum (5)
Gloeotaenium (1)	Sorcistrum (2)	Penium (1)	Hyalotheca (2)
Lagerbeimia (1)	Tetraedron (2)	Sirogonium (1)	Mesotaenium (1)
Micractinium (1)	Trocbiscia (1)	Spirogyra (10)	Miscrasterias (1)
Nepbrocytium (1)	(20 taxa)	Staurastrum (9)	Netrium (1)
Oocystis (8)		Zygnemopsis (1)	Onychonema (1)
Pediastrum (5)		(66 taxa)	Penium (2)
Planktosphaeria (1)			Pleurotaenium (5)
Radiococcus (1)			Sirogonium (2)
Scenedesmus (7)			Spirogyra (19)
Selenastrum (3)			Spondylosum (1)
Sorastrum (1)			Staurastrum (20)
Tetraedron (7)			(118 taxa)
Tetrastrum (1)			
Trochiscia (2)			
$\begin{aligned} & \text { Westella (2) } \\ & \text { (57 taxa) } \end{aligned}$		Euglenales	
		Colacium (1)	Cryptoglena (1)
Oedogoniales		Euglena (9)	Euglena (1)
	Bulbochaete (2)	Lepocinclis (4)	Phacus (3)
Oedogonium (11)	Oedogonium (1)	Pbacus (5)	Trachelomonas (3)
$\text { (} 14 \text { taxa) }$	(15 taxa)	Trachelomonas (24) (43 taxa)	(8 taxas)
Charales			
Chara (2) (2 taxa)	$\begin{aligned} & \text { Cbara (2) } \\ & (2 \operatorname{taxa}) \end{aligned}$		(continued next p

undoubtedly has been the major cause of change in the composition of the algal flora (31). Also, taxonomic classification of algae, especially at the species level, has been amended a great deal since Leake's time which could create artificial differences between the two studies.

Qualitatively Crystal Lake and the surrounding area have changed in many ways since Leake's study. The drainage basin of the lake, which was heavily grazed during Leake's study, is now covered heavily with grass and ungrazed. This undoubtedly has caused a change in the quality of solid runoff. Crystal Lake was formerly used extensively for boating, skiing and swimming, whereas now recreational use is limited to fishing. The lake has filled in 19-20 feet since Leake's study; this has resulted in reduced resistance to mixing. Myriophyllum spicatum, which has become the dominant plant in the lake, was not present when Leake did her study.

The presence of Myriophyllum has affected populations of algae in several ways. It provided a new habitat for many organisms resulting in greater algal diversity. Because of its presence, shoreline erosion and wave action in shallow areas was reduced, resulting in less sediment disturbance and clearer water. Myriophyllum also has an important effect on lake chemistry. Irwin and Stevenson (32) have shown that aquatic plants secrete substances into the water which combine with suspended particles and expedite their settling, thus reducing turbidity. Rooted submergent macrophytes such as Myriophyllum are important in the nutrient system of the lake as has been demonstrated by Gessner (33), Schwoerbel and Tillmans (34), and Wetzel (35). They function as "nutrient pumps"' by bringing up nutrients from sediments and leaking them into the water through their leaves. Additional amounts of nutrients are released into the water when Myriophyllum dies in the fall. The nutrients added to the water by Myriophyllum are then utilized by algae and bacteria (36). While the Chlorophyta populations have remained relatively constant since Leake's study, the Cyanophyta and Euglenophyta populations have increased in diversity. Crystal Lake, therefore, seems to fit the hypothesis $(35,37)$ that established populations tend to remain constant. Palmer (38) has found that the green algae are the group most tolerant to changes in the environment, and this appears to be the case in Crystal Lake. The data also agree with the hypothesis $(35,39)$ that Euglenophytan and Cyanophytan populations tend to diversify with increased eutrophication.

Two factors besides the increase in Euglenophytan and Cyanophytan populations indicate that Crystal Lake is in an advanced state of eutrophication. One is that the surface area/volume ratio has increased greatly since the lake was built. Using the rate of filling in over the last 50 years, one can calculate that the lake will be filled in completely within 20-30 years. Whether or not this will happen is uncertain, but without a doubt, the lake will become shallower and thus will be more prone to eutrophication. The other factor is the heavy growth of Myriophyllum. Several authors $(39,40)$ indicate that a heavy growth of submerged macrophytes is a definite sign of advanced eutrophication and Crystal Lake certainly fits this description. We believe, therefore, that algal populations in Crystal Lake will continue to
change but probably faster than over the last 40 years.

LITERATURE CITED

1. C. E. TAFT, Univ. of Oklahoma Biol. Survey 3: 277-321 (1931).
2. C. E. TAFT, Trans. Am. Micros. Soc. 53: 95-101 (1934).
3. C. E. TAFT, Bull. Torrey Bot. Club 62: 281-290 (1935).
4. C. E. TAFT, Abst. Doctor's Dissertations, Ohio State Univ. 16: 213-222 (1935).
5. C. E. TAFT, Trans. Am. Micros. Soc. 56: 394-404 (1937).
6. C. E. TAFT, Bull. Torrey Bot. Club 64: 557 (1937).
7. C. E. TAFT, Proc. Okla. Acad. Sci. 20: 49-54 (1940).
8. C. E. TAFT, Trans. Am. Micros. Soc. 68: 208-216 (1949).
9. E. N. TRANSEAU, L. H. TIFFANY, C. E. TAFT and L. C. LI, Trans. Am. Micros. Soc. 53: 208-230 (1934).
10. D. V. LEAKE, Proc. Okla. Acad. Sci. 19: 109-110 (1939).
11. D. V. LEAKE, Am. Midl. Nat. 34: 750-768 (1945).
12. M. MALONEY, Proc. Okla. Acad. Sci. 24: 43-48 (1944).
13. I. L. OPHEL, Proc. Okla. Acad. Sci. 33: 179-183, (1954).
14. D. WILSON and H. S. FOREST, Ecology 38: 309-313 (1957).
15. M. J. COOPER, Proc. Okla. Acad. Sci. 55: 17-19 (1975).
16. W. C. VINYARD, Southwest Natur. 11: 196-204 (1966).
17. J. M. COOPER and J. WILHM, Southwest. Nat. 19: 413-428 (1975).
18. A. R. KOCH, Proc. Okla. Acad. Sci. 55: 11-13 (1975).
19. A. R. KOCH and P. G. RISSER, Proc. Okla. Acad. Sci. 54: 14-19 (1974).
20. L. PFIESTER, J. Phycol. 12: 134 (1976).
21. L. PFIESTER and W. O. FELKNER, Proc. Okla. Acad. Sci. 56: 66 (1976).
22. L. PFIESTER, Trans. Am. Micros. Soc. 96: 163 (1977).
23. R. J. TAYLOR, Proc. Okla. Acad. Sci. 57: 166 (1977).
24. J. T. WILHM, T. DORRIS, J. R. SEYFER and N. McCLINTOCK, Southwest Nat. 22: 455-467 (1977).
25. J. R. SEYFER and J. WILHM, Southwest. Nat. 22: 455-468 (1977).
26. L. PFIESTER and S. TERRY, Southwest Nat. 23: 85-94 (1978).
27. T. WRIGHT and L. PFIESTER, Southwest. Nat. 23: 431-456 (1978).
28. D. CONNER, D. J. HUDDLESTON, L. A. PFIESTER, and S. THOMPSON, Proc. Okla. Acad. Sci. 58: 110 (1978).
29. W. W. TROEGER, Proc. Okla. Acad. Sci. 58: 64-68 (1978).
30. L. PFIESTER, R. LYNCH, and T. L. WRIGHT, Southwest. Nat. 24: 149-164 (1979).
31. R. A. LYNCH, The Algae of Crystal Lake 1938-1978. M.S. Thesis, University of Oklahoma, Norman (1978).
32. W. H. IRWIN and J. H. STEVENSON, Bull. Okla. A. and M. College 48: 1-54 (1951).
33. F. GESSNER, Hydrobotanik, Die Physiologischen Grundlagen der Pflanzenverbreitung in Wasser. II. Stoffhaushalt. VEB Deutscher Verlag der Wissenschaften, Berlin, 1959.
34. J. SCHWOERBEL, and G. C. TILLMANNS, Naturwissenschaften 51: 319-320 (1967).
35. R. G. WETZEL, Limnology, W. B. Saunders Co., Philadelphia and London, 1975.
36. R. G. WETZEL, and H. L. ALLEN, In Z. Kajak and A. Hillbrincht-Ilkowska (eds.), Productivity Problems of Freshwaters. PWN Polish Scientific Publishers, Warsaw, 1970, pp. 333-347.
37. S. EDDY, Trans. Am. Micros. Soc. 44: 138-147 (1925).
38. C. M. PALMER, J. Phycol. 5: 78-82 (1969).
39. P. WELCH, Limnology, McGraw-Hill Book Co., New York, N.Y., 1952.
40. R. G. WETZEL, and R. A. HOUGH, Pol. Arch. Hydrobiol. 20: 9-19 (1973).
41. G. GABEL, Proc. Okla. Acad. Sci. 6: 82-84 (1927).
