COMPARISON OF CREEL SURVEY STATISTICS FOR PARTIES USING DIFFERENT TYPES AND METHODS OF FISHING IN THE OKLAHOMA STATE LAKE CREEL SURVEY

Bradford E. Brown
Oklahoma Cooperative Fishery Unit ${ }^{1}$. Oklahoma State University Research Foundation, Stillwater, Oklahoma 74074

Abstract

A comparison of creel survey statistics for fishing parties using different types and methods of fishing is presented. Implications for creel-surver design are discussed.

The Oklahoma Department of Wildlife Conservation conducted a creel surces on its state-owned lakes from December, 1964 to December, 1965. Creel statistics have becn presented by Jarman et al. (1) and am analssis of the methodology of the surver was studied by Brown (2). The present paper reports data obtained by interviews with fishermen at the completion of their trips to 10 of the lakes in the previous Oklahoma surver. This investigation was based upon a stratificd random sample of fishing dass. Weckdays werc one strata and weckends and holidays, the other. Pertinent information for the lakes involved is given in Table 1.

Table 1. Oklahoma Department of Wildlife Conservation lakes.

Late	County	Acreats	Mazinum Cepth (foet)	Acesss Areas
Beaver	Jefferson	42.9	28	2
Hurtschi	Grady	180.0	28	3
Dahlgren	Cleveland	26.4	20	2
Hall	Harmon	36.2	28	1
Kingfisher	Kingfisher	58.0	20	3
Czzle (obb	Pushmataha	69.4	20	1
Koman Nose	blaine	60.0	24	1
Schooler	Choctaw	28.5	24	2
Schultz	Texas	56.8	14	2
Vincent	Ellis	169.0	41	2

METHODS

Fishing parties were classificd by the creel checker as to the type of fishing, i. e., whether the party used artificial lures, live-bait, dcad-bait, or various combinations. Many parties could not be classified as to a particular type of fishing. Either one fisherman used more than one type of gear or different members of the same party used different types of gear (Table 2). Parties

Table 2. Distribution of fishing parties by types of fishing.

Lake	Percentage of Total Partios Uaing Lure Live Dead Other			
Heqver	17.5	20.9	16.6	45.0
Hurtsehi	36.2	14.9	1.5	47.4
Dablaren	20.9	5.2	0.9	72.8
Hall	25.7	29.2	2.3	42.7
Kingfisher	0.5	32.8	5.5	61.2
Ozzie (${ }^{\text {cobl }}$	20.0	46.4	1.1	32.4
lemman Nose	22.1	23.7	6.6	47.6
Schooler	21.8	6.3 .2	2.3	12.7
Sichultz	26.2	43.1	7.9	22.8
Vincent	22.3	10.5	12.8	64.5

were also classificd as to the method of fishing, i.c., whether the party fished from a boat, on the bank, in floaters, from a heated dock, or used a combination of these methods ('Table 3). Fishing parties which

Table 3. Distribution of fishing partics by meth. od of fishing.

Lake	Percentage of Total Parties Using Heated Boat Bank Floater Dock Other				
Heaver	19.2	78.2	-	-	2.6
Burtachi	11.7	67.2	16.0	4.0	1.1
Dahlyren	8.9	77.8	6.2	-	7.1
Hall	42.1	28.7	27.6	-	1.8
Kinsitisher	1.6	94.5	0.5	-	3.3
Ozzie Cobl	30.2	62.2	0.7	-	6.9
Roman Nobe	4.1	$\times 4.4$	10.8	-	0.6
Schooler	41.9	50.0	1.2	\cdots	7.0
Schultz	5.5	7 K .6	10.7	-	5.2
Vincent	29.3	34.3	4.5	0.5	31.4

could be classified as to method and type were compared using analyses of variance to test for differences in the creel statistics of party size, number of fish caught, pounds caught, number per hour, pounds per hour, hours fished and man hours fished. Separate analyses of variance werc computed for each lake for weekday and weekend strata. An example shall suffice to illustrate how this was done. For weekdays samples from Lake Beaver, live-

[^0]bait, dcad-bait and line-fishermen were present (Table 4). An analysis of variance was

Tasle 4. Party size by different types of fishing.

Late	Perled	Lure	Live bait	Dead bat	8 ignificant ${ }^{2}$
Beaver	A	3.0	3.3	3.3	no
	E	3.0	2.7	3.3	no
Burtmeht	A	2.5	3.1	3.0	yen
	3	3.1	3.4	3.7	no
Dahleren	A	2.8	3.0	-	no
	3	3.7	4.4	\square	no
Hall	A	2.3	3.2	-	yes
	13	2.7	3.2	-	yes
Kinctisher	A	-	2.8	2.6	no
	B	-	2.7	2.5	no
Osple Cobb	A	3.4	3.7	3.2	no
	H	4.6	4.1	-	no
Roman Nose	A	3.1	4.1	-	yen
	1	3.4	4.2	-	yes
Achooler	A	3.0	2.9	\cdots	no
	H	3.4	3.3	-	no
Schultz	A	2.7	3.1	5	no
	13	3.0	3.7	3.5	yer
Vincent	A	2.9	4.1	3.7	yes
	1	3.1	4.1	3.1	yem

'Tima of fishink trip: A, weekday; B, weekend.
? Reaulta of analysen of variance.
used to compare the mean number of people in the parties of each of these types of fishermen. An analysis was then conducted for weekend fishemen from Lake Beaver. This procedure was repeated for all the lakes. After these twenty analyses of variance differences for party size were completed, the same approach was applied to all other valucs investigated, e.g., number of fish caught, cte. In Tables 4 to 17, the mean values for cach category are given along with the results of the analyses of variances.

Vilcoxin (3) signed rank tests were used to compare the average values over lakes in an attempt to determine overall trends. The procedure here was to take a pair of creel methods or types to be compared for a given crecl statistic, e.g., live-bait and lure fishermen for party size, and cxamine the paired mean values. In this example, the paired values in the first two columns in Table + would then be used in the Wilcoxin test giving a single test for comparing party size between boat and bank fishermen. This procedure was then repeated for all possible comparisons. Hercafter, when reference is made to presence or absence of difference between overall creel statistics, without reference to a particular test, the use of the 0.05 significance level determined by using a Wilcoxin signed rank test is assumed. The overall averages referred to
(Tables 18 and 19) are unweighted aver. ages over all the individual estimates ove: lake and weekday-weckend strata. When comparison is made with reference to a par ticular lake, analvsis of variance is assumed. Duncan's multiple-range tests as described by Steel and Torric (4) were used to sep. arate individual lake-strata analyses of variance. Although the use of numcrous repeated statistical tests is fraught with the possibility of finding spurious significant differences, no reasonable alternative scemed feasible.

RESULTS

When party size is considered for all lakes. live-bait fishermen had a larger party size than users of artificial lures in 14 of 18 comparisons (Table 4). The mean of the average party size for all lakes was 3.1 for lure, and 3.5 for live-bait users. Dead-bait users were compared to live-bait fishermen in 10 paired cases. Of these, dead-bait parties had the larger size in only two cases. In the latter comparison, dead-bait fishermen had the smaller party size in one case, were tied in one, and were larger in the remaining six. The overall average size for dead-bait users was 3.2 fishermen. Seven of the 20 analuses of various tests were sig. nificant.

Partics using live bait unquestionably caught the most fish (Table 5). Ther did so in 16 of 18 comparisons with users of artificial lures. and in 9 of 10 comparisons

Table 5. Number caught by different types of fishing.

Lake	Period	Lure	Live Bait	Dead Bait	Significant analysis of variance
Beaver	A	1.0	3.0	1.5	no
	B	2.2	4.1	1.2	yes
Burtschi	A	2.7	5.2	2.1	yes
	B	2.7	5.4	4.8	yes
Dahlaren	A	1.5	2.7	-	no
	R	1.3	4.3	-	yes
Hall	A	3.2	4.0	-	no
	13	2.5	2.9	-	no
King fisher	A		2.1	1.1	no
	B	-29	1.1	1.0	no
Ozaie Cobb	A	2.9	7. 8	2.0	yes
Roman Nowe	B	3.6 2.1	4.1	-	yes
	B	1.8	2.1	二	no
Schooler	A	3.6	4.7	-	no
	B	4.6	3.9	$\underline{\square}$	no
Schult:	A	4.0	2.4	,	no
	B	4.5	3.5	2.4	no
Vincent	A	2.6	12.3	6.0	yes
	B	3.9	4.5	5.0	no

with dead-bait users. The comparison of lead-bait and lure fishermen gave no such difference. The average number of fish caught was 4.4, 2.8, and 2.7 for users of live bait, lures, and dead bait respectively. Seven of the analyses of variance tests were significant.
On a weight-caught basis, the lure fishermen caught more than live-bait fishermen in 8 of 18 comparisons (Table 6). Dead-bait

Table 6. Pounds caught by different types of fishing.

Lak*	Period	Lure	Live Bait	Dead Bait	significant analysia of variance
Beaver	A	1.3	1.9	1.8	no
	B	1.5	3.1	1.1	yes
Burtschi	A	1.9	2.1	5.0	yes
	B	2.4	2.3	3.2	no
Dahlgren	A	2.2	2.4		no
	B	1.0	1.2	二	no
Hall	A	3.6	2.9	-	no
Kingfisher	A	5.1	2.1	1.4	yes
	B		1.1	1.0	no
Oxxie Cobb	A	1.8	2.9	1.7	no
	B	2.4	2.8		no
Roman Nose	A	1.3	1.9	-	no
	${ }^{\mathbf{B}}$	1.7	1.2	-	yes
Schooler	A	2.0 2.8	2.1 1.6	二	no
Schuitz	A	4.1	2.0	-	yes
	B	4.6	2.7	2.6	yes
Vincent	A	1.8	4.0	8.0	yes
	B	3.6	1.9	4.9	yes

users caught more pounds of fish in comparison with live-bait users. Apparently, most fish caught by live-bait fishermen were smaller. The average weight caught was 2.5 lb for lure fishermen, 2.2 lb for live-bait anglers, and 3.1 lb for dead-bait users. Dead-bait fishermen generally caught catfish of quite large average size. Eight of the 20 analyses of variance tests were significant.

In comparing number of fish caught per hour, live-bait fishermen were more successful than users of lures in 12 instances, they were equal in 2, and behind in four. This difference was not significant (Table 7). However, the comparison between dead and live-bait was significant, with the former being the least successful in 9 cases and the other pair of values being equal. In this respect, dead-bait fishermen did not differ from lure users. The overall averages were 1.8 for lure, 1.6 for live-bait, and 1.2 for dead-bait anglers. Seven of the analyses of variance tests were significant.

Table 7. Number caught per hour by different types of fishing.

Lake	Peried	Lure	Live Balt	Dead Dait	signifi. cant analysis of variance
Beaver	A	1.0	1.2	1.1	yen
Burtachi	B	1.2	1.4	1.0	no
	A	1.6	2.8	1.5	yes
	B	1.5	8.0	1.7	no
Dahlgren	A	1.1	1.5	-	yes
	B	1.0	1.2	-	508
Hall	A	1.5	1.5	-	no
	B	1.3	1.2	-	no
Kingfisher	A	\cdots	1.1	1.0	no
	B	-	1.0	1.0	no
Onzie Cobb	A	1.4	1.9	1.0	no
	B	1.4	1.7	-	no
Roman Nose	A	5.4	2.1	-	no
	B	1.4	1.5	-	no
Schooler	A	3.5	1.3	-	no
	13	2.6	1.5	-	no
Schults	A	1.6	1.2	T	yea
	B	1.5	1.2	1.1	yet
Vincent	A	1.6	4.2	1.6	yes
	3	1.2	1.5	1.1	no

Partics using artificial lures were more successful on a weight-per-hour basis than were parties using live bait in 10 cases, and less in 8 (Table 8). The comparisons between lure and dead-bait fishermen and between live-bait and dead-bait fishermen

Table 8. Pounds caught per hour by different types of fishing.

Lake	Pariod	Lure	Llve Bait	$\begin{aligned} & \text { Dead } \\ & \text { Balt } \end{aligned}$	slenift. cant analysia of variance
Beaver	A	1.0	1.1	1.1	no
	B	1.1	1.4	1.0	no
Burtschl	A	1.3	1.4	3.0	yem
	B	1.4	1.3	1.8	no
Dahlgren	A	1.2	1.4	-	no
	B	1.0	1.1	-	no
Hall	A	1.7	1.3	-	yes
	${ }^{8}$	1.8	1.1	10	yen
Kingfisher	A	-	1.1	1.0	no
	B	-	1.1	1.0	no
Ozzie Cobb	A	1.1	1.2	1.1	no
	B	1.3	1.2	-	no
Roman Nose	A	1.2	1.3	\cdots	no
	B	1.4	1.0	-	7ee
Schooler	A	1.8	1.1	-	no
	B	1.6	1.1	-	no
Schultz	A	1.6	1.1		yea
	B	1.5	1.1	1.2	yee
Vincent	A	1.8	1.7	1.8	no
	8	1.2	1.1	1.2	no

were also fairly evenly split. None of these differences was significant. The overall rates (lbs/hr) were: lure fishermen, 1.4; live bait, 1.2; dead bait, 1.4. Six of the 20 individual analyses of variance tests were significant.

On an hours-fished basis, 7 of the comparisons were significant (Table 9). Lure fishermen fished longer than live-bait users

Tanse 9. Hours fished by different typer of fishing.

Lake	Period	Lure	Live 4nt	Dead Balt	Signifi. cant analyais of varlance
Beaver	A	3.7	3.7	3.6	no
	B	3.2	4.0	3.6	no
Burtachl	A	4.7	6.1	6.9	yen
	F	4.9	4.2	7.5	yes
Dahleren	A	3.6	3.4	-	no
	IJ	3.1	4.5	\square	yes
Hall	A	4.8	4.1	-	no
	B	4.7	3.7		no
Kinkfinher	A	-	3.5	4.2	no
	17	-	4.7	5.3	no
OEzta (cobl)	A	3.9	4.6	4.7	no
	13	3.2	4.5	-	yes
Roman Nowe	A	2.8	3.1	-	no
	E	3.6	1.3	-	nos
schmoler	A	4.3	6.6	-	no
	11	6.7	6.4	-	no
Wehtaltz	A	4.2	5.0	-	yes
	H	4.4	4.6	4.2	no
Vincent	A	5.0	4.4	9.7	yen
	H	5.6	4.3	8.0	yes

in only $;$ of the 18 comparisons. Lure users fished significantly fewer hours than deadbait fishermen. Dead bait anglers had more hours in 6 of 8 cases. When compared with live-bait users, dead-bait fishormen fished the longest in ${ }^{-}$out of 10 cases. This difference was not significant. The average hours fished were t.l for lure fishermen, 4.5 for live-bait users, and $5 .-5$ for dend-bait inglers.
Live bait parties had more man hours than dided lure users in all but one of the 18 comparisons (Table 10). This overall difference

Tanle 10. Manhours fished by different types of fishing.

Lake	Period	Lure	Live Bait	Dead Bait	Signiticant analysia of variance
Henver	A	5.5	7.2	8.2	no
	1	5.4	6.4	5.6	no
Burtachl	A	3.5	3.6	4.0	no
	13	11.3	9.0	20.3	no
Dahlyren	A	5.6	8.0	-	no
	${ }^{3}$	\$. 0	14.5	\cdots	yes
Hall	A	6.2	7.8	-	no
	$\stackrel{1}{4}$	7.2	6.2	6.8	no
Kingrisher	$\underset{\mathbf{H}}{\mathbf{A}}$	二	5.5 3.2	6.8	no
Ozate Cobs	A	8.3	10.7	9.5	no
	${ }^{\mathbf{B}}$	6.7	11.8	-	yes
Roman Nose	A	4.7	9.3	-	yes
	${ }^{\text {B }}$	8.8	15.3	-	no
Schooler	${ }_{\text {A }}$	1.4	14.6 18.8	-	no
Schulta	A	6.6	10.6	-	no
	B	8.0	14.1	10.1	yes
Vincent	A	7.8	10.7	24.2	yes
	B	11.8	4.0	24.4	yes

was significant. Dead-bait fishemen exceeded lure users in cyery case and live-bait parties in 7 of 10 cases. The former was sig. nificant, but the latter was not. As with
hours fished, 7 of the 10 analyses of variance of individual comparisons were significant.

Eight of the 19 comparisons for party size between different methods of fishing were significant (Table 11). Boat partics

Tablf. 11. Party size of different methods of fishing.

Lakt	Poried	teat	Muntion of Fhhtrinen Usime			5igulif. enant analyts of varianes
			Bawk	Fteatup	Doek	
Reaver	A	3.5	3.4	-	-	no
	B	3.4	2.9	-	-	no
Burtachl	A	3.2	3.0	2.4	3.1	yes
	13	3.8	3.5	2.7	3.0	yes
Dahimen	A	3.3	3.4	2.4	-	yes
	F	3.7	4.2	2.9	-	no
Hall	A	3.6	2.8	2.6	-	yes
	B	3.1	3.2	2.8	-	no
King fisher	A	-	2.8	-	-	-m
	13	2.5	2.8	--	-	no
orzie (colb)	A	3.2	3.5	-	-	no
	13	4.0	4.2	\cdots	\cdots	no
flomitn Nose	A	3.1	3.8	3.1	-	no
	13	3.6	4.6	2.8	-	yes
Schooler	A	3.1	2.9	-	-	no
	13	2.7	3.7	\square	-	yes
Schultz	A	-	3.1	2.2	-	yes
	13	3.2	3.6	2.8	-	yes
Vincent	1	3.3	3.5	3.0	-	no
	I3	3.5	3.8	3.2	-	no

exceeded bank users in average number per party in 6 of 18 comparisons. A signed-rank test showed no significant difference. Float-er-fishermen were present in large enough numbers for comparison in 12 cases. They had the smallest party size in erene case but one. The overall average of party size was 3.3 for boat, 3.4 for bank, and 2.1 for floater fishormen.

Partics using boats caught more fish than bank fishermen in 11 cases and the reverse was true in 8 (Table 12). This difference

Tisis: 12. Nimber caught by different methods of fishing.

Late	Preled	Mamber of Fisteremor Using				Signifi- cant amatys vilanet
		cast	\%ant	fleater	Bent	
Beaver	A	5.4	2.9	-	-	yes
	B	3.5	2.6	-	-	no
Burtschi	A	3.0	4.5	5.8	-	yes
	13	2.6	5.9	3.1	-	yes
I)ahlgren	A	2.6	3.5	-	-	no
	13	2.9	1.2	-	-	no
Hall	A	6.3	5.4	3.6	-	no
	B	5.3	1.7	2.9	-	yes
King-	A	-	1.6	-	-	-
Oister	13	1.0	1.7	-	-	no
(izsle Cohb	A	8.7	5.6	-	-	yes
	${ }^{\text {B }}$	10.0	3.4	-	-	-
Roman	A	2.6	3.5	1.9	-	no
Schooler	B	1.8	2.3	1.9	-	no
	A	5.6	2.7	-	-	no
	${ }^{\mathbf{H}}$	4.3	3.9	-		no
Schultz	A	-	8.7	6.4	-	yes
	B	6.8	2.8	9.4	-	yes
Vincent	A	2.8	5.7	2.6	-	no
	B	4.6	3.8	5.3	-	no

Was not significant, nor were the differences ixetween floater and bank fishermen, and between floater and boat fishermen. Seven of the comparisons were significant. Boat fishermen canght $4 .{ }^{-}$fish, bank, 3.2, and floater users. 4.1.

Eleven of the comparisons for weight caught were significant, and in 15 of 18 cases the boat fishermen caught more pounds than anglers using the bank (Table 13). The noerall (lb) average for boat fishermen was

Table 13. Pounds caught by different methods of fishing.

Latue	Parled	Nomiter of Fishormon Using				Sigalifi- cant enalysls of verlanee
		Eeat	Bank	Flater	$\begin{aligned} & \text { Meated } \\ & \text { Deek } \end{aligned}$	
Heaver	A	3.7	2.2	-	-	yes
	B	3.1	1.8	-	-	no
Burtschi	A	4.1	1.8	3.1	3.6	yes
	B	3.7	1.5	4.8	2.0	yes
Dahlgren	A	1.6	1.7	4.9	-	yes
	B	1.1	1.5	1.4	-	no
Hall	A	4.1	2.8	4.6	-	no
	B	5.4	1.7	6.4	-	yes
Kingfisher	A	-	1.5	-	\cdots	
	B	1.0	1.7	-	-	no
Ozzie cobb	A	3.9	2.8	-	-	no
	B	3.9	2.1	-	-	yes
Roman Nose	A	1.9	1.8	2.2	-	no
	13	1.8	1.6	2.0	-	no
schooler	A	2.8	1.4	-	-	yes
	H	2.0	1.9	-	-	no
Schultz	A	-	2.2	6.9	-	yen
	B	5.4	2.3	9.5	-	yes
Vincent	A	2.4	2.4	2.5	-	no
	B	3.1	2.0	5.6	-	yen

3.1 and for bank users, 1.9. Floater fishermen caught more pounds than bank fishermen in 9 of 10 cases, and they caught more than boat fishermen in 11 of 12 cases. These differences were significant. Apparently. since the numbers captured did not differ significantly, the floater fishermen caught the largest fish, and, in this respect, they were followed by bank and then boat fishermen. Floater fishermen averaged a catch of 4.5 lb .

Neither the boat-bank, boat-floater, nor bank-floater comparisons were significant for the number caught per hour statistic (Table 14). Seven of the 19 comparisons were sigmificant. Boat fishermen exceeded bank fishcrmen in 12 cases and were tied in 2 . In the 10 pairs of boat and floater fishermen, the former were first in 6 instances and tied in one. Floater fishermen were more successful than bank users in 5 instances, tied in 2 and less in 4. Bank fishermen

Table 14. Number caught per hour by different methods of tishing.

Late	Puried	Mamber of Fishermen Msinf				$\begin{aligned} & \text { Sigalfi- } \\ & \text { sant } \\ & \text { malysis } \\ & \text { vertames } \end{aligned}$
		Deat	Bank	Fleater	$\begin{aligned} & \text { Weated } \\ & \text { Devt } \end{aligned}$	
Beaver	A	2.5	1.3	-	-	yea
	13	1.5	1.3	-	-	no
Surtschal	A	3.6	1.S	2.2	3.0	yes
	H	2.6	1.5	2.4	1.S	yes
Dahlaren	A	1.3	1.2	1.3	-	no
	H	1.1	1.1	1.0	--	no
Hall	A	1.9	2.1	1.5	-	no
	R	1.8	1.1	1.4	\square	yea
King fisher	A	-	1.1	-	-	-
	I	1.0	1.1	--	-	no
Ozxie	A	1.9	1.7	-	-	no
Cobb	13	2.2	1.1	-	.--	yer
Roman	A	2.1	3.1	2.3	-	-
Nose	It	1.2	1.2	1.2	-	-
Schooler	A	2.3	1.2	-	--	no
	13	2.2	1.2	-	--	no
Schultz	A	-	1.4	2.3	-	yek
	13	1.5	1.9	2.2	-	yes
Vincent	A	1.1	1.6	1.2	-	no
	13	1.1	1.3	1.3	-	no

caught 1.8 fish per hour, boat, 1.5 and floater, $1 . \%$ over all lakes surveyed.
Ten of the 19 analyses of variance for differences in pounds caught per hour fished were significant (Table 15). Boat fishermen

Table 15. Pounds caught per hour by different methods of fishing.

Late	Parle4	Eat	Wamter of Flihermon Usimit			$\begin{aligned} & \text { slonifl- } \\ & \text { cant } \\ & \text { manlytis } \\ & \text { of } \\ & \text { verlanee } \end{aligned}$
			Pank	Figater	Hented Dent	
13erver	A	J. 5	1.2	-	\because	yem
	13	1.5	1.1	-	--	no
luntachi	A	1.9	1.3	1.8	2.1	yes
	H	1.6	1.2	2.2	1.4	yen
Dahlyren	A	1.1	1.1	1.5	\cdots	yen
	13	1.0	1.0	1.1	-	no
Hall	A	1.6	1.5	1.7	\cdots	no
	13	1.7	1.1	2.1	-	yem
Kingfinher	A	-	1.1	-	-	-
	15	1.0	1.1	-	-	no
Ozzie	A	1.4	1.3	-	-	no
('olbb	13	1.4	1.2	\cdots	-	yen
Roman	A	1.3	1.4	3.0	-	yen
Nose	13	1.2	1.1	1.2	-	no
Schooler	A	1.5	1.0	-	-	no
	13	1.3	1.0	-	-	no
Schultz	A	-	1.3	2.7	-	yes
	13	1.1	1.1	2.2	-	yen
Vincent	\boldsymbol{A}	1.1	1.2	1.2	-	no
	13	1.2	1.1	1.4	-	yes

were more successful than bank fishermen in 13 cases and were equal in 2. The contrast was not as favorable for boat fishermen as was the comparison of total weight caught. However, the difference was still significant. Floater fishermen were more successful than boat fishermen in 10 cases and more than bank fishermen in 11 cascs. These differences were significant. The overall ($\mathrm{lb} / \mathrm{hr}$) averages were 1.4 for boat, 1.2 for bank and 2.0 for floater fishermen.

Boat fishermen fished more hours than
bank anglers in 12 cases and tied in one (Table 16). This difference was not signifi-

Tablz 16. Hours fished by different methods of fishing.

Lete	Auried	Cant				$\begin{gathered} \text { slowif: } \\ \text { ceatet } \\ \text { acalyis } \\ \text { velanee } \end{gathered}$
			Manl	Fienter	Hepht	
Beaver	A	3.6	3.7	-	-	no
	B	3.5	3.4	-	-	no
Burtachi	A	4.6	4.6	4.0	3.6	no
	B	5.4	4.2	4.4	3.2	yes
Dahlkren	A	4.8	4.6	5.8	-	no
	B	4.4	3.8	4.0	-	no
Hall	A	3.9	3.9	5.1	-	no
	H	4.9	3.9	4.3	\cdots	no
Kind.	A	-1.	5.5	-	-	
theher	13	3.0	4.0	-	-	no
Ozsle	A	6.2	4.7	-	-	no
Coht	B	5.3	3.8	-	\sim	yea
Roman	A	3.1	3.6	8.4	-	no
None	13	4.5	3.8	3.9	-	no
8chooler	A	4.7	6.4	-	-	no
	B	5.3	6.7	-	-	no
Achults	A	-	4.8	4.6	-	no
	B	5.0	4.3	5.0	-	no
Vincent	A	4.6	5.3	6.9	-	no
	B	7.1	5.2	7.3	\square	yes

cant. Boat and floater fishermen were about evenly divided in terms of hours fished. The former led in 5 cases and the latter in 6. Floater fishermen fished longer than bank anglers in 8 of 12 comparisons, and in another case the two were tied. This difference was not significant. Boat anglers averaged 4.6 hr., bank users, 4.4 and floater fishermen, 5.2. Only 3 of the 19 analuses of variance tests were significant.
When man-hours were considered, only 2 of the analyses of variance were significant (Table 17). Boat anglers had the greater

Tably 17. Manhours fished by different methods of tishing.

tate	Prow	ceat				signiff. cmat anelyis verlame
			Beat	Fieater	$\begin{aligned} & \text { Mated } \\ & \text { oser } \end{aligned}$	
Beaver	A	7.1	8.0	-	-	no
	B	6.6	5.7			no
Burtachl	A	8.8	6.5	5.2	5.7	no
	8	14.4	10.2	16.3	5.4	yes
Dahigren	A	10.5	10.8	7.6		no
	B	10.6	10.7	7.2	-	no
Hall	A	7.9	8.3	8.1	-	no
	B	1.2	8.6	7.2	-	no
Kink-	A		3.5	-	-	
flaher	B	4.0	6.0	-	-	yes
Onale	A	9.9	10.3	-	-	no
Roman	A	11.7	9.7 8.7	-1	二	no
Nome	B	10.0	12.8	9.2	二	no
Schooler	\mathbf{A}	9.5	11.1			no
	B	10.1	28.1	. 5		no
Schulte	A	-	10.0	6.5	-	no
	B	12.3	13.4	9.9	-	no
Vincent	A	9.2	11.8	12.3	-	no
	B	14.4	12.4	15.7		no

man-hours in 7 cases, and the reverse was true in the other 11. In comparison between boat and floater fishermen, the former had more man-hours in 6 cases and the latter in 5. When compared with bank anglers, floater fishermen logged more man-hours in 5 instances and less in 7. The overall (man-hr) averages were boat, 9.6 , bank, 9.9 , and floatcr, 5.6.

Tarle 18. Comparison of creel statistics of fishermen using various tipes of fishing.

Party size	$\begin{aligned} & \text { Eeat } \\ & \text { Ave. } 118 \text {) } \\ & 3.3 \end{aligned}$	$\begin{gathered} \text { Eank } \\ \text { Avy. } \\ \text { (20) } \end{gathered}$ 3.4	$\begin{aligned} & \text { Fleater } \\ & \text { Avg. (12) } \\ & 2.1 \end{aligned}$	
Number of tish caught per trip	4.7	3.2	4.1	4.5
Weight of fish caukht per trip	3.1	1.9	4.5	2.8
Number caukht per hour	1.8	1.5	1.7	2.4
Pounds caught per hour	1.4	1.2	2.0	1.8
Man-houra flshed	9.6	9.9	9.3	5.6
Hours fished	4.6	4.4	5.2	3.4

: Number in parenthesis equals number of week-day-weekend categories containing fishermen using a particular method of fishing.

Table 19. Comparison of creel statistics of fishermen using different methods of fishing.

	Lure Avg. (8)'	Live Avg. (20)	Dead Avg. (10)
Party Size	3.1	3.5	3.2
Number of fish caught per trip	2.8	4.4	2.7
Welaht of fish caukht per trip	2.5	2.2	3.1
Number caukht per hour	1.8	1.7	1.2
Pounds caught per hour	1.4	1.2	1.4
Manhours fished	7.7	10.0	12.3
Hours flshed	4.1	4.5	5.7

DISCUSSION

In designing crecl surveys, it is worthwhile to consider whether or not party size, hours fished, or the man-hours fished differed according to the type or method of fishing. Live bait fishermen had larger party sizes than lure users who, in turn, had a larger party size than dead-bait users. Parties using live and dead bait fished longer and had more man-hours than those using artificial lures. Comparison of parties using boats, floaters. or fishing from the bank did not produce as many overall significant differences, although floater fishermen did fish in the smallest parties. In addition to
the above, there were significant differences in the analyses of variance conducted on individual lakes. Lopinot $(5,6)$ studied stateowned lakes in Illinois and reported that boat fishermen spent a longer time fishing than bank-anglers in 14 of 15 cases. Moyle and Franklin (7), in a study of 14 Minnesota lakes, found that boat anglers had longer fishing trips than their shore counterparts.
There were numerous significant differences in the analyses of variances for the numbers and pounds by partics using cither dead bait, liue bait or artificial lures, and also for the tests among anglers using boats, floaters, or fishing from the bank. Catch-per-hour in terms of pounds and numbers did not appear strongly related to whether or not the partics used lures, live bait, or dead bait. However, floater fishermen in general caught larger fish than did boatfishermen who, in turn, caught more pounds of fish than their counterparts fishing from the bank. These contrasts in terms of weight were significant cren though the comparisons in terms of numbers-per-hour were not. In his study of fishing on Mississippi reservoirs, Barkicy (8) found that boat fishermen generally had a higher catch-per-mnit effort than bank fishermen. Lopinot (5), however, reported that catch rate was about the same for boat- and bank-fishermen on Illinois state lakes. Schulmbach (9) found that boat-fishermen had a higher catch rate than did shore users and that wading-fishermon caught the least in terms of numbers-per-hour in three of four comparisons of data from the Des Moines River, Iowa. In Schulmbach's fourth comparison, wadinganglers did the best; they were followed by boat- and then shore fishermen. Stewart (10), in his study of South Dakota trout waters, found lure fishermen caught more fish-per-hour than live bait users. In survevs of Clear Lake, Iowa, boat- and dock-fishermen were found to do better than shore anglers, while those wading caught the most fish-per-hour (11, 12).
In view of this information, surveys dcsigned to estimate rate of success should be careful not to bias the sample toward one method or other, or they should stratify on the basis of angling characteristics.

ACKNOWLEDGMENT

The author is grateful to Dr. R. J. Miller, Dr. D. E. Bee, Dr. R. W. Jones, Dr. M. D. Grosslein, Dr. D. W. Toetz, Mr. C. Bennett, Mr. C. Collins, Mr. R. Jarman and Mr. L. E. Roberts for advice and counsel; Mrs. Earl Jones for computer programming and data processing: and the Oklahoma Department of Wildlife Consenation for financial assistance.

REFERENCES

1. R. Jarman, C. Bennett, C. Colilins, and B. E. Brown. Proc. S.E. Assoc. Game \& Fish Comin. 21: 484.495 (1968).
2. B. F.. Brow: An Analysis of the Oklahoma State Lake Creel Suncy to Improve Creel Surney Design, Ph.D. Thesis, Oklahoma State Univ., Stillwater, Okla., 1969.
3. R. Wircoxin and R. A. Witcox. Some Rapid Approximate Statistical Procedures, rev. ed., Lederle Laboratorics, Parl River, N. Y., 1964.
4. R. Stefle and J. Torrif, Principles and Procedures of Statistics. McCraw-IIIl, New York, 1960.
5. A. C. Lopinot, 1964 State Conservation Lake Creel Census, Illinois Dept. Conserv., Div. Fish. Spec. Rept. No. 6, 1964.
6. 1965 State Conservation Lake Creel Census, Illinois Dept. Conscrv., Div. Fish Spec. Rept. No. 10, 1965.
7. J. B. Moyie and D. R. Fiannkin, Trans. Amer. Fish. Soc. 85: 28.38 (1957).
8. II. Barkley, Proc. S.f. Asoc. Game \& Fish Comm. 14: 148-173 (1960).
9. J. C. Scmularbact, Factors Affecting the Harvest of Fish in the Des Moincs River, Boone County, Iowa, Ph.D. Thesis, Iowa State Univ., Ames, Iowa, 1959.
10. K. R. Stewart, Creel censuses and fishing pressure estimates on trout waters in the Black Ilills of South Dakota, 1962, S. Dakota Dept. Game, Fish \& Parks Rept. D.J Proj. F-1-R-12 Job. No. 21, 1964.
11. C. J. Di Costanzo, Crecl Census Techniques and Harvest of Fishes in Clear Lake, Iowa, Ph.D. Thesis, Iowa State College, Ames, Iowa, 1956.
12. C. J. Di Costanzo and R. L. Ridenhour, lowa Acad. Sci. 64: 621-628 (1957).

[^0]: ${ }^{\text {' The Oklahoma Cooperative Fishery Unit is supported by the Oklahoma Department of Wildife }}$ Conservation, Oklahoma State University Research Foundation, and the U.S. Bureau of Sport Fisheries and Wildlife.

