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An approximation for the structure of a diffusion flame was obtsined by means
of the Rayleigh-Ritz method. The results are simple and illustrate the various
features of interest in the flame problem. The accuracy of the approximation

is discussed.

This paper deals with an approximate
solution for the following differential
equation and boundary conditions:
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In this problem, A is related to either the
oxidant or fuel concentration in a diffusion
flame, or the associated temperature distri-
bution. The independent variable z is re-
lated to the coordinate normal to the flame.
The symbols x and f denote the stoichi-
ometric coefficients (integers) for the irre-
versible oxidant-fuel-product reaction

Eq. 3

where X, F, and P represent the oxidant,
fuel, and product species, and g the stoichio-
metric coefficient for the product species.
For two dimensional steady flows, the co-
ordinate measured along the flame appears
as a parameter in both the variables A and
z (1, 2, 3). For one dimensional unsteady
flows, the time appears as a parameter in A
and z (4). The oxidant lies on the negative
(z < 0) side of the flame and the fuel
on the positive (z > 0) side, and the
flame exists at the interface where these
two species diffuse into ome another and
combine chemically according to Eq. 3.
Further background on this problem can
l(x;)fonnd in a review article by Williams
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Owing in part to the nonlinear character
of Eq. 1, no exact solution has been found.
Moreover, because the equation and bound-

ary conditions constitute a two-point bound-
ary-value problem over an infinite domain,
a numerical integration is altogether not a
trivial matter. However, numerical solutions
have been obtained for x = f = 1 (I, 2)
and for x = 1, f = 2; x = f = 3; and
X=1,f = 5 by Chung et al. (6) Un-
fortunately the numerical results of Chung
et al. are plotted to such small scales and
in such a way that precise values cannot
be ascertained, and only the roughest trends
can be discerned. It would be very useful
to have an approximate solution, simple in
form, that reflects the trends involved when

x and f are varied, and especially the
asymmetrical behavior that occurs when x
and f are not equal. Such an approximate
solution would provide a means of making
rapid calculations and lead to a better under-
standing of the problem. This investigation
is directed towards obtaining such an ap-
proximation by means of the Rayleigh-Ritz
method. Besides obtaining information
about the mathematical problem itself, we
wish to evaluate the accuracy and utility
of the Rayleigh-Ritz method for these types
of problems.

Variational Formulation

Following Hildebrand (7) we establish
the variational formulation of the problem
by multiplying Eq. 1 by the variation 8\
and the differential dz and integrating over
all z:

r - (a-o% (w0 f) oMz =0 Eq. 4
Integrating the firsc term by parts and im-
posing the condition §A = 0 at the end
points z —> * « leads to

1 =9 Eq. 5
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where -
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and c(r,n) = j‘n Q¥ f o - g
[} Eq. 7

The function of integration in G (A,z) was
selected 3o that the integral | is finite. Eq. 5
asserts that A (z) is the function that makes
the integral 1 stationary. Further considera-
tions show thac 1 is 2 minimum.

The underlying idea of the Rayleigh-Ritz
approximation is discussed by Hildebrand
(7). The idea is to select a trial function
for A (z) that satisfies the boundary condi-
tions, but one with free constants available
to be determined such that I is stationary
for that function. Before choosing 2 trial
function, it is useful to examine che
asymptotic behavior of the exact function
A\(Z).

Asymptotic Behavior

In order to choose and evaluate a trial
function for the Rayleigh-Ritz approxima-
sion, it is useful to understand the asymp-
totic behavior of the exact solution for
large z. For large positive z, we write
Eq. 8
where F is small compared to z. Eq. 1 then
shows that F behaves asymprotically as
Eq. 9

Clarke (8) discussed this asymptotic be-
havior and obtained
k-1,

T >, £z,

Eq. 10
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where Ais “:i ?rbitnry constant. When 2z
1S negative and large, corresponding result
were obuined with x and r;oimelghnngm;
from sbove. When z is positive and large,
F vanishes algebraically when x > | and

exponentially whea x = 1. We also note
that an arbitrary constant is present only
when X = 1 since then Eq. 9 is linear.

Rayleigh-Ritz Approximation

We choose the following piecewise con-

tinuous function:
1 .blz 250
Eq. 12
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We further require that the derivative A
is continuous ac z = 0. This leads to

&= Kb, + by Eq. 13

There are thus two constants to be deter-
mined, b; and b.. This choice of function
satisfies the boundary conditions, is simple,
and allows for an asymmetric behavior for
arbitrary values of X and f. We can see
from Eqs. 10 and 11 cthat, whea z is large
and positive, the exponential part of Eq. 12
dies out too slowly when X = 1 and too
rapidly when X > 1. Nevertheless it has
an overall simplicity and shows a more ac-
curate representation overall than an alter-
nate function with the correct asymptotic
behavior which will be discussed later.

Following Hildebrand (7) we determine
the variation of A in terms of 4b, and §b.
and substitute 5\ and A into Eq. 4. The
coefficient of 3b, and 8b. must vanish in-
dependently. This provides two equations
for by and b, which can be expressed as

-
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where A = a/b) and A, £ afb, . Since
Ay = A/QA, Eq. 16



Eq. 15 amounts to a single equation for
A, or Aa. After it has been solved, the right-
hand side of Eq. 14 can be evaluated and
the ¢ ined, whence b, and
b; can be determined.

a deter

For the symmetric case X = f = n, Eq.
15 yields a = by = b,, and Eq. 14 becomes

JHm % r<1+y)(2ﬂe'7)“ e (v, Eq. 17
o

In this case, Eq. 12 can be written

1 el Eq. 18

Aw=lel +a”
For n = 1, 2, 3, we obtain

a = 52720 3 = 1201

nel:
1/5
6521 -
ne 2: a = 7850 1.0999
1/7
2,363,659\'/" _
n = 3: a= 1,653,750) 1.0523

The minimum value of A is a' and occurs
at z = 0. Thus for n = 1,2,3 we obtain
A min = 0.8038, 0.9092, 0.9503, respective-
ly. The minimum value of A increases as
n increases.

A
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FIGURE 1. Comparison of Rayleigh-Ritz ap-
proximations, n = 1, a = 2, with exact values
for n = 1.

Figure 1 shows a comparison of the ap-
proximations for n = 1 and n = 2 together
with the exact values (2) for n = 1. For
the exact values, A in = 0.8657, and hence

the above Rayleigh-Ritz approximation for
n = 1 is 7.15% too low at the minimum
value, which is the largest error between

2 /%

Ficure 2. Comparison of Asymmetric Curve, X =1, f = 2, with symmetric curve, X = f = 2.
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the exact and approximate curves. The ap-
proximate curve lies above the exact curve
as the asymptote is approached. For such
s simple cxpteuion'g':'ve:e by Eq. }g.;be
11 2 ¢t with the exact va is
oven' Tm‘m n = 2 shows the effect
of changing the order of the reaction, o.

Consider now the asy
X = 1and f = 2. Eq. 15 becomes

) R 1,8 3,2
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In view of Eq. 16, this is an algebraic
equation for A, which can be solved graph-
ically or by other numerical means. We
determine that A, = 1.497 and A; = 0.7508.
It follows from Eq. 14 that 2 = 1.190 and
hence that by == 0.7949 and b; = 1.585.
These results are plotted in Fig. 2 and
compared to the symmetric curve for n = 2.
The minimum for the asymmetric curve X
= 1, § = 2, occurs at z = 0.181 and has

also obtain A min = 0.8509. A comparison

with the algebraic representation, Eq. 20,
with the exponential representation, Eq. 18,
is shown in Fig. 3 for n = 2. Since the

the value A min = 0.8118. This minimum

is closer to the symmetric curve for o = 1
than it is for n = 2. The asymmerric curve
lies below the curve for n = 2 for positive
z and above the curve for n = 2 for nega-
tive z.

DISCUSSION

The previous results are simple and gen-
eral. T show the trends for different
values of X and f, and they are easily ob-

ined Its are r bly accurate,
at least for the case n = 1. We now wish
to discuss briefly some alternative functions
and some points regarding the accuracy of
the Rayleigh-Ritz approximations.

Because of the asymptotic behavior for
X > land f 2 1 when 2z — «, reflected
by Eq. 10, & possible trial function for the

symmetric case X = f = n > 1 might be
Awlal ¢ —2
sc(teclah® Eq. 20

where s = (n+2)/(n-1). This choice varies
algebraically in accordance with Eq. 10,
but it cannot be used for n = 1. A generali-
zation for the asymmetric case is also possi-
ble. By means of the Rayleigh-Ritz pro-
cedure an expression for C as a function of
s can be obuwianed, similar to Eq. 17. For
8 = 2, s = 4 we obtain C = 0.2938. We

3
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Ficure 3. Comparison of exponential and
algebraic representations for n = 2.

exponential representation yielded a value
of A mjn that was too low for n = 1, it

might be expected that this would be true
of all values of n. Since the algebraic repre-
sentation yields a value of A min that is

lower than that for the exponential repre-
seatation for n = 2, the exponential repre-
sentation appears to be the better, at least
in this regard. A comparison can also be
made by calculating the value of the func-
tional 1, Eq. 6. The value of I for the
exponential representation is 1 = -1.1365
and for the algebraic case 1 = -1.1030. Since
1 is to be a minimum, we conclude that
the exponential formula is a better overall
representation. Such a consideration as this
must be used when no other information is
available.

The exponential representation can be
improved by introduction of additional con-
stants to be evaluated. For the symmetric
case, we add one more constant and write

Al 457 s 0+ aplehe™d Eq. 21
where A° (0) = 0. When a, = 0 this



expression reduces to Eq. 18. We have two
constants to evaluate, and for n = 1 the
Rayleigh-Ritz approxm\auon gives b =
20562 and a, = 0.7880. The minimum
value is A min = 0.8696, which can be com-

pared to the exact value A min = 0.8657.

This agreement is very good, and good
agreement is also found over the whole
range of z. Although better accuracy is
obtained, more work is required to evaluate
the constants. A generalization to Eq. 21
can be found that holds also for the asym-
metric cases.

CONCLUDING REMARKS

The Rayleigh-Ritz method is a viable
means for obtaining approximate solutions
for diffusion-flame structure. The results
are simple, accurate, and demonstrate the
trends associated with variations in X and
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f. The method could prove useful also in
diffusion-flame problems that involve more
complicated chemistry.
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