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ANALYTICAL EQUATION OF STATE FOR ISOTROPIC FLUIDS BASED
ON PERTURBATION THEORY
Kevin Goin, Kingtse C. Mo, and Kenneth E. Starling
School of Chemical Engineering and Materials Science, The University of Oklahoma, Norman, Oklahoma

An analytical equation of state for isotropic fluids based on perturbation theory is derived. The PVT properties of the
Lennard-Jones (6-12) fluid determined in the Monte Carlo calculations of Verlet and Weis are used to discern the dependence
of the equation of state on the temperature -dependent reduced density. The applicability of the equation of state for real
fluids is demonstrated using methane PVT data.

INTRODUCTION
In this paper, an analytical equation of state based on perturbation theory is proposed. This equation has a

very simple form, involving only a few universal parameters in addition to the Lennard-Jones potential
parameters ε and σ. The equation of state is derived herein, and Monte Carlo PVT data for a Lennard-Jones
(6-12) fluid are used to determine the universal parameters. PVT data for methane are then used to demonstrate
the applicability of the equation of state for predicting real fluid behavior, and the implications of the results
obtained are discussed.

Derivation of the Equation of State
For simple fluids (isotropic fluids) the intermolecular potential φ can be

expressed in the form

where r is the distance between molecule centers, ε is the potential strength parameter, and σ is the potential
distance parameter. The Barker-Henderson (1) and WCA (Weeks, Chandler and Andersen) (2) perturbation
theories, which give accurate descriptions of the thermodynamic properties of liquids, are used in the present
derivation. The starting point is the following relation for the configurational Helmholtz free energy, A:

where k is the Boltzmann constant, T is the temperature, and Q is
the configurational integral

where β = 1/kT, →
r i

 is the position vector of the ith molecule, and rij is the distance of separation of molecules i
and j. In perturbation theory, real fluid properties are expressed as expansions about the properties of a reference
system of hard spheres. The diameter, d, of the hard sphere is determined by making the first order term in the
expansion of the configurational Helmholtz free energy equal to zero. Since these theories are well known, only
a summary of the important relations will be quoted. The intermolecular potential is separated into two parts, the
reference potential, φrep, and the perturbation potential, φp,

where rmin is the separation at which the potential, φ, is a
minimum. The expansion of the configurational Helmholtz free
energy, A, about the reference system free energy, AHS, is, to first
order,
where N is the number of molecules of the system, n is the number
density, φp is the perturbation part of the potential (discussed
below), and y = π nd3/6. The hard sphere diameter, d, is determined
by the relation
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in which gHS (y, r) is the radial distribution function of hard spheres and

The compressibility factor, z, can be obtained from the relation

so that the following result is obtained from Equation 7,

where dB = d/σ, T* = Tk/ε. The term zHS is the hard sphere system
compressibility factor, which can be calculated using the Carnahan-Starling
equation (3),

The term involving z' is the perturbation contribution to the
compressibility factor, z, where

The essential step in the derivation of the equation of state presented herein is the observation that the factor z' is a
function of the reduced density, y, only. This can be noted from Equation 13 by virtue of the fact that the radial
distribution function for hard spheres, gHS, is a function of r and y only. Thus, the temperature dependence of z' comes
only from the temperature dependence of the hard sphere diameter d, used in calculating the reduced density, y.
Therefore, provided that z' is a slowly varying function of y, a simple equation of state results by treating z' as an
analytical function of y. The advantage of this in equation of state applications is, of course, the fact that the integration
of Equation 13 is impractical in most applications, since the dependence of gHS on molecular separation at the density of
the real system is required. Thus, the analytical equation of state for isotropic fluids proposed is Equation 11 with the use
of Equation 12 for zHS and a simple analytical function of y used for z'.

Lennard-Jones (6-12) Fluid
To test the above idea for an analytical equation of state based on perturbation theory for the case of

isotropic fluids, we used the Monte Carlo calculations of Verlet and Weis (4) for the Lennard-Jones (6-12) fluid
at T* = 0.75, 1.15, 1.35 and 2.74. The Verlet-Weis formula was used
for dB,
The quantity z'LJ for the Lennard-Jones (6-12) fluid obtained using the
Monte Carlo compressibility factor values, zMC, was calculated from the
relation
It was noted that a plot of z'LJ versus y yielded a smooth curve with the values
of z'LJ for the reduced temperatures of 0.75, 1.15, 1.35 and 2.74 showing very
little scatter about the curve. It was determined that z'LJ could be described for
the density range of the Verlet-Weis Monte Carlo calculations by a
fourth-order polynomial in y,
This result yields the following relation for the compressibility factor
of the Lennard-Jones (6-12) fluid,

The variance, S2, of the calculated compressibility factors was

where N is the number of points. The average absolute deviation was 1.24%, with absolute deviations ranging
from 0.024% to 4.47%. The Verlet-Weis calculated values of zMC have an estimated uncertainty of 2.5%, so the
above results are generally within this uncertainty.

Application of Equation of State to Methane PVT Data
The use of the perturbation equation of state in Equation 11 with the polynomial expansion in y for z',

determined from Monte Carlo data, was tested for methane. The values ε/k = 148.48 K and σ = 3.695 Å were
determined by regression on PVT data in the reduced temperature range 2.46<T*<8.70 and reduced density
range 0.03<ρ*<0.08, where T* = kT/ε and ρ* = ρNσ3, where N is Avogadro's number. The regression yielded a
standard de-
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viation of 0.0199 and an average absolute deviation of 1.26% for
predicted densities when compared with the data of van Itterbeek
(6), Vennix (7), and Douslin (8). Since methane is not exactly a
Lennard-Jones (6-12) fluid, the parameters ε and σ are really the
average potential strength and average potential range for the type
and range of data used in their determination. Thus, the values of
ε/k and σ determined in these calculations differ from the values
reported by Hirschfelder, Curtiss and Bird (5) obtained by fitting
the second virial coefficient (ε/k = 148.2 K, σ = 3.817 Å).
Calculated densities are compared with experimental data for
methane in Table 1. It can be noted in Table 1 that liquid densities
predicted by the equation of state are generally within 0.3% of the
experimental values, while deviations in the vapor phase are
generally about 2%. The larger vapor phase deviations are due
mainly to the inadequacy of the second virial coefficient in
Equation 17. Even with the noted vapor phase deviations, the
results in Table 1 are sufficiently good to justify use of the new
equation of state in many practical applications.

DISCUSSION
The study presented herein shows that it is possible to develop

analytical equations of state based on perturbation theory. The
equation of state formula derived in this study has been used to
describe the PVT behavior of methane with reasonable accuracy. It
is expected that the equation of state can be improved by
modification of the density and temperature dependence of the
equation. The density dependence can be modified simply by using a higher order expansion in the reduced
density for the perturbation part of the compressibility factor. The temperature dependence can be modified by
allowing the constants in the Verlet-Weis formula for dB to be parameters to be determined by regression, and/or
by modification of the temperature dependence of the equation of state as implied by higher order perturbation
theory (1, 2). These modifications will be investigated in future work.
6

ACKNOWLEDGMENT
This research was sponsored by the American Gas Association.

6

REFERENCES
1. J. A. BARKER and D. HENDERSON, J. Chem. Phys. 47: 2861-4716 (1967).
2. J. D. WEEKS, D. CHANDLER, and H. C. ANDERSEN, JR., Phys. Rev. Lett. 25: 149 (1970); J. Chem.

Phys. 54: 5237 (1971).
3. N. F. CARNAHAN and K. E. STARLING, J. Chem. Phys. 51: 635 (1969).
4. L. VERLET and J. J. WEIS, Phys. Rev. A5: 939 (1972).
5. J. O. HIRSCHFELDER, C. F. CURTISS, and R. B. BIRD, Molecular Theory of Gases and Liquids, John

Wiley, New York, 1954.
6. A. VAN ITTERBEEK, O. VERBEKE, and K. STAES, Physica 29: 742 (1963).
7. A. J. VENNIX, Low Temperature Volumetric Properties and the Development of an Equation of State for

Methane, Ph.D. dissertation, Rice University, 1966.
8. D. R. DOUSLIN, R. H. HARRISON, R. T. MOORE, and J. P. McCULLOUGH, J. Chem. Engr. Data 9:

358 (1964).


