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ANALYTICAL EQUATION OF STATE FOR ISOTROPIC FLUIDS BASED
ON PERTURBATION THEORY

Kevin Goin, Kingtse C. Mo, and Kenneth E. Starling
School of Chemical Engineering and Materials Science, The University of Oklahoma, Norman, Oklahoma

An analytical equation of state for isotropic fluids based on perturbation theory is derived. The PVT properties of the
Lennard-Jones (6-12) fluid determined in the Monte Carlo calculations of Verlet and Weis are used to discern the dependence
of the equation of state on the temperature -dependent reduced density. The applicability of the equation of state for real
fluids is demonstrated using methane PVT data.

INTRODUCTION

In this paper, an analytical equation of state based on perturbation theory is proposed. This equation has a
very simple form, involving only a few universal parameters in addition to the Lennard-Jones potential
parameters ¢ and o. The equation of state is derived herein, and Monte Carlo PVT data for a Lennard-Jones
(6-12) fluid are used to determine the universal parameters. PVT data for methane are then used to demonstrate
the applicability of the equation of state for predicting real fluid behavior, and the implications of the results
obtained are discussed.

Derivation of the Equation of State
For simple fluids (isotropic fluids) the intermolecular potential ¢ can be

. ¢ = ef (D) Eq. 1
expressed in the form ‘ d

where r is the distance between molecule centers, ¢ is the potential strength parameter, and o is the potential
distance parameter. The Barker-Henderson (1) and WCA (Weeks, Chandler and Andersen) (2) perturbation
theories, which give accurate descriptions of the thermodynamic properties of liquids, are used in the present
derivation. The starting point is the following relation for the configurational Helmholtz free energy, A:

where k is the Boltzmann constant, T is the temperature, and Q is AT e Eq. 2

. . . - . .af expl-8.2; ¢ (£;0)] Eq.
the configurational integral 1 Iy exel=B;Zy ¢ (ryy)) Eq. 3

J

where g = 1/KT, | is the position vector of the ith molecule, and rj; is the distance of separation of molecules i

and j. In perturbation theory, real fluid properties are expressed as expansions about the properties of a reference
system of hard spheres. The diameter, d, of the hard sphere is determined by making the first order term in the
expansion of the configurational Helmholtz free energy equal to zero. Since these theories are well known, only
a summary of the important relations will be quoted. The intermolecular potential is separated into two parts, the
reference potential, ¢, and the perturbation potential, ¢y,

¢ = ‘brep * ¢p Eq. 4
where Srep T ¢ * & Ty < Tpig
=0 12 ” Tnin Eq 5
where ryin IS the separation at which the potential, ¢, is a o = 7% 12 © *min Ea. 6
iNni H H H = ¢, r > r_, q. 0
minimum. The expansion of the configurational Helmholtz free * %127 "min
energy, A, about the reference system free energy, Aus, is, to first ot g ¢ s s Equ T
order, d
where N is the number of molecules of the system, n is the number
density, ¢, is the perturbation part of the potential (discussed
below), and y = z nd*/6. The hard sphere diameter, d, is determined sfar xhuyg (0 = Cor Pyygn a-ren) Fq. 8

by the relation
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in which gus (Y, r) is the radial distribution function of hard spheres and z=1+ 4z (2%} N Eq. 9
The compressibility factor, z, can be obtained from the relation Bbys
Ygs = ¢ Ims
Eq. 10
so that the following result is obtained from Equation 7, _ 1
z = sz + T*d3 4 Eq. ].1
B
where dg = dlo, T* = Tkle. The term zys is the hard sphere system
compressibility factor, which can be calculated using the Carnahan-Starling 422 Eq. 12
equation (3), Hs 1o
The term involving z' is the perturbation contribution to the .
ag mge g
compressibility factor, z, where ot = B2y 17 o, agg + v Lar 2o, -2 Eq. 13

The essential step in the derivation of the equation of state presented herein is the observation that the factor z' is a
function of the reduced density, y, only. This can be noted from Equation 13 by virtue of the fact that the radial
distribution function for hard spheres, gns, is a function of r and y only. Thus, the temperature dependence of z' comes
only from the temperature dependence of the hard sphere diameter d, used in calculating the reduced density, v.
Therefore, provided that z' is a slowly varying function of y, a simple equation of state results by treating z' as an
analytical function of y. The advantage of this in equation of state applications is, of course, the fact that the integration
of Equation 13 is impractical in most applications, since the dependence of gys on molecular separation at the density of
the real system is required. Thus, the analytical equation of state for isotropic fluids proposed is Equation 11 with the use
of Equation 12 for zys and a simple analytical function of y used for z'.

Lennard-Jones (6-12) Fluid

To test the above idea for an analytical equation of state based on perturbation theory for the case of
isotropic fluids, we used the Monte Carlo calculations of Verlet and Weis (4) for the Lennard-Jones (6-12) fluid
at T* = 0.75, 1.15, 1.35 and 2.74. The Verlet-Weis formula was used L.0683 + 0.3813T%
for dg, dg = =T+ 0.42937%
The quantity z'.; for the Lennard-Jones (6-12) fluid obtained using the
Monte Carlo compressibility factor values, zyc, was calculated from the 2y = (e = Zyg) ST Eq. 15
relation
It was noted that a plot of z'.; versus y yielded a smooth curve with the values
of z'\; for the reduced temperatures of 0.75, 1.15, 1.35 and 2.74 showing very . _
little scatter about the curve. It was determined that z'; could be described for 2.y = ;&1 2% Eq. 16
the density range of the Verlet-Weis Monte Carlo calculations by a
fourth-order polynomial in'y,

This result yields the following relation for the compressibility factor
of the Lennard-Jones (6-12) fluid,

The variance, S?, of the calculated compressibility factors was 2

s

Eq. 14

3. 182.4y4}

Eq. 17

_ _ 1 - 2
z =z m [14.85y - 26.31y° + 154.Sy
B

N
I
=1

12 = 0.00280¢  Eq. 18

[ZMC T Zealc'i

where N is the number of points. The average absolute deviation was 1.24%, with absolute deviations ranging
from 0.024% to 4.47%. The Verlet-Weis calculated values of zy,c have an estimated uncertainty of 2.5%, so the
above results are generally within this uncertainty.
Application of Equation of State to Methane PVT Data

The use of the perturbation equation of state in Equation 11 with the polynomial expansion in y for z',
determined from Monte Carlo data, was tested for methane. The values e/k = 148.48 K and & = 3.695 A were
determined by regression on PVT data in the reduced temperature range 2.46<T*<8.70 and reduced density
range 0.03<p*<0.08, where T* = kT/e and p* = pNo°, where N is Avogadro's number. The regression yielded a
standard de-
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viation of 0.0199 and an average absolute deviation of 1.26% for

TABLE 1. Comparisons of experimental and cal-

predicted densities when compared with the data of van Itterbeek culated _methane densities.
(6), Vennix (7), and Douslin (8). Since methane is not exactly a Tz(o °6R7’ Pg’;‘;) Lo ng;;ce D(‘;VZ-Z/”
Lennard-Jones (6-12) fluid, the parameters ¢ and o are really the 20?.5 199;.2 112‘348 1222? 353
- . .2 1 . 1. 1 1. .
average potential strength and average potential range for the type 522’_9 522,1 1.5721 1_56251 027
1 i i i 224.9 52.0 1.5881 1.5841 0.25
and range of data_ used_ in their determl_natlon_. Thus, the values of 5340 18153 16192 16149 037
elk and o determined in these calculations differ from the values 2620 1884 14347 14365 —0.13
. . . . " 262.0 511.5 1.4520 1.4525 —0.03
reported by Hirschfelder, Curtiss and Bird (5) obtained by fitting 262.0 ?75.4 1.4691 1.463139 o.%
the second virial coefficient (e/k = 1482 K, ¢ = 3.817 A). 2020 1;22,;2 ié‘;gi {224% _8%
1t i i 307.8 897.0 1.2718 1.277 —0.
Calculate_d densities are compared_ with experlmgnta_ll data_l_‘or ore 15413 13380 13987 006
methane in Table 1. It can be noted in Table 1 that liquid densities 307.8  1799.3  1.3461  1.3455 0.04
. . o 307.8  2071.6 1.3639 1.3617 0.16
predicted by the equation of state are generally within 0.3% of the 3388 15653 L1s6l L8y 003
experimental values, while deviations in the vapor phase are 1388 2‘%2213 g })ffgé g’gi
0 iati 315.0 13.9 1.1551 1.1741 —1.
gen_erally about _2/o. The larger vapor phase _d_ewatlons_ are dge 3120 18815 13347 13324 017
mainly to the inadequacy of the second virial coefficient in 3600 5035 83;;22 0781 —085
- - . . : ! J. 5 .00 —U.
Equation 17. Even with the noted vapor phase deviations, the 4050 5627 0.1594 0.1627 —2.08
results in Table 1 are sufficiently good to justify use of the new %82;8 1524 8;3%2? 8’_%3 %ﬁ
i i i i i 86.0 728.1 0.1 0. — 2.
equation of state in many practical applications. 00 19453 0400 o4sio oo

536.7 3449 0.0624 00635 —1.86
536.7 9629 01872 0.1925 —2.82

DISCUSSION 581.7  377.1  0.0624  0.0635 —1.72

The study presented herein shows that it is possible to develop ;2%; N oo 8;8%2 iy

i i i 26.7 1925.2 0.3120 0.3188 —2.19
analy‘FlcaI equations of state _baseql on_perturbatlon theory. The s GG vied ooed Tier
equation of state formula derived in this study has been used to 6717 21261 03120 03187 —2.16
. . . 716.7 473.2  0.0624 0.0633 —1.44
describe the PVT behavior of methane with reasonable accuracy. It 7167 23247 03120 03185  —2.07

is expected that the equation of state can be improved by & Units for density, p, are Ib-mole/ft".
modification of the density and temperature dependence of the

equation. The density dependence can be modified simply by using a higher order expansion in the reduced
density for the perturbation part of the compressibility factor. The temperature dependence can be modified by
allowing the constants in the Verlet-Weis formula for dg to be parameters to be determined by regression, and/or
by modification of the temperature dependence of the equation of state as implied by higher order perturbation
theory (1, 2). These modifications will be investigated in future work.
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