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The macroscopic properties of a single
layer of filamentary composite material can
be determined experimentally. However,
due to the large number of tests required,
it is desirable to be able to calculate these
pr:;pcrtia from knowledge of the geometry
and the constituent-material properties.
This has been the impetus for numerous
micromechanics analyses, such as those sum-
marized in (1).

In beams, an important physical quan-

tity is the flexural rigidity:
2

p=| 2z E(2) A

‘[A Eq. 1

where A = cross-sectional area, z = dist-

ance from midplane, E(z) = longitudinal

Young’s modulus. In laminated rectangu-

lar-section beams, it has been customary to

assume that each layer is homogeneous

through its thickness, so that the integral

appearing in Equation 1 can be replaced
by a summation as follows (2) :

n
D = (W/3) z E, (zl:: - ::_l) Eq. 2
k=1

where k refers to the kth ply, n = number
of plies, W = beam width; 2z, and z,,
are the values of z associated with the
upper and lower surfaces of the kth ply.

For composites containing many ve
small-diameter fibers distﬁbgwd myore z

less randomly through the thickness, Equa-
tion 2 would be expected to be valid. This
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has been borne out for glass-fiber/epoxy
(0.0004 in. diameter fibers) by Tsai (3).
However, so-called monofilament compos-
ites, which contain only one row of fibers
r ply, are coming into use. Large-diameter
ibers of boron (4) are used most exten-
sively, but S-glass has also been used (5).
For laminated beams consisting of only
a few of these single-filament-row layers,
Equation 2 would not be expected to hold
because of the large amount of low-modu-
lus matrix material located at appreciable
relative distances from the midplane of
each layer. This is demonstrated quantita-
tively in the micromechanics analysis pre-
sented here. The only previous works along
this line are the very approximate analyses
due to Norris (6) and Margolin (7).

For a long time, it has been suspected
that thickness-shear* flexibility is signifi-

" cant in filamentary composites (8, 9). Al-

though some laminate bending analyses
have incorporated thickness-shear flexibil-
ity (10-14), none of these have presented
rational micromechanics bases for deter-
mining the required single-layer flexibility,
A micromechanics analysis based on the
Jourawski shear theory, see (15), is pre-
sented here.
FLEXURAL RIGIDITY OF A LAYER
The typical repeating one-quarter Cross
section shown in Figure 1 is considered.
Using the Bernoulli-Euler hypothesis as a
first approximation, the bending stress, ¢,
is calculated as follows:
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FIGURE 1. ‘Typical repeating one-quarter
cross section.

where a,, = bending curvature, E =
Young’s modulus, a, and a,, are cross-
sectional areas (Figure 1), and subscripts
f and m denote fiber and matrix, respec-
tively.

The bending strain energy in an elemen-
tal volume one unit long and having cross-
sectional area a = a, + ap, is:
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Thus, one obtains
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which integrates to yield the following
result:
v ot = @ - B (i3 4B, we3se Eq. 5
To use Reissner’s variational principle
(16), the following functional is intro-
duced:

b - f: ¢ I' a,z0de -U) 4t Bg 6
Reissner’s principle states that
56, =0 Eq. 7

The bending moment is defined by

--AI 20 ds
L]

Eq. 8
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Since the bending curvature is uaiform
throughout a given cross section, Equations
5-8 can be combined to yield:
s ]h { oo - [ 80y « @uedor [, }ae =0
f

Thus,

n - (e oty o ar iy Ja, Eq. 9
The layer flexural rigidity, d, is defined
as follows:

d= w/o,

Eq. 10

Thus, from Equation 9,
3= @)t + e

or

i-[omeeeyamiem «5 Jainn Bg. 11

To show the reduction in flexural rigid-
ity as compared to that implied by Equa-
tion 2, it is desirable to evaluate the stretch-
ing stiffness, 4, defined as the axial force
per unit axial strain. Assuming uniform
strain throughout the cross section, one
obtains this expression:

i e rpem? o +x Jaw  EBq. 12
This same result is predicted by the so-
called “law of mixtures.”

Now a flexural rigidity efficiency factor
is defined as follows:

n, = 12 d/an’ Eq. 13
Fo bhomogeneous material, =1,
as gpﬁllsed by Equation 2.

Substituting Equations 11 and 12 iato
Equation 13, one obtains:
1+ Gnnef @ sy -1}m" o
b e [k 1femiem  Bq. 14




Tow (3/6) (a/m? Eq. 15

It is seen that Equation 15 provides a
lower bound which increases as E,/E, is
increased

o

THICKNESS-SHEAR FLEXIBILITY
OF A LAYER

This analysis uses the Jourawski shear

theory, which is presented for the homo-

geneous case in elementary texts on

strength of materials. From Equations 3

and 10, the bending stresses acting on the

1

0P - @dez, o,® -« @ /mH: Eq. 16

wherei = finasandi = m ina,,.
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fefe and right sides of an element of length poyi balf-head ar-
A x (Figure 2) are: rows).
TABLE 1. Flexardl rigidity efficioncy of verions single-filamentrow composites.
- » Bq. 14 Approx. Eq. 15
h/d a/k Ve b = T
Boron/E * S-Glass/E Boron/At°
0.80 0.80 0.402 0.491 0.529 0.653 0.480
0.85 0.454 0.549 0.580 0.684 0.542
0.90 0.508 0.615 0.640 0.718 0.608
0.95 0.566 0.682 0.701 0.762 0.677
0.85 0.80 0.427 0.490 0.527 0.646 0.480
0.85 0.482 0.549 0.578 0.678 0.542
0.90 0.540 0.614 0.638 0.713 0.608
0.95 0.602 0.681 0.699 0.755 0.677
0.90 0.80 0.452 0.490 0.525 0.640 0.480
0.85 0.511 0.549 0.577 0.670 0.542
0.90 0.572 0.614 0.636 0.708 0.608
0.95 0,637 0.681 0.699 0.752 0.677
0.95 0.95 0.673 0.681 0.697 0.751 0.677
1.00 1.00 0.785 0.753 0.764 0.800 0.750
1.08 0.95 0.744 0.681 0.696 0.747 0.677

s b <
Btll- 120 ; !fll. -24 ; lflt- 6,




Since these bending stresses act on iden-
tical cross-sectional areas, the horizontal
shear force acting on the bottom of the
element is:

Fo ™ I [°1(R) N °(m ]d‘
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Eq. 17

where area of integration, a,, is shown
cross-hatched in Figure 3.
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FiGURE 3.
ness shear area. 8, = 8,0 + 8,0

Combining Equations 16 and 17, one ob-
tains the following:

P = (awfd) ¥

Eq. 18

where
c
v-Ix,,d.- (B b +ED) £ dr
.ol .L £ °f Eq. 19

The varying widths, b, and b, are
given by the following expressions:
b= - b, - wo(e?eh® | oee

" Eq. 20
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Using Equations 20 in Equanon 19 and
evaluating the integrals, one obtains:
Eq. 21
f-am @, -5 (e v, @ ¥ (2-ehy; osese
veaum -

The horizontal force F, must equilibrate
the horizontal shear stresses, T, and T,

risse
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acting on the bottom face of the element
(see Figure 2):

Fh- Te %at + Taten

where the shear areas are given by:

Eq. 22

af Bq. 23

For the two constituent materials,
Hooke’s law in shear can be expressed as
follows:

-rf-Cfv,

- bi 8x, a”-b‘ [

LR Eq. 24
where ¥ = engineering shear strain. It is
noted that the thickness-shear stresses must
be equal to the horizontal shear stresses
in order to maintain rotatory equilibrium.

Combining Equations 18 and 22-24, one
obtains the following general expression
for the thickness-shear-strain distribution
throughout the cross section:

Eq. 25

The layer thickness shear force, q, is
defined as follows:

ISR
Y= (Gb 4GB (V) (amlex)

q-hj-fv,a.oul‘ v, 4 Bq.26
Substituting tions 21, 24, and 25
into Equation 26 and performing rather
laborious integrations, one obtaias
Eq. 27
which, of course, is necessary in static beam
theory. This serves as a check on the analy-
sis up to this point.
The thickness-shear strain energy in an
elemental one-quarter-cross-section volume
one unit long is

q = sm/ox
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Eq. 28
Substituting Equations 20, 21, and 25
into Equation 28 yields the following re-
sule: 7 232 22 2
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the geometric parameters
interest, it does not appear possible to evalu-
ate them in closed form. Since (G; — Gp,)
>> Gm for composites of technical inter-
est, one might consider omitti:? the term
GnW in the denominators the two
integrals under discussion. Unfortunately,
r, when this simplification is
the second integral increases without bound
except in the case when r = ¢, which is
not desirable in practice due to fiber con-
tact problems.

To facilitate the numerical evaluation of
the shear flexibility, it is convenient to
introduce the following dimensionless
quantities:

petlc=d/h, (o l{c

P -2y (iq teh Eq. 30
Then Equation 29 becomes
e by, Bq. 31

where
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Performing the integration to obtain F;
yields the

ollowing closed-form expres-
sion: )

v, = EM (819)- 0+ @/M°-(1/% 5° )

Eq. 32
The Reissner functional for this problem

h f:: U.(:._#u) Te o ‘I--(v.x ta) T da v ]dc

Setting the variation of ¢, equal to zero
and using the definition of F in Equation
30, one obeains:

€
2

s ]‘ [ * @ (a/o) - @26 (kD Jax =0
1

Thus, am @, +a - @icpem’ -o

2
or = Ameh” ann ., v o

Eq. 33

The thickness-shear flexibility, s, is de-
fined as follows:

8= (v, +a)/q

Eq. 34
Thus, f; tions 33 and 34,

s = 4r (B_c3/5)?
" Eq. 35
For a homogeneous rectangular-section
beam made of the same material used as
the matrix in the composite, application
of Reissner’s principle gives
s, = (6/5) / G-G h Eq. 36
A thickness-shear flexibility factor, 1, ,
is defined as follows:
n - lh/s Eq. 37
The composite flexibility, s, is placed in
the denominator of Equation 37 because a
small value of s results in the most desir-
able composite, i.e. a stiff one.

It is convenient to introduce the follow-
ing dimensionless factor:
§oamih- e e @E -1 @miem Eq. 38
Combining Equations 14 and 35-38, one
obtains the following result:
Eq. 39

n, = @15 @/ @ /P

Using the typical oconstituent-material
properties and geometrical parameters
listed in Table 2, numerical calculations
of n, were carried out for boron/epoxy,
S-glass/epoxy, and boron/aluminum. Re-
sults are shown in Table 3. It is noted that
n, varies quite widely among the three
typical composite materials considered.

CONCLUSION

Using strength-of-materials theory, a
micromechanics analysis is presented for
a single-filament-row beam. In conjunction
with Reissner’s principle, the results of the
micro stress analysis are used to derive
equations for the flexural rigidity and
thickness-shear flexibility. Numerical re-
sults are p d for b /epoxy, S-glass
/epoxy, and boron/aluminum. At the ex-
pense of greater computational complexity,
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the analysis can be extended to include d = filament diameter
other fiber cross-sectional shapes such as g4 p = flexural rigidities of Inyer
hollow ones, anisotropic filament material, and of laminated composite
and statistical variations, such as nonuni- E = lo itudinal Young’s
form fiber diameter and spacing. FF ulus
: . > = shear strain-energy param
The analysis presented may be applied 1’72
to longitudinal bending of plates, rather Sorm deftoed by Tquacions
than beams, by substituting the following Fy, = horizontal shear force
:':::;;Z for the loagitudinal Young's G f’Gm = shear modulus of fiber and
° matrix
B/ (1 - vygvpy) h = thickness of layer
where Vi1 and Vy are the major and ™ = bending momeat acting
minor Poisson’s ratios. on layer
n = llmmber of layen in multi-
ayer com
ACKNOWLEDGMENTS q = thickness- fo rce on layer
This research was supported by National 1 =d/2
Aeronautics and S Administration 8 = thickness-shear flexibility,
Grant NGR-37-003-055. Robert R. Clary defined by Equation 34
of the Structures Division, NASA Langley h = thickness-shear flexibility of
Research Center, was the technical monitor.  y homo, beam
f = fiber volume fraction
t = time
NOMENCLATURE U, , U = strain energies due to bend-
_ b ing and shear
a = area (general) w = beam deflection
ag,a = cross-sectional areas of fiber =W/
" and matrix g = horizontal center-to-center
2of°? = ;l:m;h?’::ﬁ“ of gi;’“ distance between fibers
a =a +a 8 Y = shear factor, defined in Equa-
g2 = horizontal shear areas of tion .19
s fiber and matrix (see X = position along beam
- Figure 2) z = distance in thickness direc-
a = stretching stiffness of layer tion, measured from middle
A = cross-sectional area of surface
laminated composite o = rotation
bg» by = widths of fiber and matrix B = factor defined in Equation 38
at distance z Y = shear strain
c = h/2 8 = variational symbol
TABLE 2. Comstituent-material propersies and geometric parameters used in caloslating sbear flexi-
bilisy efficiencies.
Matertal pst Fi0-6 pel Z10-8 Ref.
Filament Materials:
Boron 60.0 25.0 4
S-glass 12.0 486 17
Matrix Materials:
Epoxy 0.5 0.185 ¢
Aluminum Alloy 10.0 38 —
Geometric Parameters:
/W = 0386
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1]D = efficiency factor for flexural
rigidity
n = efficiency factor for shear
8 flexibility, Equation 37
VL = major and minor Poisson’s
ratios
o = d/h
o = bending stress
T = shear stress
P = Reissner functional for
b""s bending and thickness shear
Subscripts:
£ = filament
i = general subscript denoting f
and m in general
k = arbitrary layer of multilayer
beam
n = matrix
X = differentiation with respect
to x

TABLE 3. Shear flexibility efficiencies.

Composite ‘ns
Boron/epoxy 236,
S-glassa/epoxy 62,5
Boron/aluminum 0.885
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