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SEenON I, ENGINEERING SCIENCE

On the Application of Dimensional Analysis
c. P. COLVER'. University 01 Oklahoma. Norman

Many problems facing engineers today are of such complexity that a
direct mathematical solution becomes very difficult or even unattainable.
For example. the answer to a seemingly simple engineering problem may
involve solving several nonlinear partial differential equations with non
homogeneous and/or nonlinear boundary conditions. In a select number
of instances. the use of similarity transformations permits reducing the
describing equations to a set of ordinary differential equations. ThIs
greatly helps Implement a solution, even though the resultant equations
may very well be nonlinear. Ordinary dlfferentlal equations which pos
sess nonlinearitles are more amenable to analytical solution than non
linear partial differential equations. When a problem is so difficult that
an accurate mathematical solution is. at least, temporarily abandoned,
carefully designed experiments are normally carried out to obtain the
required solution. To properly design such an experiment. a complete
knowledge of all pertinent parameters needing investigation is required.

The purpose of this paper is to present a rapid and straightforward
method of applying dimensional analysis to engineering problems that
pose difficulties such as those outlined in the above paragraph, and which
can be represented by a mathematical model. The procedure to be de
scribed developed from an article published several years ago (Hellums
and Churchill, 1961). In short, it will be demonstrated how the minimum
number of significant dimensionlesa parameters describing a problem can
be detennined. Further, the method will show how the functional rela
tionships describing a problem are generated, and how appropriate changes
of variable are fonnulated for analytically solving certain problems.

SUMMARY OF METHOD

The application of dimensional analysis to mathematically represent
engineering problems consists of several steps. These are: (1) Formu
late aU differential equations and/or algebraic expressions which ade
quately describe the problem, together with the required boundary condi
tions; (2) select the appropriate dimensionless variables tor all independ
ent and dependent variables involved, using arbitrary terms or boundary
values for the denominator in each case; (3) substitute the new dimen
sionless variables into each differential equation and boundary condition
to normalize them; (f) group into functional form all dimensionless vari
ables and those parameters generated; (5) reduce the functionaUty to the
minimum possible number of independent groups; and (6) drop any
groups in which the arbitrary terms can not be divided out using other
groups of the functionality. The following example is u.eed to demon
strate and exempltty the ramifications of the method.

Ma38 T'J'GfUJler in (J Falling Uqvid FUnr-Consideratlon is given to a
liquid fUm of constant thickness. 11., falling in laminar flow down a verti
cal wall. as shown In Figure 1. The Uquld is originally pure B, but, at
lOme point along the wall, component A begtna diffusing through the
9r;ul into the liquid at a constant rate, N A.

Continuity equation for component A ..

(1) II O. = Du c.., 11 ~ 0, • ~ 0

G
. 'Partial .apport reeeived from the NaUoaal Sclnc. POIUS_tlon (&lseareh Graat
I -ltll).
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Fig. 1. Falling liquid tUm

where u Is the downward liquid velocity, a the concentration of compo
nent A, C. and a" the first and second partial derivatives with respect
to z and y, and DAB the mass diffusivity of component A. Appropriate
boundary conditions for the problem are:

(2) C = 0 z ~ 0 y > 0

(8) 0 = 0 all z 11 -+ 00

(4) 0, = -NAIDAB Z > 0 11 = 0

Near the wall, the velocity distribution may be approximated by the
linear function (Bird et al., 1960)

(li) u. = (pgh/~)y

where p and p are the liquid density and viscosity and 9 the acceleration
of gravity. From Eq. (li). and letting

>. = ~A.lpgh,

Eq. (1) becomes

(6) 1/ C. = >. C"

The dimensionless variables a' = OICo, .I' = -/Zo and Y = 1/ly, are
Be1ected. where Co. Zo and Y. are arbitrary. Substitution of these vari
ables into Eq. (8) and the boundary conditions. Eqs. (2) - (4). and nor
ma11z1ng yields

(7) YO'" = [>.•.IV.1C'n
and

( 8) 0' = 0 Z' = 0 Y > 0

( 9) C' = 0 aU .I' Y -+ 00

(10) C· = (-NAy.)/(DA.O.) Z' > 0 Y = 0

Note that the boundary condition represented by Eq. (10) remains DPn'
homogeneous; thus it must be retained as a parameter. Grouping all :n
dependent parameters in functional form gives

(11) I (0/0., z/••, 1//Y.. 11'./>...••• O.DA./NAY.l = 0



ENGINEERING SCIENCE 225

.~ t this point in the analysis, it is generally a good polley to examine In
cividual groups to see if they are indeed dimensionless. Also, It should
be mentioned that dropping signs on groups, inverting groups, multiplying
or dividing groups by one another or changing the power on any group
does not affect the functionality, i.e., Yo A z... could be represented equally
well as Y/(A zo) ~ or (A zoP'/y.

To minimize the number of groups in Eq. (11) that contain the arbi
trary terms 0 0 • zo, Yo requires: (1) Multiplying the fifth group by the
first group over the third group, and (2) mUltiplying the fourth group
by the cube of the third group divided by the second group. The result is

(12) I [o/co, z/zo, Y/Yo, Y/AZ, OD..B/N..y] = 0

Now, taking the cube root of the fourth group gives

(13) f [0/0 0 , z/z"" Y/Yo, Y/(AZ)~, ODu/N.t y] = 0

or in an equivalent form

(14) (O/N.. y)D..B = / [z/zo, Y/Yo, Y/(M) %]

The final expression representing the minimum number of dimension
less parameters describing the problem is obtained by dropping out the
parameters in Eq. (14) still containing the arbitrary terms 0 0 , z.. and Yo'
Consequently,

(15) OD.tB/N.. Y = f [y/O,z) %]

An eqUivalent form is

(16) CD..B/N.. (AZ) % = 1 [Y/(M) %]

Thus, the minimum number of significant parameters describing the
problem is represented by either Eq. (15) or Eq. (16).

To determine the parameters affecting the concentration of A at the
wall, simply let Y = 0, giving

(17) OD..B/N.. (AZ)% = const

or

(18) 0 a z~

This useful result, determined solely by dimensional analysis, shows that
the wall concentration of A varies explicitly as the cube root of vertical
distance along the wall.

To obtain an analytical solution requires letting

(19) CDAB/NA Y = I(x)

Where x = y/(9).z)%. The (9)~ in the expression Is placed there only
for later convenience, and does not affect the applicabil1ty of the solution
lllethod.

. Substitution of the similarity transformation, Eq. (19), into Eq. (6)
gIves the ordinary differential equation

(20) I" + [(2/x) + 3r] I' = 0

wrere primes represent derivatives of I(x) with respect to the variable
z. Integrating twice and applying the boundary conditions shown by Eqa.
I 2: - (") gives

(21) I = CDu/N... 11 == [1/r( %)] J.tIO (e'''/zI) fb
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wllere r (,,) 1B a gamma function. This represents the complete analy.
tlca1 8OluUon to the problem.

To summarize, a procedure has been demonstrated for determ.ining
the mlnimum number of significant parameters describing an engineer.
ing _problem which can be represented by a mathematical model. For the
particular example chosen, derived functional relationships were utilized
&8 JimUarlty tranJformattons to aid in carrying out the analytical solu
tion.
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