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Eq. 5

It is well known that the equations of
state which most accurately reproduce ther­
modynamic data over wide ranges of mn­
ditions are usually nonlinear functions of
the equation of state parameters. The in­
creasing use of computers in process design
has made the task of using these complex
equations of state much less formidable.
Consequently, there exists a real need for
a means to determine equation of state
parameters which best represent the avail­
able thermodynamic data.

Starling (1) presented convincing evi­
dence that the simultaneous use of multi­
property thermodynamic data, ;.~., DOC: only
pressure-volume-temperature (PVT) data.
but also enthalpy, vapor pressure and
vapor-liquid equilibrium data, allows de­
termination of equation of state parameters
which predict all properties well. Non­
linear regression methods have been ap­
plied in several multiproperty equation of
state studies at the University of Oklahoma
(2, 3, 4) with good success. The primary
difficulty in using nonlinear regression
methods in multiproperty equation of state
development is that for each additional
property considered, the number of re­
quired calculations is increased dramatic­
ally. Leung and Quon (5) and Qare (6)
used dual linear programming to determine
optimal equation of state parameters for
a linear (Chebyshev) objective function
with and without constraints upon the
enthalpy departure. The purpose of thd
presentation is to demonstrate the utility
of nonlinear programming for determina­
tion of equation of state parameters using
multiproperty data. Example calculations
using a program developed for this pur­
pose are given to show the feasibility of
the method.

The nonlinear programming method

(INLP) used in thd study is baed upon
the Method of Approximation Program­
ming (MAP) technique presented by Grif­
fith and Stewart (7) with certain modifi­
cations. In general terms, the problem may
be stated as

minimize

Eq. 1

subject to

gi (~) :s; bi'

i = 2, 3, ••• , m Eq. 2

and

Eq.3

Assume an initial point AO and expend the
gl in first order Taylor series about ~o

to get

minimize

gi (~O)

+ j~l [::~]

Eq. "
subject to
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minimize the objective function given in
in Eq. 12•

In the INLP algorithm, these changes
are further refined by using a formula sug­
gested by Hartley (9)
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Now define

vi = gi(~O),

i = 1, 2, ••• , m.

Eq. 6

Eq. 7

Eq. 8

~i+1 = ~i + v
min

y* Eq. 14

to obtain the linear problem (with sJack
variables added)

d i = b i - vi'

i = 2, 3, m.

Wij -fag i
] •aX j 0

i 1, 2, m'

j = 1, 2, k.

Yj = x j - XO
j ,

j = 1, 2, ••• , k.

Eq. 9

Eq.l0

Eq.11

Eq.15
This step effectively aa:elerates the move­
ment toward the optimum ~ The new ~
are determined acmrding to Eq. 14 and
the process is repeated until a stationary
point is reached. Although the acceleration
towards the minimum aids greatly in con­
vergence, the presence of the slack vari­
ables can cause the method to be somewhat
insensitive in the vicinity of the minimum.

The INLP technique described here was
compared with the MAP technique using
an example problem given by Griffith and
Stewart (7). The problem is

muimize

The results on an iteration-by-iteration
basis are shown in Table 1. It is eVident
that the INLP algorithm reaches the mui­
mum somewhat more quickly than the
MAP algorithm. This is due primarily to
the use of Eq. 14.

minimize

Eq.12

subject to
k

j~l wijY j + Yk+i-1 = d i Eq. 13

The system of equations represented by
Eq. 12 and 13 is then solved using any
convenient linear programming algorithm.
(The simplex method given by Kuo (8)
was used in this study). The results of
the linear programming algorithm, yr, are
the changes in the initial point ~o which

subject to

2· x
2

2 s 25Xl +

2 2Xl - x 2 s 7

~~Q

Eq.16

Eq.17

Eq. 18

Eq.19

TABU 1. CHl~ 0/ INU .." JtMP.~ /or lIN Gril/ilb .." SUVIlrl "_"..

iteration INLP objective MAP objeotlve INLPz. IIAP~ INLPZs IIAPsSDumber fUJlctlon tunctlon

0 3 1 1 1 1 1
1 12.50 , .(,75 2 3 2
:I 11.12 9 ".06 3 3 3
3 11.00 lo.s3 " " 3 J.87

" 11.01 3.99 3.03, 11.00 " 3



TDU 1. /II.",.,.,.,.,,,.,,~ rftrIII6.

~~Of ~:J: A~~t. A;;'~t. (crl\~~

Boao&" 1.37 2.69 .275763
INLP 2 0.0016 0.52 3.28 .275763

.276608 1.S3960

.283555 l.5396O
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The INLP algorithm was then compared
to the multipropeny nonlinear regression
algorithm developed by Bono (2). Both
programs were set up to handle PVT and
enthalpy data simultaneously to determine
values for Co and "I in the Benedict-Webb­
Rubin (BWR) equation of state. The 0b­
jective function used with the INLP was
to minimize the sum of the square of the
relative deviations in compressibility fac­
tor. The average absolute deviation in com­
pressibility factor was constrained to be
less than 0.005 and the average absolute
deviation in enthalpy was constrained to
be less than 0.5 Btu/lb. The results of these
calculations using 20 PVT and 13 enthalpy
values from the -lOO°F isotherm for meth­
ane (10, 11) are shown in Table 2. When
the nonlinear regression program and the
INLP program are started at the same
initial point, the final results are com­
parable, but the INLP takes half as many
iterations, with equivalent computation
time at each iteration. Other results for
the INLP program show that although the
objective function is fairly sensitive to vari­
ations in "Y , the program does not force
"Y toward an optimal value. This is due pri­
marily to the relatively smal1 contribution
of the term involving 'Y in the objective
function compared to the term involving
Co- The slack variables are sufficient to
correct for errors in 'Y without forcing
it to vary.

The major importance of the INLP
method is in the inherent ease with which
additional thermodynamic properties may
be considered. All that is necessary when
adding a new type of property data to the
problem is the addition of a constraint
equation for that property. The relative
"tightness" of the constraipt may then re­
flect the experimental accuracy of the prop­
erty data. It is this factor, the ease with
which a large variety of multiproperty
data may be incorporated, that makes the
INLP method very attractive for use in
equation of state development.

m

NOMENCLATURE
constants of inequality
differences, defined in Eq. 8, 9
general functions of X
number of variables
number of constraints plus one
value of g\ (x) at.o

value of ~ at .0
parameter set j

optimal set of changes in
parameters
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