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EQUATION OF STATE FROM MULTIPROPERTY ANALYSIS-
GENERAL DEVELOPMENT

Ie. E. Starling and J. f. Wolfe

School of Chemical Engineering and Materials Science, University of Oklahoma, Norman,
Oklahoma and Esso Production Research Company, Houston, Texas

Many significant problems associated
with the use of equations of state are ~
lated to the traditional reliance 00 pure
component pressure-volume-temperature
(PVT) data for equation of state develop
ment. It is proposed that a number of these
problems can be solved by utilizing multi
component, multiproperty thermodynamic
data in establishing the equations.

The most fundamental problem is that
equations of state developed from PVT
data, while often accurate in reproducing
PVT properties, generally are less reliable
for predicting phase behavior and thermo
dynamic properties. Ellington and Eakin
( 1) have pointed out that if the uncer
tainty in PVT data are of the order of
one percent, the uncertainty in thermo
dynamic properties obtained by differen
tiation generally will be of the order of
10 percent. If a seoond differention is in
volved, the uncertainty in the derived pro
perty may approach 100 percent. In addi
tion, equations of state developed from
p~mponeot data are often restricted
to use with lower molecular weight com
pounds. This limitation occws because
vapor phase data for heavier materials are
scarce in the literature and experimentally
impractical to obtain. Finally, the pure
companeot PVT approach cannot make use
of the wealth of experimental 'mixture data
that are available and which oould be UIed
as additional criteria for defining equations
of state.

Until recendy, attempts have been made
to solve these problems individually. Mar
tin (2), Opfell, Pings, and Sage (3), RUSt
and MdMty (.(), aod others have pro
po.ed conceptual metbads fOl' use of multi-

property data, but effective reduction to
practice, particularly with regard to mix
tures, has not been reported. Eakin and
EllingtOD (5), Simon and Briggs (6), and
Opfell, Pings, and Sage (3) have used mis
ture PVT data in equation development
with some success, but did not solve the
problems associated with predicting phase
equilibria and thermodynamic properties
nor the limitations with regard to heavy
components. Starling (7) has reported
some success in treating heavy mmpooenu
through use of phase equilibria data for
mistw'es containing high molecular weight
hydfOC81'bons. Multimmponent phase equil
ibria data were also utilized by Chao and
Seader (8) for determining solubility
parameters and liquid fugacity ooefficients
of mmpooents which, in the pure state,
are normally gases under the mnditians
of interest. Phase equilibria was then pre
dicted using Hildebrand's regular solutioo
equation (9) for the liquid and the Red
lich-Kwong (10) equation for the vapor.
Orye and Prausnitz (11) have made QJe
of binary phase equilibria data to obtain
parameters fOl' use in the Wi180n equation
(12). Multicomponeot phase equilibria were
tben predicted using the WilJon equatioo
for the liquid and tbe virial equation for
the vapor. However, use of the Wilsoo
equation requires binary data for the ~n

(n-l) component pairs in an n-oompooent
system and this quantity of data is .ldom
available for systems c:ootaining more than
four components. Thus some ptopell ...
been made in attacking various upeca of
current problems in equation of state de
velopment but each attempr Iacb gen
erality.

It has been pointed out by Starlin, aad
Ptoc. 0Ida. AacL Sci. 52: 7J.81 (1972)
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Wolfe (13), howner, m. there is • uai
lied .pptVKb by which aD of cbae prob
lems ate treaced. Spedfial1ly, simukaaeous
.. of aD .ftilable thenDodynamic: ira
Iormatioa, ioduding daca Iw both mix
tures aod pure mmpoaeau, is pmpoeed as
• buis foi establishing equatioaI of _te
A statistical method is praeoted ia this
.-per which can uti1i2le PVT, phue equili
bria, aod any other thermoclynamk: prop
erty data which can be !elated through an
equatiou of state. This would include en
tIIalpy, specific beau, and Joule-Thomson
coeffidencs as well as infinite dilution
K-values (14) and thermodynamic data ob
tained by differential techniques, such as
beacs and 'VOlumes of mixing (IS, 16) and
partial molal volumes (17).

Prototype test calculations, in which
PVT and enthalpy data ate utilized simul
taneously, ate presented in this paper to
demousuate the practical value of multi
property analysis in equation of state de
velopment. These calculations were made
to scudy the proposed methods, rather than
to obtain a floaf equation 01 state !elatiou.
Subeequent work, in which multiproperty
analysis has been utilized to develop an
accurate and self-c:oosisteot equation of
state for fluids, will be published in the
near futute.

THERMODYNAMIC
CONSIDERATIONS

It can be shown that the state of a homo
seoeous phase mntaiaiog C componencs
is fixed by specification of C+1 iatensive
variables (18). Furthermo!e a mnveoieot
choice for these variables (19) is tem
peratute, T, molar density, p , and mm
poueot mole fractious, Xto i=I,2.••(C-l).
The c:oocept of an equatiou of state, then,
asserts that aU thermodynamic propenies
may be expre:aed as functions of these
variables. Of coune, thermodynamics can
not predict the mathematical form of the
equation; this is usually determined by
experiment aod relevance to molecular
theory. Theotetic:a1 forms of equations of
state provide sound stanio8 points for de
velopment, but ultimate rec:oune must be
to empiricism hued on experimental evi
deace of behavior. It is with respect to
choosing the types of thermodyoaaiic data
which ate analyzed that the most sipifi
cant impl'OftmeOts can be made in equa-
tion of state clnelopment. .

The equation of ICate~ is po
eral and, if it is to be applied 10 seoenJ,
there is DO Josical reuoo for preferring
the .. of one type 01 experimental data
cner another. 10 fact, valuable information
about behavior with respeet to changes in
the iaceome variables (and, thetefore, in
formation about the form of the equation
iaelf) is lost by iporing different types
of data. Specific heat, enthalpy, and Joule
ThomIou meffident data, for example,
give information regarding temperature
effects. Component chemical potentials (Or'
fugacities) obtained from phase data pro
vide the sigoilic:aoc:e of mmpositioo effeecs,
as do other experimental pamal molal
properties. It seems, then, that the simul
taneous use of all of these propenies in
developing an equation should yield a
much more general result than use of a
single property.

The mathematical form of an equation
of state which will be suited to this ap
proach will require considerable effon to
determine. ~rtaioly, it should coolorm to
theoretical considerations as much as p0s
sible and be analytically differentiable
with respect to all intensive variables. The
determination of equation parameters will,
in general, require the use of large amouoCS
of data. Mathematical treatment of these
data can be effectively established only
through the use of statistical methods.

STATISTICAL APPROACH

For an assumed form of an equation of
.state as a function of temperature, density,
composition, and parameters, the statistical
problem of interest is to determine the
parameter set which best describes all
thermodynamic behavior. The method
chosen is to seek that set of parameters
which minimizes the relative difference be
tween experimental and computed thermo
dynamic propenies. Arguments in favor
of this choice are given in the following
analysis.

It is assumed that the experimental
values of a thermodynamic property, R,
are normally distributed. Denoting the ex
pected value and variance of the experi
mental value of R by p (R) and t1 2(R),
the probability distn"butiou of the experi
mental value of R, .!(R), is Eq. 1

! CR) '"' [2Q2 CR) ]-"l exp (_ LR - uCR) J2 J
217 2

CR)
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for example, unlib incenaioG puamecen
ue ....... 10 be fuaetiool of pare c:oaa
pooent paramecen aod the nth parameter
for the mth com~t is cIeDoced by
A mn , then {A} = {Amn}. POI' limplidty,
this is the ooIy cue mosidend. although
the method may be applied 10 unlike in
teraction parameters. If puamecen in the
trUe equation of state were Iaacnna euctly,
expected values of thermodynamic prop
erties would be given by

" (Rjk) = '7jk Eq. "

For many properties it may be IIIIWIled
that standard deviations of the data ue
proportional 10 the expected values; i.•.,

a (Rjk) = #j'7 jk Eq. 5

where IJj is the constant of proportionality
for the jth property.

The use in Equation 3 of es.!imated val
ues of equation parameters, A mn, yields
estimated expected values ifJk and stan
dard deviations if (R jk ). If these esti
mated values are substituted into Equation
2 foe .r{Rjk} , an estimated probability
distribution is obtained. Maximization of
the resulting function for P{Rjk} with
respect to the Amn then YIelds the best
estimates for the parameters. When experi
mental data are very accurate, it is not
unreasonable to assume that standard devi
ations of the data are proportional to the
experimental values. Thus

U(Rjk) = #jRjk Eq.6

Use of Equation 6 simplifies the analysis
mnsiderably. The form of l{Rjk} be
comes

Coasideracioo is DOW PftIl 10 the pr0b
ability distribution of a at of data. To
clisUnsuish diflaeot P • the sub
script notation, RJo is~ R1 muId
be pressure, R1 enthalpy. etc. To at apart
the thennodynamic staleS of the systemS
coosidered, the notation RJk is used, where
"k" refers to a fixed set of values of the
defining intensive variables. Thus, for
properties such • pressure or enthalpy.
which apply to a single phase, "k" CDr
responds to a fixed phae temperature
(Tk ), molar density (Pk ), and compon
ent mole fractions (Xlk, i l,2....C). On the
other hand. for properties such as vapor
liquid equilibrium ratios or component K
values in a two-phase system, "k" refers
10 fixed values of Tk along with vapor
and liquid densities (p kv and Pkl ) as
well as mmpositions of the coexisting
phases (Xlkv and Xlkl ). If it is assumed
that Equation 1 is valid and that prob
abilities are independent, then the prob
ability distribution of a set of experimental
thermodynamic property values, r{Rjk} ,
is given by

£(Rjkl = Ir j lrk£(Rjk)

= Irjlrk[2lrC72(Rjk)r~
2 Eq.2

exp(-E E [Rj~-Il (Rik) 1
j k 2c7 (R

jk
)

The value of Equation 2 is that it provides
a rigorous mathematical framework for the
estimation of equation-of-state parameters.
The mncept (20) to be applied is that
maximization of the likelihood of oc:cur
renee of the set of thermodynamic data
{Rjk} mrresponds to maximization of the
probability distribution function r{Rjk} .

Formulating this approach requites the
additional assumption that the equation
of state will yield the true value of the
thermodynamic property in question. The
true value of the property is denoted by

2 2 -~
£ {Rjkl~(j ~[~Pj Rjk] J.

1 ~ 2
exp{-~ I; -2 I; (1- J J

j /l
j

lc ajk

Eq. 7

Differences in the ft1ua of IJJ ue a
masure of aa:ancy differenc:a in aped-

Bq. 8
Q* =

Maximization of .r{RJk} is then equiva
lent 10 minimization of the function

~l ~[l _ ~)2
j #~ k Rjk

(Rjk)true = '1jk({rl jk,' (Al) Eq.3

where the functional form of 'Ijk is pro
vided by the equation of state. In Equation
23. the notation {r jk} is used 10 indicate
the at of'intensive variables cbaracteristic
of the jth property in the kth state.
{A} is used 10 denote the at of equation
of-stllte parameten 10 be c:oosideted. If.



Eq.12

Eq.l0

Eq.15

Eq.19

Eq.22

Eq. 17

AD = C

q = M (m-I) + n

where

Eq.21

a set of equations which are linear in the
correction terms (A 1'lI - Ano ).

1 ~ ~l<z; Wj }; -2 [ax;;J o z; z; [~]oliirs-iirllO)

j Ie Rjk • r rs Eq. 14

" a ;;- t wj ~ ~jl< [l - i;Jo [~Jo

Tbe set of simultaneous equations repre
sented by Equation 14 can be solved by
matrix methods. Of course the values foe
the A 1'lI obtained in this manner are only
approximate because the truncated Taylor's
~ion is accurate only in the limit as
the A reo approach the AMI • It is there
fore necessary to treat the approximate
values of .An as new gUessed values in
a second iteration. In principle, this itera
tive procedure can be continued until the
correction terms (An - .Areo ) become ar
bitrarily small.

It is convenient to represent the relations
of Equation 14 in matrix form

The elements of the square matrix A are

_ I ~ 1i Ok a 1i E 16
Aqh - Z; w. Z; -2 [.,.......;.J.!] [--:.l!] q.

j J k Rjle: "Aan 0 a 1\nn 0

and the elements of the column matrices
B and C are

h = M (r-I_ + s Eq. 20

and M is the number of parameters to be
determined in the pure component equa
tion of state. The solution of Equation 15
is then

where Air\ais the inverse of A. The elements
of the inverse matrix, Air\. are related to
estimates of the generalizcil covarianc:a by
the following equations,

caD be estimated aod the minimization of
Q*. in Equation 8 is equivalent to minimi
zatJon of

o • E w
j

E [l _ ~)2
j Ie: jle:

In the absence of constraints such as critical
conditions oflure components, etc., vari
ations in the mn', denoted by (1' Amn , are
independent and the quantities within the
brackets in Equation 11 are all identically
zero; thus

- .. w
j

.. [1 - ~R"J 1 ~l!
~ ; 0,.,; k jk Rjl< ~
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meatal dam for different properties. If the
relatiw eft'Oft caD be estimated, then

(1J1 ) 2
Wj - Jj

- 0

Thus, the Wj have the role of weighting
functions in the analysis. The condition for
a minimum function Q in Equation 10 is
given by •

I: I: e ii.., (I: wj I: [1 - ~J i ~) - 0 Eq 11
n _ j I< Rjl< jl< a"., •

The relations represented by Equation 12
are the "normal equations" of the regres
sion analysis. These must be solved simul
taneously for estimation of equation param
eters Amn • It should be noted that if COd

sttaining conditions are considered, usual
methods, such as use of Lagrangian multi
~liers, may be applied to determining the
Amn •

For any realistic equation of state, the
normal equations are non-linear. Searching
techniques, such as steepest descent, may be
used «(). However, since the equation of
scate is analytic, a linearization technique
(20) is usually acceptable. Simplest is the
Gauss-Newton method (21) using the trun
cation of the Taylor's series expansion of
if jk wbich is linear in the Amno and zero
order approximations for the derivatives.
The approximating function may then be
written as

iijlo • iijk IAol + ~; (~ lirs - ~aoll
~. Eq. 13

where A l'1IO are Buessed values for the
A,. . The normal equations then become
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where N is the total number of data treated
and U is the number of parameters esti
mated in the regression alculation. Esti
mates of the relative errors in the prop
erties other than R t may be obtained using
Equation 9 in the form

multiproperty analysis in equation of ate
clhelopment, protOCype computations were
made using PVT and enthalpy data. It
should be emphasi2ecl that the computa
tions presented here were made to study
the proposed methods, rather than to 0b
tain a final equation of ate relation. In
these alculations, methane was c:hoeeo as
the prototype fluid and the BWR equation
(22) was chosen as the prototype equation
of state. The BWR expression lor pressure
is

Eq.23

Eq.25

P = R'I» + (B RT - A _ S!)P 2
o 0 T2 Eq.26

while the BWR expression for the iJo.
thermal enthalpy correction is

Values of the eight BWR parameters for
methane reported by Benedict, Webb, and
Rubin (22) are: B = 0.682'(()1, A o =
6995.25, Co = 27!S763 ]I; 10', b = 0.867325.
a = 2984.12, CL = o.51Un, e = 498106
]I; lOS, 'Y = 1.53961. The unitS for tbeN
parameters correspond to pressure in psia,
temperature in oR. and density in lb-molel
cu ft. The value of the gas mnstant con
sistent with these parameter values iI R
= 10.7335.

Regression calculations were made UlinB
(a) only PVT data, (b) only entbalP1
data, and (e) PVT and .enthalpy data ••
mulc:aoeously. The data utilized· were the
PVT data of HOOYer (23) and Vennix
(24) at -99.7°P and the enthalpy data of
Jones, e' III, (25) at -100.0oP. Hocner'.
data were used for pretaUl'el below 700
psis. Venoix' data were used for higbu

Consideration must be given to the as
signment of relative errors in the treat
ment of multiproperty data. This weigh
ing is important because proper statistical
weighting must insure least bias in esti
mated parameters. Several methods can be
used for assigning values to the weighting
functions given in Equation 9, including:
(a) direct estimation of the relative uncer
tainty. 11 j , in Equation 6, through knowl
edge of errors in the pertinent dependent
variables, (b) indirect estimation of I1J
through regression on individual proper
ties, (c) indirect estimation of I1J through
regression on multiproperty data. In appli
cations of the third method, constraining
conditions would commonly be imposed.

Regardless of the equation of state forms
to be studied, the treatment of multiprop
erty data leads to large mmputer storage
requirements. For this reason, programs
treating individual properties should be
developed and proven before. combining
to treat multiproperty data. To this end,
regression programs for PVT and enthalpy
data were developed separately and then
combined to treat these two types of ther
modynamic data simultaneously. Calcula
tions discussed in the next section were
made with these programs to demonstrate
the feasibility and practial value of equa
tion of state development from multiprop.
erty analysis.

TEST CALCULATIONS

To substantiate the pnccial mae of

Eq.27
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p"""" Ja daae eakuJatiooI, aa arbi
uary cboic:e W1II made to perfotm regres.
•ion with napec:c to the parameter Co.
OriJiaal (22) mua wete ued for the
remaioing BWll penmeren. Whea volu
metric (PVT) data alODe wete UIed in the
re,pal.ioa c:aJcuJatioat. the fuoct.ioa Q(V)
..... minimized,

NP ZC1t
Q(V) = Z; [1 - _]2 Eq.28

k=1 ZEit

Ja this telatioa, NP is the number of PVT
data points, and ZEk and ZCk are, respec
tively, the experimental and calculated
mmpreaibility facton for the kth PVT
data point. The mrrespooding function,
Q(H), which was minimized when en
thalpy data alone were considered is

NHP (He - Ii") m 2
Q (H) := Z; [1 - (HE _ Ii") ] Eq. 29

m=1 m

NHP is the number of enthalpy data
points, HO is zero[rasure enthalpy and
(HE - HO)m an (HC - HO)m are,
respectively, the experimental and c:alcu
Jared enthalpy corrections for the mth data
point. When PVT and enthalpy data were
treated simultaneously in the regression
c:alculations, the function Q(V + H) was
minimized.

O(V + H) = Q(V) + WQ(H), Eq.30

wbele W is the weighting function de
fined in Equation 9. Density values used
in calculating the enthalpy corteetioo,
Equation 27, were determined by trial and
error using the BWR expression for the
pressure, Equation 26. The results of mini
mWng Q(V), Q(H), and Q(V + H) are
summarized in Table 1. The statistical esti
mate of Co for each calculation is given,
along with the calculated estimate of the
standard deviation in Co, ii (Co). The
estimated standard deviations of the data
(Equations 24 and 25) are given as if(z)
aocf 8 (H). Avenge deviations of caIcu·
Iated comptesliblity £acton and enthalpy
amections from the aperimental va1ues
abo are giftD in Table 1. Deviations at
the individual pressures of the data are
given in Tables 2 and 3. Ja these tables,
Co (BWR.) is the original mefficient,
Co (V) is the coefficient determined from
PVT data, eaCH) is the meffideat de
terIiIined from enthalpy data, and C. (V

+ H) is the coefficient cIetamiocd ftom
simu1taDeous ueatmeAt of PVT and en
thalpy data with W = 1.0•

Certain practic:al beoefits of multiprop
eny analysis are demonstrated by the fol
lowing illusuative problem. Suppose the
objective is to determine a value of Co
such that the calculated enthalpy mnec:
tion is, on the average, within 2.7 percent
of the experimental data at -100°F. At
the same time, it is required that mmpres
sibility factOrs c:alculated using the experi
mental density data at -99.7°F deviate
from the experimental values by no more
than 0.7 percent on the average. Using the
original coefficient, Co (BWR), it may
be nOted from Tables 2 and 3 that neither
of the above aiteria are satisfied when
Co (BWR) is used. The traditional regres
sion approach using only PVT data to
determine Co (V), as may be noted in
Table 2, gave a low resultant average devi
ation of c:alculated mmpressibility factors
from the experimental values of 0.52 per
cent. However, the average deviation of
calculated enthalpy mrreetioos from ex
perimental values is 3.30 percent. Regres
sion 00 the enthalpy data alone to deter
mine Co (H) yields an improved descrip
tion of enthalpy behavior mmpared with
results using PVT data, as noted by the
average deviation of 2.86 percent in Table
3. However, calculated compressibility fac
tors using Co (H) deviate from the experi
mental values by an average amount of
2.11 percent.

Fioally, multiproperty analysis was ap
plied. Because the problem (as stated) re
quires average enthalpy deviations to be
less than 2.7 percent, regression c:alculations
using a number of different weighting func
tions could have been carried ont. Standard
deviations estimated from regression on
PVT and enthalpy data individually wete
li(Z) = 0.92 percent and 8(H) = 3.58

percent, so that Equation 9 in the form

2

w -[i~:~ J
yields a mue for W of 0.00676. But when
regression calculations were made with
various W, the aiteda of the problem were
satisfied for all mues of the weighting
~ Oftr the approximate range 0.6
~ W < 1.2. These data are swnmariJJed
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T-uu 1. S-.y 0/~ 0/ rw....m.- ulArlMiOfU.
WelgbtlDrr

Co~~rr -J~~~t~ 10-3 ii(s)8td. dey. ( ) sAve. dey. (I~HOfuncUon (H)

O.ooooa 283553 582 0.92 G.52 3.30
0.0676 283331 597 0.95 3.64 0.50 3.21
o.lOOO 283230 653 UN 3.29 0.49 3.17
0.2500 282803 839 1.36 2.72 0.46 2.92
0.5000 282227 1056 1.15 2.47 0.43 2.76
0.7500 281727 1213 2.06 2.38 0.52 2.66
1.0000 281225 1348 2.34 2.34 0.65 2.65

10.0000 277137 2450 6.81 2.16 1.72 2.75
100.0000 275708 2983 22.01 2.20 2.11 2.86

b 275708 4%4 3.58 2.11 2.86
a This caJc:aJaaoo IIlioimDed Q(V) in Bquadoo 28.
b This cakuJaion IIlioimDed Q(H) in Bquadoo 29.

Pre88ure.
DniatioDS (%)

psla Co (BWR) Co (V) Co (H) Co (V+H)&

148 -0.17 -0.10 --0.17 -0.12
194 -0.02 0.08 -0.02 o.os
252 -0.01 0.12 --0.01 0.08
308 -0.17 0.00 -0.17 -0.05
347 -0.35 -0.15 --0.35 -0.21
.(()6 --0.43 o.l7 -0.43 -0.25
454 -0.29 0.03 -0.29 --0.07
503 -0.05 0.32 -0.05 0.21
7(1) -1.39 -0.11 -1.40 -0.49
797 -1.45 0.08 -1.46 -0.38
862 -2.19 0.« -2.21 -0.34
870 -2.36 0.45 -2.38 -0.39
894 -2.65 0.61 -2.68 -0.37
912 -2.91 0.64 -2.94 -0.42
958 -3.25 0.80 -3.27 -0.41

1013 -3.51 0.86 -3.54 -0.45
1136 -4.79 0.83 -3.82 -0.55
1420 -4.56 -0.07 -4.60 -1.41
1742 -5.30 -1.16 -5.33 -1.40
2149 -7.07 -3.35 -7m -4.46

Ayg.dev. <1') 2.16 0.52 2.11 0.65

a Weishtiq fuoctioo of uaitJ ued for deunainatioo of Co(V+H).

DniaaioDs <%)
PreB8ure.

psIa Co (BWR) Co (H) Co (V)

100 -1.08 -1.06 -2.39
200 -4.72 -4.71' ~
380 -5.3S -5.34 -6.98
400 -3.84 -3.82 -5.62
500 -2.74 -2.72 -4.70
600 -1.39 -1.38 -3.$
700 2.05 2.10 --0.98
800 4.87 4.94 -0.68
900 5.99 6.08 -1.n

1000 3.21 3.27 -1.56
1200 0.95 0.99 -2.30
1500 -0.35 --0.31 -3.05
2000 --oM -0.45 -2.90

A-..deT. <1') 2.82 2.86 3.30

-2.02
-5.89
-6.47
-5.07
-4.13
-3.05
-om

1.10
0.61

-0.1.
-U5
-2.27
-2.19

2.65



80

ia Table 1. The optimal ftlue of W is
IQCDeWhere betweeo O.7~ aad 1.0. The efd.
aepaocy betweeo the optimum W aDd the
W apeaed ftolD Equation 9. as well as
the uousuaJ behavior displayed ia Table
1. ate as yet unexplained.

This illusuative problem demonstrates
that when use of ,ingle property data for
decermining equation-of-,tate parameters
leads to unacceptable c:a1culations of other
properties, regression with multiproperty
data can yield an equation which is suffi
ciendy aa:urate for predicting the prop
erties in question. Further. this problem
demonsuates that constraints, such as those
oonsidered, can be utilized to determine
the range of permissible values of weight
ing functions.

There are a number of advantages of
multiproperty analysis that cannot be
shown with the simplified calculations
presented here. Multiproperty analysis ob
viously can be quite valuable in testing
proposed new equation of state forms to
insure self oonsistency in prediction of dif
fering types of thermodynamic behavior.
In addition, appropriate modifications of
the temperature, density. and composition
dependence of an equation of state can be
discerned from multiproperty analysis. In
this regard, analysis of volumetric and en
thalpy data ate being used to find modifi
cations of the BWR equation which yield
improved predictions of thermodynamic
behavior at low temperatures. Further, the
use of multiproperty data in nonlinear re
gression analysis can improve the converg
ence characteristics of the required itera
tive solutions. It has been observed, for
example, that regression calculations using
enthalpy data alone often tend to oscillate
or even dive~. These oscillations have
been damped by the simultaneous use of
PVT and enthalpy data. These and other
practical advantages of multiproperty
analysis will be discussed in more detail
when the results of subsequent studies ate
presented.

NOMENCLATURE

Enthalpy of ideal gas
Experimeatal enthalpy
Calculated enthalpy
Pro..biJity distributioll

fuoctiooforR
Pressure
Regression function
Regression function
Denotes a thermodynamic

property. also Universal
Gas Constant

Values of jth property
in kth state

A.bsolute temperature
Statistic:a1 weighting

fuoction
Mole fraction of ith

oomponent in a mixture
Compressibility factor
Experimental

compressibility factor
Calculated

oompressibility factor

Summation
Product
Mathematical set
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