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lhhupenﬁonw'wmw 1

data to develop the equation are
predict H

both vapor and liquid behavior sre given.

The advances made in recent years in
methods of equation of state development
may prove to be among the most significant
in the history of the equation of state. Im-
proved methods of empirical tion of
state development have been made possible
by a clearer understanding of (a) the statis-
tical problems involved, (b) use of data
::::lthnl:PVTdan,md (c) use of theo-

ical relations to suggest the temperature-,
deasity-, and composition s:noe of
the equation of state. Elucidation of the
statistical problems involved in equation of
:::e mmr:dhti;m l;a_s led to developmesnt:ut;f

of multi] analysis. y
of the ic !:!?e‘:“o?her mn PVT
data has shown the need for use of addi-
ional data in equation of state develop-
%.,’.‘3‘2;”‘:’, E Thuits hove rapand
i of flui ve suggested
the temperature- and density-dependence of
the equation of state, while the molecular
theory of r:;rmponding md?: has poinwc}
out ways ﬁenenlu‘ i tion of
state for pure fluids. Pol:gnxtur:?:‘he virial
equation of state from statistical mechanics,
together with the corresponding states
principle, has indicated the composition-
dependence of the mixture equation of state.
Molecular models for the critical region
have suggested methods for incorporating
the so-called critical-region scaling laws
into the equation of state,

STATISTICAL METHODOLOGY

state parameters is the method of multi-
roperty analysis (1), in which all thermo-
Symmic data can be utilized to determine
equation of state Muldiproperty
analysis was t0 eliminate certain
problems associated with the traditional
Proc. Okla. Acad. Sci. 54: 156-162 (1974)

use of PVT data alone to determine equa-
tion of state parameters.
Traditional method

In the traditional method of equation of
state develogment, where PVT data alone
are used to determine the parameters in the
assumed mathematical relation for the

tion of state, inaccuracies in correlation
arise. All correlation methods for the physi-
cal properties of real systems are f with
two inescapable problems, i.e., (a) errors in
the mathematical model used to describe
the behavior of the system, and (b) errors
in the data used to determine the parameters
in the model. Errors in the data refer w
systematic and random errors that occur
with all experimental measurements. Errors
in the model stem from lack of knowledge
of the true mathematical model for the
behavior of the system to be described.
Here, in discussing the problem of data
error, it is assumed that reasonable equation
of state models are available.

For equations of state which are intended
o describe both the gas and liquid phases,
the pressure expressed as a ?uncxion of
temperature and molar density, as indicated
in tion 1, is usually taken as the re-
sponse variable for least squares determina-
tion of the parameters in the equation of
state.

P = P(T,p) Eq. 1

The resultant equation of state is then used
to calculate derived properties, such as
vapor pressure, enthalpy, entropy, specific
heats, and other thermodynamic properties.
Unfortunately, these derived p: ies re-
quire the computation of derivatives of the
pressure, as exemplified by the relations for
the enthalpy and constant-volume heat
capacity given in Equations 2 and 3,
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where H® and C° are ideal rties.
The calculation of derivntivg:sig::ll;d in
these relations will be of lower sccuracy
than the PVT dawa from which they are
derived, especially in the liquid region. In
the liquid phase, the relative error in the
calculated first derivative is at least ten
times the relative error in the density, while
the relative error in the second derivative
is at least 100 times that in the density (2).
Because most reported density data which
are considered to be reliable have relative
errors between 10-2 and 10-3, it is obvious
that the traditional method of equation of
state development from PVT data alone
cannot yield highly accurate predictions of
derived properties. This problem can be
circumvented for measurable properties,
such as the enthalpy and heat capacity, by
correlation of these properties individually.
But, such an approach leaves the prediction
of properties which cannot be measured
experimentally, e.g., entropy and chemical
tial, as unanswered problems. It is
lieved that multiproperty analysis pro-
vides a method for attacking these prob-
lems in a unified way.

Multiproperty analysis

The strategy of multiproperty analysis
is to use more detailed information in cor-
relation development than is supplied by a
single property. For example, if the vapor
phase can be described accurately, which is
possible using accurate PVT and calori-
metric data, then vapor pressure data are
valuable for assuring the accuracy of the
predicted Gibbs free energy of the liquid.
By virtue of the Clausius-Clapeyron equa-
tion, the accuracy of the enthalpy of vapor-
ization and the liquid en is enbanced.
Data on velocity of sound also are valuable
because of the relationship of velocity of
sound to adiabatic compressibility, and be-
cause velocity of sound can be measured
quite accurately in some regions where other
properties cannot be measured easily. The
problem of properly describing the com-
position-dependence of mixture properties
can be attacked by using not only PVT and
calorimetric data for mixtures, but also data
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for excess properties and for mixture vapos-
liquid equilibrium,

To develop the framewotk of multi-
property analysis, it is assumed that the
c?erimennl values of each property con-
sidered are normally distributed. Assuming
that the experimencal data are independent,
the total probability distribution ion
for all of the different of data is then
the product of the probability distribution
functions for each individual measurement.
Thus a rigorous mathematical framework
for estimation of correlation model pa-
rameters is provided. The concept of maxi-
mum likelihood is based on the assumption
that maximization of the likelihood of oc-
currence of the combined set of data cor-
responds to maximization of the total prob-
ability distribution function.

In the special case in which the experi-
mental data for individual properties are
subject to relative error, maximization of
the total probability distribution function
oormpon£ to minimization of the function
Q given in Equation 4,

1

Q=1I7ZIgrI[1-
j k ik

where Ry is the experimental value of the
jun type of data at the ki, data point, 7
is the calculated value of the property, and
Bsx is the relative ecror in the m
property. Differentiation of Q with respect
to the parameters in the correlation yields
(upon setting these relations equal to zero)
the so-called normal equations of regress-
ion. In general, normal equations are non-
linear and must be solved by iterative
methods which are, in part, dependent
upon the selection of the response variables
involved.

Selection of response variables

Selection of the appropriate dependent
or response variables for the statistical
analysis can be quite important in equation
of state correlation. As a macter of con-
venience, the pressure or the compressibility
factor often has been chosen as the
variable in the traditional use of data
for equation of state development. How-
ever, for the calculation of derived proper-
ties at & given remperature- condi-
tion, it is necessary to calculate density
from the pressure equation. This ptopedune
yields ecrors in derived properties which are

L3P
Ryx Eq. 4
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proportional to the errors in calcufated
density, according to the relation given in
Equation 5 for propagation of error.

2
o’(R)=[-§%J g% (p) Eq. S

Thus, a statistical analysis method which
improves the accuracy of predicted densities
simultaneously improves the accuracy of
derived properties. It has been found (3)
that in the liquid range the accuracy of
predicted densities can be improved con-
siderably by using density, rather than
pressure or compressibility factor, as the
dr?ponse variable in regression on PVT

ta.

As a general rule, the response variable
used in ngreuion analysis should be the
variable which is subject to greatest un-
certaincy. In PVT measurements ic is dens-
ity which is subject to much greater relative
error than is either the temperature or the
pressure, and density is appropriate
varisble because the response variable in
regions where the isothermal derivative of
&recure with respect to density is large.

ith regard to other data, there also are
various choices possible for response vari-
sbles. For example, in utilizing vapor
pressure data, one might choose to minimize
the difference between calculated liquid
and vapor fugacities along the vapor pres-
sure curve, or one might elect to minimize
the difference between experimental and
calculated vapor p Because vapor
pressure is directly measurable, it is the
more :gsmprine response variable. How-
ever, saturated fugacities along the
vapor pressure curve were used successfully
as teq‘:onse variables in early applications
of multiproperty analysis using vapor pres-
sure data (4). Similarily, in the use of
mixture vapor-liquid equilibrium data, one
can choose to minimize the difference be-
tween experimental and calculated vapor-
liquid equilibrium ratios, or K values, as
has been done to date in the applications of
multiproperty analysis (4). On the other

, minimization of the difference be-
tween experimental and predicted phase
compositions would be more appropriate
because it is the phase compositions which
are the directly measured quantities.

CORRELATION METHODOLOGY
Methods for determining the tempers-

ture-, density-, and composition-dependence
of equation of state correlations, together
with methods for generalization of equation
of state correlations, should now be dis-
cussed. Recent advances in the molecular
theory of fluids have provided valuable in-
formation which can be used in empirical
equation of state development. Of course,
one cannot hope to develop empirical equa-
tions of state of high accuracy without
careful observation of the behavior of the
fluids under consideration. For this reason,
both theoretical and empirical justification
for equation of state relations are discussed
simultaneously in the following summaries.

Density-dependence

The compressibility factors of most em-
pirical equations of state can be expressed
as the sum of a perature-independ
term and a temperature-dependent term, as
indicated in Equation 6.

Z(Trp) = ZR(O) + ZA(TIO)Eq.6

The classic example of this type of relation
in van der Waals equation (Eq. 7), which
is based on the molecular model of a hard
sphere in a uniform, attractive potential
field. v 1

- a

2= By " T [EVJ Eq. 7
In van der Waals equation, a is the uniform,
attractive potential, and b is the molar
volume occupied by the rigid spheres. Equa-
tion 7 is essentially correct for this molecu-
lar model except that the first term de-
scribes the equation of state of rigid spheres
in only one dimension. Although the equa-
tion of state of rigid spheres in three di-
mensions is not known exactly, molecular
dynamics calculations (5) have indicated
which analytical relations for the hard
sphere equation of state are the most ac-
curate. Equation 8, which is based on the
hard-sphere virial series (6), represents the
molecular dynamics calculations with ex-
treme up to densities where the
molecular dynamics calculations indicate a
fluid-solid transition (5).

VA = ma
R —) 3
where y = b/4 v. (1-y)

Thus, Equation 8 can be substituted for
the temperature-independent pare of the
compressibility factor in Equation 6. This
substitution (7) has been found to improve

Eq. 8



considerably the prediction of gas phase
densities and enthalpies for the van der
Waals and Redlich-Kwong equations so
modified. The hard-sphere equation of state
(Eq. 8) is finding considerable use in both
the equilibrium and nonequilibrium theo-
ries based on van der Waals ideas and also
as the reference fluid in perturbation equa-
tion of state calculations. In these applica-
tions, the hard-sphere diameter is usually
treated as temperature-dependent. Because
the temperature dependence of the hard-
sphere diameter has not yet been sufficient-
ly well defined in a nonarbitrary manner,
the full potential for applications of the
hard-sphere equation of state has not yet
been realized.

Temperature dependence

Perturbation theory (8) indicates that
the equation of state for the compressibility
factor should be an expansion in reciprocal
temperature, as indicated in Equation 9.

a (v) a2 (v)

- 1
Z zR+ T+ e
Equation 9 has been useful in empirical
equation of state development efforts be-
cause available PVT data cannot be used
to define analytically the temperature-
dependence of the pressure beyond the
linear term in Equation 10.

P(T,p)=B(p)+A(p)T +C(T,p)Eq. 10

PVT data for nonpolar fluids indicate (9)
that the isochoric derivative of pressure
with respect 1o temperature is negative at
high and low densities and positive at dens-
ities between P. and 1.8 pc, but this in-
formation is not sufficiently accurate to
define the appropriate analytical relation
for C(T,p). However, by virtue of the
relation given in Equation 11, the second
derivative of pressure with respect to tem-
perature at constant density can be studied
by examining the density dependence of the
constant-volume heat capacity (10).

= ¥ o]
—_—] = - = Eq. 11
{3'1'2 o T p 4T
Benedict et al. approximated C(T,p) in

Equation 10 by the relation given in Equa-
tion 12. 2
£ £(p)
72

+.--Eq. 9

c(t,p) = Eq. 12

The function f(p) is pegative atp = 0,

159

l[:sses through a region of positive values
tween P, and 1.8 /. and then reduces
asymptotically to the zero density-constant
value as the density increases. However, it
has been found repeatedly that the Benedict-
Webb-Rubin (BWR) equation of state is
capable of fairly accurate predictions only
up to densities of about 1.8 times the
critical density; the analytical form of the
BWR equation is incorrect at high densities
and corresponding low temperatures.

Equation generalization

From a practical point of view, after an
equation of state for the pressure as a func-
tion of temperature and density has been
discerned, the most important next step is
to generalize the equation for fluids other
than those considered in its development.
For the special case of monatomic fluids,
the molecular theory of corresponding states
has been proven to provide an accurate
generalization. For the polyatomic fluids,
which are of more practical interest, a modi-
fied form of corresponding states can be
derived in which reduced properties are
expressed by relations of the type given in
Equation 13 for the reduced pressure.

P T v T v

=P* |, — L -

Ve °© [Tc'vc] twkd [Tc’vc]liq. 13
In Equation 13, P¥ is the reduced pressure
of a monatomic fluid, while w P* is a
correction for the asymmetry of polyatomic
molecules. The factor w is roughly pro-
portional to the Pitzer acentric factor (12).
This relation is valuable because it allows
generalization of an empirical equation on
a semi-empirical basis. Generalization of
this type is discussed below (APPLICA-
TIONS).

Composition dependence

The most successful basis for estimating
composition dependence of empirical equa-
tions of state has been the statistical-
mechanical virial equation, which rigor-
ously expresses the composition dependence
of the virial coefﬁcie:s:d (13).be The oomi

ition dependence in the original
S%R equation (14) was based on these
ideas, but implicitly ignored deviations
from the geometric-mean rule for the actrac-
tive ‘intermolecular potential energy be-
tween unlike molecules (13). For empirical
equation of state development these devia-
tions from the geometric mean can be
taken into account, in an empirical way, by

P*=
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use of relations such as those derived by
Prausaitz (15) for the Redlich-Kwong
equation and by Bishnoi and Robinson (16)
for the BWR equation. Use of these re-
lations for the composition-dependence of
a modified BWR equation is summarized
below (APPLICATIONS).

Critical region behavior

The critical region has always been diffi-
cult to describe bg'“a:oytial equations of
state. Obviously, t ynamic properties,
such as the constant-pressure heat capacity,
which become infinite ac the critical point
cannot be described accurately in the region
about the critical point by using an analyt-
ical equation of state. It has been found
that non-analytical relations based on the
so-called scaling-law behavior, introduced
recently in the theory of the critical region,
more accurately describe critical-region be-
havior than do snalytical equations (17).
The scaling-law relations are now being
incorporated into equations of state for
description of broad ranges of fluid be-
havior, and additional applications can be
expected in the future,

APPLICATIONS

A number of the important factors dis-
cussed above have been taken into account
in the recent development of a modified
form of the BWR equation (18). It was
first determined that the temperature-
dependence of the BWR equation could be
modified for improved prediction of en-
th&}ﬁy behavior. The resultant modified

B equation is given in Equation 14,
P = pRT
A A A
+ [AlRT-A,- N Pt
T o 7
A,
+ [A.M—A,- — ]p’
A
.
+A, [A,«(- ﬁl]p Eq. 14

Alﬁp, 2
+-—T—‘-(1+A,.lp ) exp (-A,,p?)

The terms involving the parameters A,
A;, and A, constitute the modifications to

the olreisml.l BWR tion (11). The
modified BWR eqnaxi‘::mmchen general-

ized according to the modified correspond-
ing states concepts. It was determined (18)
that the red: parameters for the normal
paraffin hydrocarbons, methane through
normal , could be expressed as
functions of the acentric factor, as shown
in Equations 15 and 16,

pc *m A
i mi
= B +C w.,
(R)Em('l‘ci)¢m m m i’ Eq. 15
for m = 1-4, 6-11
Sm
Pei) Ay Eq. 16
= B +C_wi exp(-3.8ui),
(R (T Yo B B
(3§
form= 5
where

Tei and o1 are the critical temperature and
density of the iy component;wis the charac-
terization parameter of equation 13 for the
iyn component; S e liamotis a2
a=6-810,11;5 =3, m=9, z'-o,.-- 1,5, 9, \l;:--l.
®=2-5",8, 10,4, 0, m~1,7910; ¢ ~1,m=27;
“.2"].“.h-“.5-s'

The generalized parameters By, and Cn
appearing in these equations were deter-
mined by multiproperty analysis, simul-
taneously using density, enthalpy, and vapor
pressure data for the first seven normal
paraffin hydrocarbons (18). Using these
generalized parameter values, the charac-
terization parameter w, was estimated from
vapor pressure data for other fluids, includ-
ing non-hydrocarbons, olefinic, naphthenic,
and aromatic hydrocarbons. For 23 pure
fluids, densities were predicted with an
average absolute deviation from experi-
mental values of 1.389% for 971 dacea poiacs.
Enchalpy de res were pmdictedpo:}:h
an average absolute deviation from experi-
mental values of 1.74 Bru/lb for 620 data
poiats. Saturated liquid and vapor fugaci- -
ties along the vapor pressure curve were
predicted within 1.089% for 663 data points.

For application to mixtures, the com-
ition: of parameters given in
uations 17 and 18 was utilized,
_ 1/a {a
Am-[tx.A ] m , Eq. 17

i1mi
m=1, 6 - 11



= 1/2 ¢y B,
AmE Ixgx, (AmiAmj) (1-k; 5) m

m .
Eq. 18

ij

m=2 -5

where

xy is the mole fraction of the i component
and summations range over number of com-
ponents in the mixture,

These relations are based on concepts sum-
marized above in (CORRELATION METHOD-
OLOGY). The interaction parameter k,; for
binary pairs was determined from binary
vapor-liquid equilibrium data (19). It was
found that the resultant mixture equation
of state is capable of predicting mixture
densities within 1.16% }(’x 14 mixtures and
capable of predicting mixture enthalpies
within 2.2 Bou/Ib for 23 mixtures, includ-
ing a ten-component natural gas mixture.
Vapor liquid equilibrium predictions using
the mixture equation of state were studied
utilizing vapor-liquid equilibrium daca for
41 systems, including a ten-component
natural gas-LNG system and a 15-compon-
ent absorber system. In general, it was
found that predicted vapor and liquid com-
positions were within the larger of 5% or
0.0005 of the experimental mole fractions.
Further discussion of the development of
this correlation has been presented in the
literature (19). A computer program for
utilizing this correlation in engineering
calculations also is available (20),

CONCLUSIONS

Advances in both statistical methodology
and correlation methodology have contri-
buted importantly to recent improvements
in equation of state development methods.
Statistical methodology bas been improved
through the use of multiproperty analysis.
Correlation {m beea improv-
ed by taking intwo account the density-,
temperature-, and composition:
implied by recent results in the molecular
theory of fluids. Molecular theory also has
been valuable in equation of state general-
ization, and has given a clearer underseand-
ing of the critical region. Although not all
individual advances made in equation of
state development have been simultaneous-

Iy ted in a correlation study, re-
m?mao indicate that 2 high degree o*(R)

ofmarsforfumreeqmthmo.fmmn

possible by utilizing these techniques, to-
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gether with the always important careful
scrutiny of experimental behavior.

NOMENCLATURE
ABC, Equation of state functions
A..an., Parameters in modified BWR equa-
Esa, tion
&, 8 :e)tmmrhuon equation of state func-
b Rigid-sphere molar covolume
Cy G i heat capacity
ce C lume hest ity of
ideal gas
£(p) Fuaction of molar density
H Eathalpy
H° Eathalpy of ideal gas
ks Interaction parameter
P Pressure
| 24 Reduced pressure
P* Reduced p of P
fluid
ps Reduced p with
for asymmetry
Q Regression function
R D ath d ic prop
also Universal Gas Constant
Ry Values of jth property in kth stace
T Absolute temperature
Te Critical tempersture
v Molar volume
Ve Critical molar volume
x{ Mole f; of ith p in
a mixture
y Reduced deasity
z Compressibility factor
Zn H‘.:gl' sphere fluid compressibility
Za Perturbation compressibility factor
contribution
Greek Alpbabet
a :;‘nm in modified BWR equa-
o R et o
Y Parameter in modified BWR equa-
tion
(R) Equation of state expression for
property R
p Molar density
Pe Critical molar densicy
Variance of property R
wy h jrati for ith
component
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