Changes in the Abundance of Goldeye, Hiodon alosoides (Rafinesque), in Lake Texoma, Oklahoma ${ }^{1}$

WHLLAM L. SHELTON, University of Oklaboma Norman

The goldeye, a member of the family Hiodontidae, is an elongate, silvery fish with prominent teeth on various bones of the mouth. The eye is large and yollowish-golden in color. Its food is predominately insects. It is one of the few freshwater fishes that produce pelagic or semi-pelagic eggs (Battic and Sprules, 1960). Primarily a lake dweller, it is reported to ascend streams to spawn.

The abundance of goldeye in Lake Texoma has undergone dramatic changes since completion of the dam. In the collections of Martin (1952) for 1948 and 1949, goldeye were very numerous (Table I). Dowell (1956) found as late as 1962 that goldeye was the second most abundant nettable tiab in Buncombe Creek arm. Riggs and Bonn (1959) stated that goldeye were abundant, but had decreased during the previous three years. J. Teague Self (personal communication) indicated that efforts to obtain eoldeye in the fummer of 1900 were practically futile. Bobby G. Grin-

[^0]tasle I. Comparigon of selected monthly Lake level minima and maxima with glll Net Capture of goldeye.

February	Lake Level March	
Year	Low-Eilgh	Low-Eigh

Tane I, continued

1060
1061
1002
1003
1004
1005
1006
1007
1068

[^1]stead (unpublished data) captured very few goldeye in one full year of gill netting, 1962 to 1963. During 1965 and 1968 no goldeye were captured by Charles A. Taber (unpublished data) in his netting operations. In the summer of 1967 the parasitology class of the University of Oklahoma Biological Station captured several goldeye (Self, personal communication). During the spring and summer of 1968, Harold J. Smith (unpublished data) and 1 , in separate netting operations, captured goldeye with predictable regularity. Thus, it appears that in the 24 years since the lake was first impounded there has been a decrease in the goldeye population with a subsequent increase.

Many factors can be responsible for a population decline, but when large mortalities are not involved, some factor interfering with reproductive success is probably indicated. Goldeye are reported to ascend streams to spawn. Kennedy and Sprules (1967) reported spawning in streams and backwaters of lakes in Canada. Actual spawning observations have not been reported but recovery of the semipelagic eggs in rivers and near mouths of rivers by Canadian workers indicates at least some spawning occurs in the rivers. The eggs in the lake could have been deposited there or could have drifted from adjacent streams. If it is necessary that goldeye ascend streams to spawn, then low lake levels could adversely affect reproductive success and consecutive years of such conditions could considerably reduce the population.

Spawning in Canada occurs when the mean water temperature reaches 50-55F (Kennedy and Sprules, 1967). In Lake Texoma this temperature range normally is reached in March; thus, goldeye probably spawn during March and possibly into April. Neither eggs nor larvae have been taken in Lake Texoma but nearly ripe females have been captured in late February.

The population decline followed a period of 6 years, 1952 to 1957, of low lake levels during the probable spawning months (Table I). The subsequent increase has occurred in a nearly continuous period of lake levels nearer to normal during the spawning months. In impoundments, lowering of the lake level exposes silted mouths of tributaries and can effectively prevent upstream fish migration. At lake levels below $610 \mathrm{ft}, \mathrm{m} . \mathrm{s} .1$. , Buncombe Creek is separated from the lake arm, as are other tributaries such as the Washita River at Cumberland Cut.

If low lake levels have adversely affected spawning success in goldeye, then the importance of this factor in predicting the success of other potamodromous fishes should be considered.

LITERATURE CITED

Battle, Helen I. and William M. Sprules. 1960. A description of the semibuoyant eggs and early developmental atages of the goldeye, Hiodon alosoides (Rafinesque). J. Fish. Res. Bd. Canada 17 (2):245-266.
Dowell, Virgil E. 1956. Activity patterns and distribution of fishes in the Buncombe Creek arm of Lake Texoma. Unpubl. Doctor's dias., Univ. of Okla., Norman.

Kennedy, W. A. and W. M. Sprules. 1967. Goldeye in Canada. Fish. Rea. Bd. Canada, Ottawa. Bull. 161.
Martin, Mayo. 1952. Age and growth of the goldeye, Hiodon alocoldee (Raninesque) of Lake Texoma, Oklahoma. Proc. Okla. Acad. sel. 33:87-40.

Riggs, Cari D. and Fdward W. Bonn. 1959. An annotated list of the fishes of Lake Texoma, Oklahoma and Texas. Southwent. Natur. $4(4): 157-168$.

[^0]: IA eqatribution from the Univeratity of Okhhoma Biolocieal station and aupported 35 the U. 8 Corpe of Sarinetrs Chrourb the Otiniome Fish and Game Council Apprechetion fe exteadod to the individuth who donated their mpubished deta.

[^1]: - Lake level - Information from U. S. Army Corps of Engineers. (Normal 617 ft above mean sea level).
 - An finh were captured in Buncombe Creek area except those netted by Martin. Martin's data from Buncombe Creek are in parentheses. Gill nets were of various designs but of comparable mesh sizes and usually of a common length.
 tNet day-A single gill net set for 24 hr or adjusted to 24 hr .

