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Diffusional Dispersion of a Pulse Injection
into a Laminar Stream
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In most conventional experimental diffusion methods, direct diffu-
sional displacement is relied upon to give concentration profiles for meas-
urement. Long periods of time may be required when small diffusivities
are involved, such as in liquids. The method of pulse injection actually
magnifies the displacement so that less time is required to give adequate
gii:ﬂpersion for measurement. An added advantage is that convective

usivity

K =R U/48D (60

first postulated by Taylor (1853), is inversely proportional to the mole-
cular diffusivity so that the smaller the molec&r diffusivity the larger

the magnification of diffusional displacement. This is especially signifi-
cant in the study of liquids since liquid diffusion coefficients are about

four orders of magnitude smaller than those for gases.
For convective transport to be dominant over molecular transport in
a laminar flow system, Taylor (1854) stated that
K=D++ R U*48 D (2)

Later, Aris (1958) showed that the true effective diffusi was the sum
of the molecular diffusivity and Taylor convective diffusivity.

E=D+RU4S U ¢ )]

This result, of course, removes Taylor’s restriction imposed by equation
(8). Aris’ study also showed that any initial distribution of solute injected
into a stream of solvent tends to become more symmetrical and

laminar
the distribution tends toward normality.
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At least two investigators (Chang 1966; Giddings and Seager, 1962)
have advantageously used the pulse injection method to obtain gaseous
diffusivities. The magnification of dispersion in laminar flow of gases
allowed them to significantly decrease the time required for a single deter-
mination of ditfunlvlty In liquids, the magnification of dispersion during

ﬁow even greater than for gases, so a large reduction in time
nquir is to be expected when applying the pulse injection method to
liquid systems.

Btleﬂy in this ethodathlnbmdo(nolutehlnjectedintoahuﬁw
vent stream ﬂ wing throu, a tube. The injected band is made as
as possible to approximate a plane source and the radial concentra-
is made as uniform as possible. The longitudinal concentration pro-
is measured at some distance downstream from the injection point
is used to calculate the liquid diffusivity.

ESgEL

MATHEMATICAL DEVELOPMENT
By defining a moving coordinate system such that
y=z— Ut (0))

the following system may be characterized mathematically by the normal
distribution given in Crank (1936)

C = (B//t) Exp [—y'/4Kt) *)
which is a solution of the differential equation
390/t = K (3°C/oy*) ()

for a plane source in one dimension.

In equation (§), the arbitrary constant, B, may be evaluated by stip-
ulating that the total amount of solute, M, remain constant,

M = _j":c dy = 2B (#K)¥% ()

Substituting for B, equation (§) becomes
C = [M/2 (zKt)%] Exp (—y'/4K?) (8)

puts uation 8 may now be compared to a Gaussian curve (normal distri-
ution

n (2) = (1/o/2x) Exp [— (2—p)*/20"] 9

where x = mean of the distribution, and ¢* — variance of the distribution.
Noting that y — 2 — Ut, we see that x — Ut and that

25* = 4Kt (10)

K = //2¢ an

%0
It may be shown that the width, w, of the Gaussian curve, at half its

maximum height is related to the variance in the following manner

w

Then

=2 (2In2)¥ (12)

o =w/(81s2) 8 )
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From equation (11), we have

K = w/(16 ¢t in 2) (14)
Combining equations (8) and (14)
D+ RU/S D = (w/(16 t In 2)) (18)

Solving for D, we have
D = (w/(32t In 2)] (1 = {1 — (64/3) [(RU ¢t In 2)/w')'}%} (16)

Then, in order to evaluate the molecular diffusivity one may simply
inject a small band of solute into a solution flowing in a straight circuiar
tube. By measuring the mean velocity in the tube and the width of the
resultant distribution at half height after a time, ¢, one may then calculate
the diffusion coefficient from equation (18).

As noted by Chang (1966) and Giddings and Seager (1962), the total
dispersion of a pulse by independent processes is given by

d* total = d* column + & extra effect (1) + d* extra effect (2) + .. (17)

If we use a long tube initially and then a short reference tube, we
may utilize equation (17) to “back out” end effects that may distort the
dispersion of the solute and give faulty data. Equation (1) then becomes

D = [(w, — w%)/32 (¢, — t,) In 2] (r=+Q1— (84/3) (RU (¢, — t)
In 2/w, — “7’:)]’)"‘} (18)

The above analysis was made for a straight tube and corrections are
necessary when a coiled tube is used. As pointed out by Giddings (1960),
the correction varies inversely with the square of the coll radius and is
proportional to the tube radius raised to the fourth power so the use of
small diameter tubing is desirable.

CHOICE OF Roors

It is observed that equation (18), which is the final expression for
calculating the diffusivity D, has a multiplicity of roots since it was ob-
tained as the solution to a quadratic equation. One must be able to choose
the correct root; and the procedure is the same as that shown by Giddings
and Seager (1962), who showed that the positive root should be chosen
up to a critical velocity, U, — /48 (D/R), after which the negative root
should be used. They showed graphically that there was no velocity effect
on the diffusivity; and indeed there is none, other than disruption of the
experiment which occurs at the onset of turbulent flow.

APPLICABILITY OF METHOD

Since the foregoing analysis was based on a solution of Fick's second
law (equation §), any restriction on that law must also apply to any sys-
tem on which the resultant equations are used. Moreover, as stated pre-
viously this analysis was made for a straight tube and is subject to the
corrections mentioned for coiled tubes.

Since data is most easily obtained by measuring the concentration
profile at & point as the injected pulse passes, one must be careful that
the dispersion does not change appreciably while passing.

This condition is met by the following restriction
E/UL < 001 (19)

which Levenspiel and Smith (1957) showed to be sufficient for alleviating
skewness in the normal distribution obtained at the point of measurement.
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In previous applications to gaseous diffusion (Chang, 1966; Giddings
and er, 1962), this technique has shown excellent reproducibility of
data produced results comparable to those obtained by conventional
methods. It is felt that similar success can be attained in ligquid diffusion
studies once a program is initiated to develop the potential of the pulse
infection method for liquids. The only real difficulty might arise in obtain-
ing an analytic method acceptable for measuring concentration in the
system one wishes to study.

ACKNOWLEDGMENT

Financial support was provided by the National Science Foundation
through Research Grant No. GK-1028. Graduate fellowship support was
also provided by the National Science Foundation.

NOMENCLATURE

B Arbitrary constant t Time
0 Concentration w Width at half height of
D Molecular diffusivity Gaussian curve, length units
K Eftective diffusivity x Distance relative to fixed
M Total amount of solute coordinates
n(x) Normal distribution y Distance relative to moving
R Radius of experimental tube coordinates
/4 Mean velocity of flow 8 Mean of normai distribution
d Width at half height of a Standard deviation of normal

Gaussian curve, time units distribution, length units
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