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MODERN METHODS OF EQUATION OF STATE
DEVELOPMENT

School of Chemical Engineering and Materials Science, University of Oklahoma,
Norman, OIdahoma

The IldvaDClel made in teeeIlt years in
methods of equation of state development
may prove to be amana the masc .ignificant
in the history of the equation of lUte. 1m­
pmwd mecbacls of empirical equation of
Mate development have been made possible
bya dearer undenWKling of (a) the statis­
tical problems involved, (b) use of data
odaer than PVT data, and (c) use of thea­
recica1 relations to suggest the temperature-,
deality-, and composition-depeodence of
the equation of state. Elucidation of the
statistical problems involved in equation of
state COl'relation has led to development of
the method of multiproperty analysis. Study
of thermodynamic data other than PVT
data has shown the need for use of addi­
tional data in equation of lUte develop­
ment. Rec:ent advances in the statistical­
mechanical theory of fluids have suggested
the temperature- and density-dependence of
the equation of lUte, while the molecular
theory of COl'responding lUtes has pointed
out ways of aeoeralizing the equation of
state for pure Owell. Por mixtures, the virial
equation of state from statistical mechanics,
topther with the corresponding states
principle, has indicated the composition­
dependence of the mature equation of state.
MalecuJar models for the critical region
have supested methods for incorporating
the IO-called critical-region scaling laws
into the equation of state.

STATISTICAL METHODOLOGY

A UIeful teeeIlt advance in the Statistical
methodolosY for determining equation of
state puamece1'I is the method of multi­
propeny analJIis (1), in which all thermo­
Clyniunic data can be utilized to determine
equation of~~ Multiproperty
aoalysia wa cIneIoped to eliminate certain
problems ueociated with the traditional
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use of PVT data alone to determine equa­
tion of lUte puamece1'I.

Traditional method

In the traditional method of equation of
State development, where PVT data alone
are used to determine the parameters in the
assumed mathematical relation for the
equation of lUte. inaccuracies in COl'relation
arise. All correlation methods for the physi­
cal properties of real systems are faced with
two inescapable problems, i.e., (a) errors in
the mathematical model used to describe
the behavior of the system, and (b) errors
in the data used to determine the parameters
in the model. Errors in the data refer to
systematic and random errors that occur
with all experimental measurements. Errors
in the model stem from lack of knowledge
of the true mathematical model for the
behavior of the system to be described.
Here, in discussing the problem of data
error, it is assumed that reasonable equation
of state models are available.

POI' equations of state which are intended
to describe both the gas and liquid phases.
the pressure expressed as a function of
temj)erature and molar density, as indicated
in Equation I, is usually taken as the I'e*

sponse variable for least squues determina­
tion of the parameters in the equation of
state.

P = P (T , p) Eq. 1

The resultant equation of state is then UlIed
to calculate derived properties, such as
vapor pressure, enthalpy, entropy, specific
heats, and other thermodynamic properties.
Unfortunately, these derived properties I'e*

quire the computation of derivatives of the
pressure, as exemplified by the relations for
the enthalpy and coostant-volume heat
capecity given in Equations 2 and "



B = B'~(P-PRT)+J:~2 [P-T[:~)p~~ 2

CV=C~ - f:~2 (~) pdP Eq.3

where If' and CJ are ideal gas properties.
The calculation of derivatives involved in
these relations will be of lower accwaey
than the PVT data from which they are
derived. especially in the liquid region. In
the liquid phase. the relative error in the
calculated first derivative is at least ten
times the relative error in the density. while
the relative error in the second derivative
is at least 100 times that in the density (2).
Because most reported density data which
are considered to be reliable have relative
errors between 10-2 and 10-3• it is obvious
that the traditional method of equation of
state development from PVT data alone
cannot yield highly accurate predictions of
deriyed properties. This problem can be
circumvented for measurable properties.
such as the enthalpy and heat capacity, by
correlation of these properties individually.
But, such an approach leaves the prediction
of properties which cannot be measured
experimentally, e.g., entropy and chemical
potential, as unanswered problems. It is
believed that multiproperty analysis pro­
vides a method for attacking these prob­
lems in a unified way.

Multiproperty analysis

The strategy of multiproperty analysis
is to use more detailed information in ClOr­
relation development than is supplied by a
single property. For example, if the vapor
phase can be described accurately, which is
possible using accurate PVT and calori­
metric data, then vapor pressure data are
valuable for assuring the accuracy of the
predicted Gibbs free energy of the liquid.
By virtue of the Clausius-Clapeyron equa­
tion, the accuracy of the enthalpy of vapor­
ization and the liquid entropy is enhanced.
Data on velocity of sound also are valuable
because of the relationship of velocity of
sound to adiabatic compressibility, and be­
caue velocity of sound can be measured
quite aa:wately in IOIDe regions where other
properties cannot be measured easily. The
problem of properly dacribing the rom­
position-dependence of misture propenjes
can be attacked by using not oo1y PVT and
c:Uorlmetric data for mixtures, but alto data

157

fot excess properties and for mixture vapor­
liquid equilibrium.

To develop the framework of multi­
property analysis. it is assumed that the
experimental values of each property ClOG­
sideled are normally distributed. Assuming
that the experimental data are independent,
the total probability distribution function
for all of the different types of data is then
the product of the probability distribution
functions for each individual measurement.
Thus a rigorous mathematical framewotk
for estimation of correlation model pa­
rameters is provided. The concept of maxi­
mum likelihood is based on the assumption
that maximization of the likelihood of oc­
currence of the combined set of data cor·
responds to maximization of the total prob­
ability distribution function.

In the special case in which the experi­
mental data for individual properties are
subject to relative error, maximization of
the total probability distribution function
ClOrresponds to minimization of the function
Q given in Equation 4. _

1 "jk
Q = 1: 1: ~[1- ] 2 Eq.4

j k Pjk Rjk
where Rjk is the experimental value of the
jth type of data at the k th data point, Ii
is the calculated value of the property, and
Pjk is the relative error in the measured
property. Differentiation of Q with respect
to the parameters in the correlation yields
(upon setting these relations equal to zero)
the so-called normal equations of regress­
ion. In general, normal equations are non­
linear and must be solved by iterative
methods which are, in part, dependent
upon the selection of the response variables
involved.

Selection of response variables

Selection of the appropriate dependent
or tespoDJe variables for the .tatmical
analysis can be quite important in equation
of state correlation. As a matter of mo·
ftDieoce. the pressure or the compressibility
factOr often has been choeen as the responIe
variable in the traditional ute of PVT data
for ,uation of state development. How­
ner, or the calculation of derived proper­
ties at a given remperanue-pretfUft! aJOdi­
tion, it is necaIlttY to calculate density
from the pretfUft! equation. This procedure
yields euon in derived properties which are
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proportioaal to the errors in calculated
dealicy, acmrding to the relation given in
Equation S for propagation of uror.

0
2

(R)= r*J 2 0 2
(p) Eq. S

Thus, a statistical analysis method which
improves the accwacy of predicted densities
simultaneously improves the accw:acy of
derived propenies. It bas been found (3)
that in the liquid range the accuracy of
predicted densities can be improved coo·
siderably by using density, rather than
pressure or compressibility factor, as the
response variable in regression on PVT
data.

As a general rule, the response variable
used in regression analysis should be the
variable which is subject to greatest un·
certainty. In PVT measurements it is dens­
ity which is subject to much greater relative
errOr than is either the temperature or the
preaure, and density is the appropriate
variable because the response variable in
regions where the isothermal derivative of
preaure with respect to density is large.
With regard to other data, there also ate
various choices possible for response vari·
abl... For example, in utilizing vapor
pretsure data, one might choose to minimize
the difference between calculated liquid
and vapor fugacities along the vapor pres·
sure curve, or one might elect to minimize
the difference between experimental and
calculated vapor pressures. Because vapor
pressure is directly measurable, it is the
more appropriate response variable. How·
ever, the saturated fugacities along the
vapor pressure curve were used successfully
as response variables in early applications
of multipropetty analysis using vapor pres­
sure data (-4). Similarity, in the use of
mixture vapor-liquid equilibrium data, one
can choose to IDJnimize the difference be­
tween experimental and calculated vapor·
liquid equilibrium ratios, or K values, as
ba been done to date in the applications of
multipro~tty analysis ("). On the other
band, mInimization of the difference be­
tween experimental and predicted phase
compositioos wouJd be more appropriate
because it is the phase compositions which
are the directly .meuured quantities.

CORRELATION METHODOLOGY
Methods for determining the tempera-

ture-, density-, and composition-depeodence
of equation of state correlations. together
with methods for generalization of equation
of state correlations, should now be dis­
cussed. Recent advances in the molecular
theory of fluids have provided valuable in­
formation which can be used in empirical
equation of state development. Of course.
one cannot hope to develop empirical equa­
tions of state of high accuracy without
careful observation of the behavior of the
fluids under consideration. For this reason,
both theoretical and empirical justification
for equation of state relations ate discussed
simultaneously in the following summaries.

Density-dependenee

The compressibility factors of most em·
pirical equations of state can be expressed
as the sum of a temperature-independent
term and a temperature-dependent term, as
indicated in Equation 6.

Z(T,p) = ZR(P) + ZA(T,p)Eq.6

The classic example of this type of relation
in van der Waals equation (Eq. 7), which
is based on the molecular model of a hard
sphere in a uniform. attractive potential
field.

Z=~_!(~J
\ V-UI T Rv Eq. 7

In van der Waals equation, a is the uniform,
attractive potential, and b is the molar
volume occupied by the rigid spheres. Equa­
tion 7 is essentially correa for this molecu­
lar model except that the first term de­
scribes the equation of state of rigid spheres
in only one dimension. Although the equa­
tion of state of rigid spheres in three di­
mensions is not known exactly, molecular
dynamics calculations (5) have indicated
which analytical relations for the bard
sphere equation of state are the most ac­
curate. Equation 8, which is based on the
hard-sphere virial series (6), represents the
molecular dynamics calculations with ex­
treme accuracy up to densities where the
molecular dynamics calculations indicate a
fluid-solid transition (5).

Z l+y+y2_y 3

R 3 Eq.8
where y :::: b/-4 v. (l-y)

Thus, Equatioo 8 can be substituted foe
the temperature-independent pan of the
compressibility factor in Equation 6. This
substitution (7) bas been found to improft



considerably the prediCtion of gas phase
densities and enthalpies for the van dec
Waals and Redlich-Kwong equations so
modified. The hard-sphere equation of state
(Eq.8) is finding considerable use in both
the equilibrium and nonequilibrium theo­
ries based on van der Waals ideas and also
as the reference fluid in perturbation equa­
tion of state calculations. In these applica­
tions, the hard-sphere diameter is usually
treated as temperature-dependent. Because
the temperature dependence of the hard­
sphere diameter has not yet been sufficient­
ly well defined in a nonarbitrary manner,
the full potential for applications of the
hard-1:phere equation of state has not yet
been realized.

Temperature dependen~e

Perturbation theory (8) indicates that
the equation of state for the compressibility
factor should be an expansion in reciprocal
temperature, as indicated in Equation 9.

a (v) a (v)
Z = z + _1__ + _2-- + - - - Eq. 9

R T T 2

Equation 9 has been useful in empirical
equation of state development efforts be­
cause available PVT data cannot be used
to define analytically the temperature­
dependence of the pressure beyond the
linear term in Equation 10.

P(T,p)=B(p)+A(p)T +C(T,p)Eq. 10

PVT data for nonpolar fluids indicate (9)
that the isochoric derivative of pressure
with respeet to temperature is negative at
high and low densities and positive at dens­
ities between Pc and 1.8 Pc , but tbis in­
formation is not sufficiently accurate to
define the appropriate analytical relation
for C(T,p). However, by virtue of the
relation given in Equation II, the second
derivative of pressure with respeet to tem­
perature at constant density can be studied
by examining the density dependence of the
constant-volume beat capaci~ (10).

[:~) p = - f [:~V)T PAj. 11
Benedict et al. approximated C(T,P) in
Equation 10 by the relation given in Equa-
tion 12. 2

C(T,p) = £- f(p)
T2 Eq. 12

The function f (p) is negative at P = 0,
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passes through a region of positive values
between Pc and 1.8 Pt· and then reduces
asymptotically to the zero density-constant
value as the density increases. However, it
has been found repeatedly that the BenediCt·
Webb-Rubin (BWR) equation of state is
capable of fairly accurate prediCtions only
up to densities of about 1.8 times the
critical density; the analytical form of the
BWR equation is incorcea at high densities
and corresponding low temperatures.

Equation generalization

From a practical point of view, after an
equation of state for the pressure as a func­
tion of temperature and density has been
discerned, the most important next step is
to generalize the equation for fluids other
than those considered in its development.
For the special case of monatomic fluids,
the molecular theory of corresponding states
has been proven to provide an accurate
generalization. For the polyatomie fluids,
which are of more praCtical interest, a modi·
fied form of corresponding states can be
derived in which reduced properties are
expressed by relations of the type given in
Equation 13 for the reduced pressure.

p*=/v =p: [~ ': )+wpd~ ': )Eq. 13
c c c c c c

In Equation 13, P~ is the reduced pressure
of a monatomic fluid, while (oJ Pf is a
corceaion for the asymmetry of polyatomic
molecules. The faCtor '" is roughly pro­
portional to the Pitzer acentric faCtor (12).
This relation is valuable because it aHows
generalization of an empirical equation on
a semi-empirical basis. Generalization of
this type is discussed below (APPLICA­
TIONS).

Composition dependence

The most successful basis for estimating
composition dependence of empirical equa­
tions of state has been tbe statistical­
mechanical virial equation, which rigor­
ously expresses the composition dependence
of the virial coefficients (13). The rom­
position dependence used in the original
BWR equation (14) was based on tbae
ideas, but implicitly ignored deviations
from the geometric-mean rule for the aurae­
tive .intermolecular potential energy be­
tween unlike molecules (13). For empirical
equation of state development tbeIe devia­
tioos from tbe geometric mean can be
taken into account, in an empirical way, by



The terms in"O"ina the perametets At.
A., and A. CODIdtute the aiodificatioas to
the oriaioal BWI. equation (11). The
modified BWR equation was then pnenl-
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'* of nladoas such .. thole cleriftd by
PnumiQ (1') for the Redlich-Kwong
equation aocI by Bitbaoi aocI Robiosoo (16)
for the BWll equation. U. of these re­
latiou for the a>mpotition.cJepeadence of
a modified BWR equation it lUJIlOUlrized
below (APPUCATlONS).

Crltleal rqiOll behavior

The critical .region has always been diffi.
cult to desaibe by analvtical equations of
.tate. Obviously, thermodynamic propenies,
such .. the c:onstant-prasufe beat capacity,
which become infinite at the critical point
CUJIOt be desaibed accurately in the region
about the .critical point by using an analyt­
ical equation of state. It bas been found
that non-aoalytical relations bued on the
so-called scaling-law behavior, introduced
nandy in the theory of the critical region,
man accurately describe critical-region be­
havior than do analytical equations (17).
Tht scaling-law relations are now being
incorporated into equations of State for
descrIption of broad ranges of fluid be­
havior, and additional applications can be
apeaed in the future.

APPLICATIONS

A number of the imponant factors dis­
cU*d above have been taken into account
in the recent development of a modified
form of the BWR. equation (I8). It was
fine determined that the temperature­
dependence of the BWR. equation could be
modified for improftd prediction of en­
thalpy behavior. The resultant modified
BWR. equation i. given in Equation 14.

Eq.14

Eq.17

Eq.16
Bm+Cmwi exp(-3.8wi "

where
Tel and cl are the critical temperature and
density of tbe ith compooent;<&Ilis the charac­
terization parameter of equation 13 for the
i th component;

S•• 1•• -I - ~; S... 2,

• .. 6 - a. 10. ll; S J 9, E." O.... 1. ~. 9. u. E." 1 •

• .. 2 - S.". " 10; t O I, 'l, 9. 10; t ... I, ... 2,-t o

.... 2••) .. 1, .... 4, .s .. s.

The seneralized parameters B m and em
appearing in these equatioos were deter·
mined by multipropeny analysis, simul­
taneously using density, enthalpy, and vapor
pressure data for the first seven normal
paraffin hydrocarbons (18). Using these
generalized parameter values, the charac­
terization parameter <&II was estimated from
vapor pressure data for adler fluids, includ­
ing non.hydrocarbons, olefinic, naphthenic,
and aromatic hydrocarbons. For 23 pure
fluids, densities were predicted with an
averase abllolute deviation from experi­
meatal values of 1.38% for 971 data points.
Enthalpy departures were predicted with
an averase absolute deviation from experi.
mental values of 1.74 Btu/lh for 620 data
points. Saturated liquid and vapor fugaci­
ties along the vapor pressure curve were
predicted within 1.08% for 663 data points.

For application to mixtures, the com­
positioo«pendenc:e of parameters given in
Equatioos 17 and 18 was utili2led,

A =[tX'A1{O ]Om ,
m i 1 m

m = 1, 6 - 11

[.c~'" A",
(R) (T . '~m =

C~

for m • 5

ized according to the modified c:onespood­
ing States mocepu. It was determined (18)
that the reduced parameters for the normal
paraffin hydrocarbons, methane through
normal heptane, could he exptellecl as
functioDl of the acentric factor, as shown
in Equations IS and 16,

~pc. A.
1 m1 = B +C W.,

(R}EmCT • }~m m m 1 Eq. IS
C1

for m = 1-4, 6-11

pRT

+ (A
J
RT-A

z
- As + A, _ As ] pZ

T 2 T' T'

+ [A,RT-A,- ~ ) p'

+A, fA,+ }) p'

p •



A -E EXix.(A .A j)1/2(1_k.. )8m
m i j ) m1 m . 1)'

Eq.18
m ;z 2 -S

161

ptber with the always important c:a.refuI
scrutiny of experimental behavior'.

NOMENCLATURE

where A.B.c, IlquaioD of ate fuacdoas
A.. Bo, Co, 0..~ ill modified BWIt eqaa.

X 1 is the mole fraction of the ith mmpooeot &, ..b.c.d tiOII

and summations range oftr number Of mm- ... .. P rbedoa
ponenu in the mixture. ::: . equatioa of .... faoc.

These relations are based on mncepts sum- b RiPI....ere molar anoIame
marizecl above in (COUELAnON METHOD-
OlOGY). The interaction parameter klJ for Cv CoDstut-wlume heat aPKkJ'
binary pain was determined from binary q CoatIut-wlame bee aPKkJ of
vapor-liquid equilibrium daca (19). It was idea1 ...
found tbat the resulcant mixture equation f(P) ruaetiocl of molar __

of state is capable of predicting minute H Entbalpy
densities within 1.16% for 14 mixtures and HO Ilatbalpy of icleal ...
capable of predicting mixture enthalpies k lj laterllCtioo. parameter
within 2.2 Btu/lb for 23 mixtures, includ- P Preuure
ing a ten-component natural gas mixture.
Vapor liquid equilibrium predictions using P: Reduced preaure
the mixture equation of scate were studied Pt ::'aced preuare of JDOUIIDIDic
utilizing vapor-liquid equilibrium daca foe
41 systems. including a ten-component p. Reduced preaure with correedoa
natural gas-LNG system and a IS-compoo- for asymmetrY
ent absorber system. In general, it was Q Repessioa fwlctioD

found that predicted vapor and liquid mm. R ~:==~~~~.
positions were within the larger of S% or ...........~
O.OOOS of the experimental mole fractions. Rjk Values of jtb propeny ia kth ....
Further discussion of the deftlopment of T Abtolute temperaaate
this mrrelation has been presented in the Tc CridcaI tempenmre
literature (9). A computer program for Molar w1ume
utilizing this correlation in engineering Y
calculations also is available (20). Yc Critic:al molar wlame

Mole fnaioa of ith mmpoaeat ill
• mixtare

•

(Il)

Pa.rameter ia mocIUied 81VR equa.
doca
Re1adye ItaIICIa.nI cIeriadoa of jab
.. type at kth .. pome
Parametft lea mocIifiecl BWll eqaa­
tioa
IlquacioD of ... aprellioD for
propacy R

Molar deaIirJ
Critical molar ....,

Variaace of propeftJ •

~..,.....f«"
wapoeeot

Reduced cIeuity

Comptalibi1ky factor
HanI~ fJaicl mmprellibllicy
factor co.wibatioa
Pertarbaioca mmpnuibility factor
CODuibatioo

CONCLUSIONS J

Advances in both scatistical methodology Z
and correlation methodology haft mntti- ZR
boted imporcantly eo recent improvemenu
in equation of state development methods.
Scatistical methodology bas been imptOftd
through the use of multipropetty analysis.
Correlation methodology has been improv­
ed by taking ineo acmunt the density-,
temperature-, and mmposition-dependeoc:e
implied by recent resulu in the molecular
theory of fluids. MoIeculaI' theory also has
been valuable in equation of scate general­
ization, and has given • dearer undetstaod­
inS of the critical region. Although not all
individual advances made in equation of
state cIeftlopment haft been .imulblDeOlJlo
Jy iocotporated in • cone.Iation study, re­
cent studies do iodimte that • high cJesree
of IUCCaI for future equations of state is
lJC*ible by utilizing thae ccc:hniq.-, to-
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