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Eq.2

has been bome out for glass-fiber/epoxy
(0.0004 in. diameter fibers) by Tsai (3).
However, so-called monofilament oompos­
ices, which oontain only one row of fibers
per ply, are ooming ioto use. Large-diameter
fibers of boron (4) are used most exten­
sively, but S-glass has also been used (5).
For laminated beams consisting of ooly
a few of these single-filament-row layers,
Equation 2 would not be expected to hold
because of the large amount of low-modu­
lus matrix material located at appreciable
relative distances from the midplane of
each layer. This is demonstrated quantita­
tively in the micromechanics analysis pre­
sented here. The only previous works aloog
this line are the very approximate analyses
due to Norris (6) and Margolin (7).

For a long time, it has been suspected
that thickness-shear* flexibility is signifi­
cant in filamentary oomposites (8, 9). Al­
though some laminate bending analyses
haft iooorporated thickness-shear flexibil­
ity (l~14), none of these have presented
rational miaomechanics bases fot deter­
mining the required sin~le-layer flexibility,
A miaomechaoics analysis based 00 the
Jourawski shear theory, see (1S), is pre­
sented here.
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The typical repeating ooe-quarter aoss
section shown io Fiaure 1 is considered.
Using the Bernoulli-Euler hypothesis as a
first approximation. tbe bending stresS, (T.

is calculated 85 follows:

The macrosoopic properties of a single
layer of filamentary composite material can
be determioedexperimentally. However,
due to tbe large number of tests required,
it is desirable to be able to calculate these
properties from knowledge of tbe geometry
and the ooostituent-material properties.
This has been the impetus for numerous
miaomechaoics analyses, such as tbose sum­
marized in (1).

In beams, an important physical quan­
tity is the flexural rigidity:

D • J z2 E(z) dA Eq. 1
A

wbere A = cross-sectional area. z = dist­
ance from midplane. E(z) = longitudinal
Young's modulus. In laminated rectaogu­
lar-seaioo beams, it has been customary to
usume that each layer is homogeneous.
through its thickness, so that tbe integral
appeariog in Equation 1 can be replaced
by a summation as follows (2) :

n
- \ 3 3)D - (W/3) L. Ek (zk - Ek_1

k-l

where k ~en to the kth ply, n = number
of plies, W = beam width; Zk aod z k-1
are the values of z associated with the
upper and lower surfaces of the kth ply.

For composites motaioing many ftry
small.cfiameter fiben distributed more ot
less randomly through the thickness, Equa­
tion 2 would be expected to be valid. This

• '11M IenII craanene Ihear, horiIoDtal Ihear,
ucI Ihear cIae to beDcIiDa aft aIed bf lOme
iDftIdpeon ....... of~ 1IMat.
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where a,][ = bending cunatwe, E =
Young's modulus, at and am are ~
sectional areas (Figure 1), and subscripts
f and m denote fiber and matrix, respec­
tively.

The bending strain energy in an elemen­
tal volume one unit long and having cross­
sectional area a = at + a m is:

U
b

- (12) J (0/IEf) do + (l/2) J. (0.2 /E.) do Eq .(
Of O. •

Thus, one obtainS

SioCle the beodiog c:urnture is uoiform
throughout • gi'feO cross section, Equations
5-8 can be combined to yield:

The layer flexural rigidity, a: is defined
as follows:

Eq.l0

Thus, from Equation 9,

or

To .how the reduction in f1eDua1 rigid­
ity as mmpated to that implied by Equa­
tion 2, it is desirable to evaluate the stretch­
ing stiffness, .. defined as the axial force
per unit axial strain. Assuming uniform
strain throughout the croa section, one
obtains this expression:

which integrates to yield the foIJowing
result: Eq.12

To use Reissoer's variational principle
(16), the following functional is inuo­
duced:

t z
~b • I (I a·xzo d. - Vb> dt • Eq. 6

t 1 •

This same result is predicted by the 10­
called "law of mixtwes."

Now a flexural rigidity efficiency f8CtOl'
is defined as follows:

Eq.13

The bending moment is defined by

Reissoer's principle states that

Eq. 7

•• 4 J. zo d. Eq. 8

For a bomogeoeous materlal, = I,
as implied by Equation 2.

Subltituting Equatioas 11 and 12 into
Equation 13, ODe obtaios:

1 + (In/16>[<Kll.)-1 <d/h)4(blV>

~ • 1 + (n/4) ('&,11,) -1 <d/h)2(h/1l> Eq. 1.(



It is IeeD that Equation IS provides a
lowet bound which increases as EtlE m is
increased.

mICKNESS-SHEAR FLEXmILITY
OF A LAYER

This analysis uses the joutawski shear
theory, which is presented fot the homo­
seneous cue in elementary texts on
strength of materials. From Equations 3
and 10, the bending st1'aIes acting on the
left and right sides of an element of length
4 J[ (Figure 2) are:
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Table 1 gJftI YIIlues R1 "b 1M prac:tia1
ftlaea of d/h and bIW aOd .........nial
pmpenia typical of boroaIeposy, s.gIasI/
epo:KJ, and·· boroo/alumioum. FOt the
ranges of nlua coveted, it can be teen
that the effect of d/h is much stronger
thaD the effeccs of hI\V and Bt~m •

Table 1 abo ptaeDti nlues of '\ cal­
culated by the following approximate ex­
pnwioa, which is derived by neglecting
the mottiboUOD of the matrix matetial to
lJoth Taod d (7):

"'" (J/4)(d/h) 2 Eq. IS

01 (L) - (./.1)£1' • 01 (I) - (~) CE/.1). Eq. 16

where i = f in at and i = m in am'

7j ACTING ON 0.'

"GUO 2. Schemadc: diapam showing equi­
librium of beDdi.aB IUeSIeS (solid arrows) and
horiJloaIaI shear IU'eIIeI (doaecI haIf-bead ar­
rows).

hlW
~. Bq. 14 Appr"". "\>. Bq. 15

d/h V
f !<won/Bpoxy· S-G18U/BPOXl Baron/Ate

0.80 0.80 0.402 0.491 0.529 0.653 0.480
0.85 0.454 0.549 0.580 0.684 0.542
0.90 0.508 0.615 0.640 0.718 0.608
0.95 0.566 0.682 0.701 0.762 0.677

0.85 0.80 0.427 0.490 0.527 0.646 0.480
0.115 0.482 0.549 0.578 0.678 0.542
0.90 0.540 0.614 0.638 0.713 0.608
0.95 0.602 0.681 0.699 0.755 0.677

0.90 0.80 0.452 0.490 0.525 0.640 0.480
0.85 0.511 0.549 0.577 0.670 0.542
0.90 0.572 0.614 0.636 0.708 0.608
0.9S 0.637 0.681 0.699 0.752 0.677

0.9S 0.9S 0.673 0.681 0.697 0.751 0.677

1.00 1.00 0.78S 0.753 0.764 0.110O 0.750

LOS 0.9S 0.744 0.681 0.696 0.747 0.677
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Eq.25

Eq.26

Eq.27• - ./61<

q • 4 J T f d. + 4 J T. d.
a f a.

'sf • bfax • ' •••b. ax Eq. 23

For the twO constituent materials.
Hooke's law in shear can be expreaeel ..
follows:

Fh·Tf·af+T..... Eq.22

where the shear areas are given by:

Eq.2'

where 'Y = engineering shear strain. It is
noted that the thickness-sbear stresSeS must
be equal to the horizontal shear stresSeS
in order to maintain rotatory equilibrium.

Combining Equations 18 and 22.24, one
obtains the following general expressioo.
for the thickness-shear-suain distribution
throughout the cross section:

acting 00. the bottom fue of the element
(see Figure 2):

Substituting Equations 21, 24, and 25
into Equation 26 and performing rather
laborious integrations, oo.e obtains

The layer thickness shear force, q, is
defined as follows:

Eq.17

Eq.18

z

where area of integration, .0' is shown
cross-batehed in Figure 3.

where

Combining Equations 16 and 17, one 0b­
tains the following:

S~ these bending stresses act 00 idea­
tical croswectiooal areas. the horimDcal
shear force acting 00. the bottom of the
element is:

t
Z
.:LL.-..-__---L..--L.-.__ y

The varying widths, b f and b m' are
given by the following expressions:

Eq.28U•• (112) J Cf l d. + (1/2) I C.ld'
.f a.

which, of roune. is necessary in static beam
theory. This serves ... check on the analy­
sis up to this point.

The thic.Jmes.shear strain energy in an
elemental one-quarter-a'OllHeCtion wlume
one unit long is

Eq.19

Eq.20

Using Equations 20 in Equation 19 and
evaluating the integrals. one obtains:

Eq.21
, - (13) (If - I.) (rZ••Z) l/2 + (I.V/Z) (eZ••2); llI<lSr

, _ (I.V/2) (eZ ••2) ;
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AltbouJb the fint two iotepaIs on the
rilht-haad .ide of Equation 29 can be in­
cepted numeric:a11y for specific ftlues of
the pometric and material puame1el'S of
interest, it does not appear possible to evalu­
ate them in dOled form. Since (G f - G m )
» G m for mmposites of technical inter­
est, one might mosider omitting the tenD
G mW in the deaomiaaton of the two
integrals under discussion. UafOl"tUllately,
however, when this simplifiauioo is made,
the IeCODd integral increases without bound
except in the cue when r = Co which is
not desirable in practice due to fiber mo­
tact problems.

To facilitate the numerical evaluation of
the shear flexibility, it is movement to
introduce the following dimensionless
quantities:

p • ric· .th. C • &/c
Z

, • ZG.U. (ii/q I.C
3

)

Then Equation 29 becomes

, • '1 • 'Z

Eq.30

Eq.31

The thickn". "=ar f1edbility, So .is de­
fined as follows:

• - (V O,. + a)/q Eq. 34

Thus, from Equations 33 and 34, one
obtains

Eq.35

Por a homogeneous rectangulu-section
beam made of the same material used as
the matrix in the mmposite, application
of Reissner's principle gives

'h - (6/5) / c.w h Eq. 36

A thickness-shear flexibility factor, 'I. '
is defined as follows:

11S • sh /s Eq. 37

The mmposite flexibility,s, is placed in
the denominator of Equation 37 because a
smal1 value of s results in the most desir­
able c:omposite, i.e. a stiff one.

It is mnvement to introduce the follow­
ing dimensionless factor:

~ ••/I.Q!, - 1 • (n/4) (1,:1_ 1) (d/h)Z(htW) Eq. 38

Combining Equations 14 and 35-38, one
obtains the following result:

Using the typical mnstituent-material
properties and geometrical parameten
listed in Table 2, numerical calculations
of 'fl. were carried out for boron/epoxy,
5-glaSs/epoxy, and boron/aluminum. Re­
sults are shown in Table 3. It is noted that
'fl. varies quite widely among the three
typical mmposite materials considered.

where
'1 - f [ O/3)(!fl.-I_I)(l·cZ)3/Z.0/zllil/b)0-C) l dC

o (G
f
G;1 _ I) (pz _ C)'. (il/h)

'Z • II (/4) (Ii/b) O_,Z)Z d'
p

Performing the integration to obtain PI
yields the following dosed-form expres­
.ion:

'Z • (i/4)(il/h) (elis)- p. U/J)p3_(i/S) pS] Eq. 32

The Reissner functional for this problem
is:

~•. 1.'z U(v, <,0) ·f 48 .1 (v, • cr) • d. - U ] dt
1 8 f • •••••

11•• (2/15) (W/h) (1l2 /F) Eq.39

Setting the variation of .. equal to zero
and usinB the definition of P in Equatioo
30, ODe obcains:

·Z61. [(v,....)(./4) • ('/Zf;.)(qE.c3/~)Z ] dt .0

1

Thus, U/4) (v,•• ar) - (qP/c;.)(E.c3/~) Z • 0

Bq. 33

CONCLUSION

Using strength-of.materia1s theory, a
mic:romechanic:s analysis is presented for
a sinBle-filament.row beam. In conjunction
with Reissoer's principle, the results of the
micro stress analysis are used to derive
equations for the flexural rigidity and
thickness she8r flexibility. Numerical re­
sults are presented for boron/epoxy, 5-glass
lepoxy, and boron/aluminum. At the ex­
peote of greater mmputational mmpJexity,
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NOMENCLATURE t

U
b

, U
s

8 = area (general)
8 f ,8m = cross-sectional areas of fiber w

Wand matrix W8
of

,8
om = thickness shear areas of fiber

and matrix (see Figure 3) y
8 = a +a

0 = horizontal shear areas of8 sf ,8 sm fiber and matrix (see x
Figure 2) z

8 = stretching stiffness of layer
A = cross-sectional area of

laminated composite Ol

be b widths of fiber and matrix ~m at distance z y
c h/2 6

the analysis can be extended to include
other fiber cross-sectional shapes such as
hollow ones, anisotropic filament material,
arid statistic:al variations, such as nonuni­
form fiber diameter and spacing.

The analysis presented may be applied
to longitudinal bending of plates. rather
than beams, by substituting the following
quantity for the longitudinal Young's
modulus:

£/ (1 - "LT"TL>

where "LT and "TL are the major and
minor Poisson's ratios.

d
d,D

E

n
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fiJameot dWneIer
flexural rigidities of layer
and of laminated oomposice

= Iooaitudinal Young'.
modulus

= shear strain-energy param­
eters, defined by EquatioDs
30 and 31

= horizontal shear force
= shear modulus of fiber and

matrix
thickness of layer
bending moment acting
on layer
number of layers in multi­
layer composite
thickness-Shear force on layer
d/2

= thickness-shear flexibility,
defined by Equation 34
thickness-shear flexibility of
homogeneous beam
fiber volume fraction
time
strain energies due to bend­
ing and shear

= beam deflection
= W/2
= horizontal ceDter-to-eeDter

distance between fibers
= shear faeror, defined in Equa­

tion 19
= position along beam

distance in thickness direc­
tion, measured from middle
surface
rotation
factor defined in Equation 38

= shear strain
= variational symbol

lIlaterial pet :'10-' pel ~'10-' Ref.

Filament Materials:

Boron 60.0 26.0 4

S-glaas 12.0 4.85 17

Matrix Materials:

Epoxy OJ) 0.181S "Aluminum Alloy 10.0 3.8

Geometric Parameters:

htW = 0.86

p= d/h =0.86
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TABU 3. SIJ~.. /",ability e/liciellcies.

Composite

Boron/epoxy

Boron/aluliinUlll
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236.

filament
general subscript denoting f
and m in general
arbitrary layer of multilayer
beam
matrix
differentiation with respect
tox

efficiency factor for flexural
rigidity
efficiency factor for shear
flexibility, Equation 37
major and minor Poisson's
ratios
d/h
bending stress

= shear stress
Reissoer functional for
bending and thickness shear

S-gla.. /epoxy

TIn
TIs

VLT''''TL
p
o
T

Db'~S

m

Subscripts:

f

1

k

,x
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