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Many significant problems associated
with the use of equations of state are re-
lated to the traditional reliance on pure-
comp P e-vol temperature
(PVT) data for equation of state develop-
ment. It is proposed that a number of these
problems can be solved by utilizing multi-
component, multiproperty thermodynamic
data in establishing the equations.

The most fundamental problem is that
equations of state developed from PVT
data, while often accurate in reproducing
PVT properties, generally are less reliable
for predicting phase bebavior and thermo-
dynamic properties. Ellington and Eakin
(1) have pointed out that if the uncer-
tainty in PVT data are of the order of
one percent, the uncertainty in thermo-
dynamic properties obtained by differen-
tiation generally will be of the order of
10 percent. If a second differention is in-
volved, the uncertainty in the derived pro-
perty may approach 100 percent. In addi-
tion, equations of state developed from
pure-component data are often restricted
to use with lower molecular weight com-
pounds. This limitation occurs because
vapor phase data for heavier materials are
scarce in the literature and experimentally
impractical to obtain. Finally, the pure-
« P h ¢ make use

. VT approach

of the wealth of experimental mixture data
that are available and which could be used
a; additional criteria for defining equations
of state.

Until recently, attempts have been made
to solve these problems individually. Mar-
tin (2), Opfell, Pings, and Sage (3), Hust
and McCarty (4), and others have pro-
posed conceptual methods for use of multi-
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property data, but effective reduction to
practice, particularly with regard to mix-
has not been reported. Eakin and
Ellington (5), Simon and Briggs (6), and
Opfell, Pings, and Sage (3) have used mix-
ture PVT data in equation development
with some success, but did not solve the
problems associated with predicting phase
equilibria and thermodynamic properties
nor the limitations with regard to heavy
components. Starling (7) has reported
some success in treating heavy components
through use of phase equilibria data for
mixtures containing high molecular weight
hydrocarbons. Multicomponent phase equil-
i{ria data were also utilized by Chao and
Seader (8) for determining solubility
parameters and liquid fugacity coefficients
of components which, in the pure state,
are normally gases under the conditions
of interest. Phase equilibria was then pre-
dicted using Hildebrand’s regular solution
equation (9) for the liquid and the Red-
lich-Kwong (10) equation for the vapor.
Orye and Prausnitz (11) have made use
of binary phase equilibria data to obtain
rs for use in the Wilson equation
(12). Multicomponent phase ez:)illlibth were
then predicted using the Wi equation
for the liquid and the virial equation for
the vapor. However, use of Wilson
equation requires binary data for the Y4n
(n—1) component pairs in an n-component
system and this quantity of data is seldom
available for systems containing more than
four components. Thus some progress has
been made in attacking various aspects of
cursent problems in equation of state de-
velopment but each attempe lacks gen-
erality.

It has been pointed out by Starling sad
Proc. Okls. Acad. Sci. 52: 73-81 (1972)



velopment. These calculations were made
to study the proj methods, rather than
to obtain a final equation of state relation.
Subsequent work, in which multiproperty
analysis has been utilized to develop an
accurate and self-consistent equation of
state for fluids, will be published in the
near fature.

THERMODYNAMIC
CONSIDERATIONS

It can be shown that the state of a homo-
geneous phase containing C components
is fixed by specification of C+1 intensive

taneous use of all of these properties in
developing an equation should yield a
much more general result than use of a
single property.

The mathematical form of an equation
of state which will be suited to this ap-
proach will require considerable effort to
determine. Certainly, it should conform to
theoretical considerations as much as pos-
sible and be analytically differentiable
with respect to all intensive variables. The
determination of equation parameters will,
in general, require the use of large amounts
of data. Mathematical treatment of these
data can be effectively established only
through the use of statistical methods.

STATISTICAL APPROACH
For an assumed form of an equation of

state as a function of temperature, density,

variables (18). Furthermore a com
choice for these wvariables (19) is tem-
perature, T, molar density, p , and com-
t mole fractions, x;, i=1,2...(C—1).
he concept of an equation of state, then,
asserts that all thermodynamic properties
may be expressed as functions of these
varisbles. Of course, thermodynamics can-
not predict the mathematical form of the
equation; this is usually determined by
experiment and relevance to molecular
theory. Theoretical forms of equations of
state provide sound starting points for de-
velopment, but ultimate recourse must be
to empiricism based on experimental evi-
dence of bebavior. It is with respect to
choosing the types of thermodynamic data
which are analyzed that the most signifi-
cant improvements can be made in equa-
tion of state development. :

composition, and par s, the statistical
problem of interest is to determine the
parameter set which best describes all
thermodynamic behavior. The method
chosen is to seek that set of parameters
which minimizes the relative difference be-
tween experimental and computed thermo-
dynamic properties. Arguments in favor
of this choice are given in the following
analysis.

It is assumed that the experimental
values of a thermodynamic property, R,
are normally distributed. Denoting the ex-

value and variance of the experi-
mental value of R by u (R) and ¢ 2(R),
the probability distribution of the experi-
mental value of R, P(R), is Eq. 1

2
2 (R = [2002(R) 1™ exp (- %‘:—‘)ﬁu—l
R]




Coasideration is now given to
ability distribution of a set of

script notation, R, is

considered, notation Ry is used, where
“k” refers to a fixed set of values of the
defining intensive variables. Thus, for
properties such as pressure or enthalpy,
which apply to a single phase, “k” cor-
responds to a fixed phase temperature
(Ty ), molar density ( py ), and compon-
ent mole fractions (xi, i 1,2,..C). On the
other hand, for properties such as vapor-
liquid equilibrium ratios or component K-
values in a two-phase system, “k” refers
to fixed values of T, along with vapor
and liquid densities ( oy P ) as
well as compositions of the ocoexisting
phases (xyy and xyy ). If it is assumed
that Equation 1 is valid and that prob-
abilities are independent, then the prob-
ability distribution of a set of experimental
thermodynamic property values, P{Ry} ,
is given by

BlRy ) = T5TR Ry )

= 'jwk[Z#oz (Ry) ]_*

2
exp(—z z IJ—J—])R ’;—“(R X
3 x 2 (Ryy)

The value of Equation 2 is that it provides
a rigorous mathematical framework for the
estimation of equation-of-state rs.
The concept (20) to be applied is that
maximization of the likelihood of occur-
rence of the set of thermodynamic data
{Rx} corresponds to maximization of the
probability distribution function P{Ryx} .

Formulating this approach requires the
additional assumption that the equation
of state will yield the true value of the
thermodynamic property in mn:in. The
true value of the property is by

Eq. 2

(Rjk)true = "jk({r}jk" {a}) Eq. 3

where bt;‘:be functional zrm of in:‘ is pro-
vided equation of state. In Equation
" 23, the notation {rg} is used to indicate
the set of intensive variables characteristic
of the jth property in the kth state.
{A} is used to denote the set of equation-
of-state parameters to be considered. If,
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for example, unlike interaction parameters
masm:edmbefmcdomofpnnm-

t parameters and the nth parameter
zrtbemthwm t is denoted by

ponen
Amn, then {A} = {Apn}. For simplicity,
th'nisd:e{} { }ideud.nlsxongh

“(Rjk) = njk Eq. 4
For many properties it may be assumed

that devistions of the data are
proportional to the expected values; i.e.,
°(Rjk) = pj”jk Eq. 5

where &) is the constant of proportionality
for the jth property.

The use in Equation 3 of estimated val-
ues of equation parameters, Amn, yields
estimated values i and stan-
dard deviations & (R sk ). i
mated values are substituted into Equation
2 for P{Ryc} , an estimated probability
distribution is obtained. Maximization of
the mnltiniefunction for P{Ry} with
respect to the Amn then yields the best
estimates for the parameters. When experi-
mental data are very accurate, it is not
unreasonable to assume that standard devi-
ations of the data are proportional to the
experimental values. Thus

o (Ry) = ByRyy Eq. 6
Use of Equation 6 simplifies the analysis
oomiderfgly. The form of P{Rgx} be-
comes

2 2 -k
b4 (Rij; ;[’nﬂj L I

s . 7
7 Eq

exel-h T i, z (- g%

3

Maximization of P{Ry} is then equiva-
lent to minimization of the function

-zl k.2
o*= zi 3z -k
jﬂik Rij Eq. 8
Differences in the values of &) are a

measure of accuracy differences in



76

mental data for different properties. If the
relative errors can be estimated, then

8
Wy - (gi‘)z Eq. 9
can be estimated and the minimization of
Q* in 5?mion 8 is equivalent to minimi-
zation

Eq. 10

Q=ZLWw ;[1-%15]2
3 Ix 1

Thus, the W; have the role of weighting
functions in the analysis. The condition for
a minimum function Q in Equation 10 is
given by

ILes (Cw Zl1-T4 L gy o
nm A""[j“jk ;ﬁ') 'jka—d.y °I".q. 11

In the absence of constraints such as critical
conditions of pure components, etc., vari-
ations in the Ann;, denoted by ¢ Amn , are
independent and the quantities within the
brackets in Equation 11 are all identically
zero; thus

an. X
3k han

Eq. 12

The relations represented by Equation 12
are the “normal equations” of the regres-
sion an;ly:is. These mustfbe solved simul-
taneously for estimation o tion param-
eters App . It should be n:ﬁq;ga that if coa-
straining conditions are considered, usual
methods, such as use of Lagrangian multi-
liers, may be applied to determining the
mn .

For any realistic equation of state, the
normal equations are non-linear. Searching
techniques, such as steepest descent, may be
used (6). However, since the equation of
state is analytic, a linearization technique
(20) is usually acceptable. Simplest is the
Gauss-Newton method (21) using the trun-
cation of the Taylor’s series_expansion of
#Fgc which is linear in the Ampo and zero
order approximations for the derivatives.
The approximating function may then be
written as

= = % an = _=
g n s B s 2] J3 R, """’]sq. 5

where A are guessed values for the
An. mnormaleqmﬁomthenbeoome

a set of equations which are linear in the
correction terms (A rg ™ )

3 29
1 x Ky o~ =
W ‘:‘: 5 (5tlo f f [;——Lx"]am"—a!”)
~zw zl

3 Ry
CMag 2Ty
J 3K Ryx 0 Rju)° [B—J')o

The set of simultaneous equations repre-
sented by Equation 14 can be solved by
matrix methods. Of course the values for
the A,y obtained in this are only
approximate because the truncated Taylor’s
expansion is accurate only in the limit as
the A,y approach the A, . It is there-
fore necessary to treat the approximate
values of A, as new guessed values in
a second iteration. In principle, this itera-
tive procedure can_be continued until the
correction terms (Ars — Arso) ar-
bitrarily small.

It is convenient to represent the relations
of Equation 14 in matrix form

Eq. 14

Eq. 15

The elements of the square matrix A are

AB = C

3 7. a7,
A, =Tw r 1 (i ik, Eq. 16
mT5N K R Gx lo Gxil, 1

and the elements of the column matrices
B and C are

By, = (B rso’ Eq. 17
c,=zw T i [1__'_’:&] (;ii!)
9§ 3 x Ry Ry © P © Eq 18
where
g =M (ml) ¢+n Eq. 19

h=M(r-1l_+s

Eq. 20

and M is the number of parameters to be
determined in the pure component equa-
tion of state. The solution of Equation 15
is then

B =alc Eq. 21

where Ajbis the inverse of A. The elements
of the inverse matrix, A}, are related to
estimates of the generalized covariances by
the following equations,

TV (Rgye Reg) = B2 aj

Eq. 22
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Var (Kmn' Rnn) = (31)2 A;g Bq. 23

where B, - 1

~-0) ? v

;1 -:ijzl'iq. 24
x k

where N is the total number of data treated
and U is the number of parameters esti-
mated in the regression calculation. Esti-
mates of the relative errors in the prop-

erties other than R, may be obtained using
Equation 9 in the form

A
-
(Wj)

Eq. 25

Consideration must be given to the as-
signment of relative errors in the treat-
ment of multipmﬁx:y data. This weigh-
ing is important use proper statistical
weighting must insure least bias in esti-
mated parameters. Several methods can be
used for assigning values to the weighting
functions given in Equation 9, including:
(a) direct estimation of the relative uncer-
tainty, 83 , in Equation 6, through knowl-
edge of errors in the pertinent dependent
variables, (b) indirect estimation of g,
through regression on individual proper-
ties, (c) indirect estimation of &; through
regression on multiproperty data. In appli-
cations of the third method, constraining
conditions would commonly be imposed.

Regardless of the equation of state forms
to be studied, the treatment of multiprop-
erty data leads to large computer storage
requirements. For this reason, programs
treating individual properties should be
developed and proven before .combining
to treat multiproperty data. To this end,
regression programs for PVT and enthalpy
data were developed separately and then
combined to treat these two types of ther-
modynamic data simultaneously. Calcula-
tions discussed in the next section were
made with these programs to demonstrate
the feasibility and practical value of equa-
tion of state development from multiprop-
erty analysis.

TEST CALCULATIONS
To substantiate the practical valoe of
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tzin & final equation of state
these calculations, methane was chosen
the pro fluid and the BWR equation

(22) was as the prototyre equation
of state. The BWR expression for pressure
is

c
= 9, 2
P = RTp + (BORT-AO-;E)D

Eq. 26

+ (bRT ~ a)p3 + ax 96

e .3
+t73 Qsyp Y expl-v0 Y
T

while the BWR expression for the iso-
thermal enthalpy correction is

4c,
(B,RT = 2R, - —;7-)9

H-H® =
.2
+ X%(2bRT - 3a)p2 + -g— aaps Bq. 27
»&0? g,
-k exp(-‘ypz) + mzexw-rpz)l
Values of the eight BWR rs for

methane reported by Benedict, Webb, and
Rubin (22) are: B = 0.682401, A, =
6995.25, C, = 275763 x 10%, b = 0.867325,
a = 2984.12, a = 0511172, ¢ = 498106
x 10°, v = 1.53961. The units for these
parameters correspond to pressure in psia,
temperature in °l{”::d density in 1b-mote/
cu ft. The value of the gas constant con-
sistent with these parameter values is R
= 10.7335.

Regression calculations were made using
(a) only PVT data, (b) only endu.lpy
data, and (c) PVT and enthalpy data si-
multageously. The data utilized were the
PVT data of Hoover (23) and Venaix
(24) at —99.7°F and the enthalpy data of
Jones, e¢ &), (25) at —100.0°F. Hoover’s
data were used for pressures below 700
psia. Vennix’ data were used for higher
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20 2
ew = I [l_ﬁ] Eq. 28

thalpy data alone were considered is

NHP (HC - )
Q(H) = mfl (1 - ngt—_—gr)—"“] Eq. 29

NHP is the number of enthalpy data
points, H° is zero pressure enthalpy and
(HE — H°)p (HC — H°)y, are,
respectively, the experimental and calcu-
lated enthalpy corrections for the mth data
point. When PVT and enthalpy data were
t d simul ly in the regression
calculations, the function Q(V + H) was
minimized.

Q(V + H) = Q(V) + w(H), Eq.30

where W is the weighting function de-
fined in Equation 9. Density values used

in calculating the enthalpy correction, -

Equation 27, were determined by trial and
error using the BWR expression for the
pressure, Equation 26. The results of mini-
mizing Q(V), Q(H), and Q(V + H) are
summarized in Table 1. The statistical esti-
mate of C, for each calculation is given,
along with the calculated estimate of the
supdnrd deviation in C,, 7 (C,). The
estimated standard deviations of the data
:‘l:'juutions 24 and 25) are given as 5 (z)
Z (H). Average devistions of calcu-
lated compressiblity factors and enthalpy
corrections from the experimental values
also are given in Table 1. Deviations at
the individual pressures of the data are
in Tables 2 and 3. In these tables,

o (BWR) is the original coefficient,
Co (V) is the coefficient determined from
PVT data, C,(H) is the coefficient de-
terinined from enthalpy data, and C, (V

+ H) is the coefficient determined from
simultapeous treatment of PVT and en-
thalpy daca with W = 1.0.
Certain practical benefits of multiprop-
erty analysis are demonstrated by the f:hle-
a0 - Ly <

I3 ve &
jective

i

m. r 2 4
is to determine a value of C,
that the calculated enthalpy correc-
tion is, on the average, within 2.7 percent
of the imental data ac —100°F. At
the same time, it is required that comp

mental density data at —99.7°F deviate
from the experimental values by no more
than 0.7 percent on the average. Using the
original coefficient, C, (BWR), it may
be noted from Tables 2 and 3 that peither
of the above criteria are satisfied when
C, (BWR) is used. The traditional regres-
sion approach using only PVT data to
determine C, (V), as may be noted in
Table 2, gave a low resultant average devi-
ation of calculated compressibility factors
from the experimental values of 0.52 per-
cent. However, the average deviation of
calculated enthalpy corrections from ex-
perimental values is 3.30 percent. Regres-
sion on the enthalpy data alone to deter-
mine C, (H) yields an improved descrip-
tion of enthalpy behavior compared with
results using PVT data, as noted by the
average deviation of 2.86 percent in Table
3. However, calculated compressibility fac-
tors using C, (H) deviate from the experi-
mental values by an average amount of
2.11 percent.

Finally, multiproperty analysis was ap-
plied. Because the problem (as stated) re-
quires average enthalpy deviations to be
less than 2.7 percent, regression calculations
using a number of different weighting func-
tions could have been carried out. Standard
deviations estimated from regression on
PVT and enthalpy daca individually were
B(Z) = 092 percent and F(H) = 3.58
percent, so that Equation 9 in the form

E%

2
w =[B2)_
B

yields a value for W of 0.00676. But when
regression calculations were made with
various W, the criteria of the problem were
satisfied for all values of the weighting
function over the approximate range 0.6
< W < 1.2. These data are summarized

Eq. 31
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TABLE 1. Sswsmsary of resmlts of regression calcmlations.

We Paramef eatimat. =~ 3 4 0
mn:fu'ﬁ"‘ Co X 103" &(c:) % 103 B(s)s“' dov. ( )(H) x“‘ dov. (ﬁzm
0.0000~ 283553 582 092 _ 0.52 3.30
0.0676 283331 597 095 3.64 0.50 321
0.1000 283230 653 1.04 3.29 049 317
0.2500 282803 839 1.36 2.72 0.46 292
0.5000 282227 1056 175 247 043 2.76
0.7500 281727 1213 2.06 238 0.52
1.0000 281225 1348 2.34 234 0.65 2.65
10.0000 277137 2450 6.81 2.16 1.72 275
100.0000 275708 2983 2201 2.20 211
b 275708 4964 3.58 211 2.86
2 This calculstion minimizred Q(V) in Equation 28.
b This cakulation minimized Q(H) in Equation 29.
TABI.;g ;.OFDcm'ah'oﬂ of calculated methone compressibility fact from experis ! velnes =
Deviations (%)
Preassure, .
paia Co (BWR) Co (V) Co (H) Co (V4+H)
148 —0.17 —0.10 —0.17 ~0.12
194 —0.02 0.08 -0.02 0.05
252 —0.01 0.12 —0.01 0.08
308 —0.17 0.00 —0.17 —0.05
347 —0.35 —0.15 —0.35 —0.21
—0.43 0.17 —0.43 —025
454 —0.29 0.03 —029 —0.07
503 —0.05 0.32 —0.05 021
769 —1.39 —0.11 —1.40 —0.49
797 —1.45 0.08 —146 —0.38
862 —2.19 044 ~2.21 —0.34
870 —2.36 0.45 —2.38 —0.39
—2.65 0.61 —2.68 —0.37
912 —291 0.64 —2.94 —042
958 —3.25 0.80 —3.27 —0.41
1013 —3.51 0.86 —3.54 —0.45
1136 —4.79 0.83 —3.82 —0.55
1420 —4.56 —0.07 —1.41
1742 —5.30 —1.16 —5.33 —2.40
2149 —7.07 —3.35 —7.09 —4.46
Avg. dev. (%) 2.16 0.52 211 065

& Weighting function of unity used for determination of Co(V+-H).

TADI.IMS‘;I,DW of calcnlated methane ewthalpy corvectic from experk ! velwes &
—I100°F,
o Devistions (%)
Paia Co (BWR) Co (1) Co (V) Co (V+E)®
100 —1.08 —1.06 —2.39 —2.02
200 —4.72 —471 —628 —589
360 —5.35 —5.34 —698 —647
400 —384 —382 —s5.62 —s07
500 —274 —272 —4.70 —4.13
600 —1.39 —1.38 —3.69 —3.05
700 205 2.10 —098 —0.05
800 487 494 —068 1.10
900 599 6.08 —1.72 0.61
1000 321 327 —1.56 —0.18
1200 095 099 —2.30 -—1.35
1500 —0.35 —0.32 —3.05 —2.27
2000 —048 —0.45 —290 —219
Avg dev. (%) 282 286 330 265

& Weighting function of unity wsed for determintion of Co(V4-H).
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in Table 1. The

crepancy between the optimum W and the
W expected from Equation 9, as well as
the unusual bebavior displayed in Table
1, are as yet unexplained.

This illustrative problem demonstrates
that when use of single property data for
determining equation-of-state
leads to unacceptable calculations of other

roperties, re; ion with multiproperty
g“fe can yielxg an equation which is suffi-
ciently accurate for predicting the prop-
erties in question. Further, this problem
demonstrates that constraints, such as those
considered, can be utilized to determine
the range of permissible values of weight-
ing functions.

There are a number of advantages of
multiproperty analysis that cannot be
shown with the simplified calculations
presented here. Multiproperty analysis ob-
viously can be quite valuable in testing
proposed new equation of state forms to
insure self consistency in prediction of dif-
fering types of thermodynamic behavior.
In addition, appropriate modifications of
the temperature, density, and composition
dependence of an equation of state can be
discerned from multiproperty analysis. In
this regard, analysis of volumetric and en-
thalpy data are being used to find modifi-
cations of the BWR equation which yield
img»roved predictions of thermodynamic
behavior at low temperatures. Further, the
use of multiproperty data in nonlinear re-
gression -na!ysis can improve the converg-
ence characteristics of the ired itera-
tive solutions. It has been observed, for
example, that regression calculations using
enthalpy data alone often tend to oscillate
or even diverge. These oscillations have
been damped the simultaneous use of
PVT and enthalpy data. These and other
practical advautages of multiproperty
analysis will be discussed in more g:mil
when the results of subsequent studies are
presented.

NOMENCLATURE
Apn Equation of state
parameter
AB,C Matrices of normal
equations
A,,B,,C,, Parameters in BWR
L equation

Enthalpy

H° Enthalpy of ideal gas
HE Experimental enthalpy
HC Calculated enthal
P(R) Probability distribution
function for R
Q Regeewion fun
Regression ction
Q* Regression function
R Denotes a thermodynamic
property, also Universal
Gas Constant
Ry, Values of jth property
in kth state
T Absolute temperature
W, Statistical weighting
function
x, Mole fraction of ith
component in a mixture
V4 Compressibility factor
ZE Experimental
compressibility factor
zc Calculated
compressibility factor
Greek Alpbabes
a Parameter in BWR
equation
B8, Relative standard
deviation
Y Parameter in BWR
equation
7 (R) Equation of state
expression for
property R
P Molar density
¢ 2(R) Variance of property R
Standard deviation
u (R) Expected value of
property R
Orher
z Summation
L3 Product
{} Mathematical set
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