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Preliminary Solution for the Hypervelocity Impact

of a Porous Stone Sphere on Solid Aluminum!
B. A. HARDAGE® and F. C. TODD
Oklahoma State University, Stillwater

An earlier, analytical solution for the hypervelocity impact of a por-
ous plate on a solid aluminum slab is extended to the impact of a sphere
on a slab in this paper. This solution shows the compaction of the sphere
and the flow of the compressed materials of the sphere and of the target
in the early stages of the impact. This problem originated during an
investigation of the impact of micrometeoroids on space vehicles in orbit.
The analytically predicted velocities of impact range from 30,000 to 240,000
ft/sec. Since micrometeoroids tend to be spherical in shape, this paper
considers a porous sphere of rock with a mass of 10-* g. Micrometeoroids
are most commonly silicates, mainly enstatite or olivine, with some com-

of iron-nickel alloys (Donn, 1964). Micrometeoroids are usually
not solid, but consist of a fluffy agglomerate. A typical, but not an aver-
age, density could be one, i.e., the same as that of water.

Papers on hypervelocity impact have already been presented to the
Academy by members of this group (Lake, 1962; Sodek, 1963; Hardage,
1866) and this paper is a continuation of this series. Lake considered the
shock propagation in aluminum from a hemispherical source. Sodex ex-
tended the solution to a solid aluminum sphere impacting on an aluminum
slab but did not follow the position of the interface. Hardage considered
a porous thin plate impacting on an aluminum slab and followed the posi-
tion of the interface. All solutions made the usual assumption of inviscid
flow of the highly compressed material. In this paper, a theoretical inves-
tigation of the early stages of the impact of a porous sphere of rock on a
solid, aluminum slab is reported. The position of the interface is fol-
lowed, as well as that of the shock front. There are several refinements
in this solution which are expected to permit the solution to be continued
at a later time to show the propagation of the shock from the fluid region
into the plastic region where the shock front separates into two shock
fronts and to follow this complicated shock into the elastic material of

the target.
INITIAL CONDITIONS

The initial and boundary conditions for the problem are summarized.
A sphere is approaching normal to a semi-infinite slab at a velocity Vv and
is assumed to touch at zero time; i.e. ¢t = 0. The axis of symmetry, o-z,
is determined by the point of contact, P, and lies along the axis of ap-
proach as indicated in Figure 1. Since the system has radial symmetry,
a solution is required for only a thin, wedge-shaped plece of pie, with the
point on the axis of symmetry. This three-dimensional wedge may be
represented by a sketch in two dimensions that extend up from the axis
of symmetry in the half-plane as far as may be required to show the
effect of the impact. No flow may occur across the faces of this wedge,
but material may flow out the back.

The origin of the spherical coordinate system is placed on the axis
o-z, at a distance of three radii of the sphere above the point of contact.
A two-dimensional mesh i8 formed by drawing lines of constant angle
and lines of constant radius as indicated in Figure 2. The center of each
cell in this mesh is given by two coordinates, L(r) and M(r,9). The radial

zhlu u:'grk on this project was supported by the National Aeronauties and Space
Adm on.
3Now st Phillips Petroleum Company, Bartlesville, Oklahoms.



280 PROC. OF THE OKLA. ACAD. OF SCL FOR 1986

+——1—ALUMINUM

Figure 1. Coordinate system for porous rock impacting on “semi-infi-
nite” slab of aluminum.

1 is represented by L, and the angular position by M. The direction
of increase of these quantities is indicated.
' HYDRODYNAMIC EQUATIONS FOR VIsCIp FrLow

The equations for conservation of mass, momentum and energy are
the fundamental equations of flow. The derivations of these equations
are found in many books (Bird et al., 1960; Amer. Inst. Phys. Handbook,
1968). In vector form and with Eulerian coordinates, the three equations
of flow with the viscosity are:

Conservation of mass, or the continuity equation

dp/dt -pw-V =0 (1
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Figure 2. Polar coordinates for section of sphere on right entering alumi-
num slab on left.

Conservation of momentum, or the equation of motion
pdV/dt - Vp —V-§;= 0 ()

pdE/dt ~v-(pV) -v-(S;) =0 (3)

The form for the energy equation was derived on the assumption of adi-
abatic energy flow. By using this equation for everything except the
initial compression up the Hugoniot curve, any subsequent compression
and/or expansion will remain on the same adiabat. The preceding equa-
tions are valid for both fluid and plastic flow., At the high pressures in
the immediate vicinity of the impact, the flow is considered to be inviscid,
or without viscosity. The equations for plastic flow are assumed to
apply below a more or less arbitrarily selected pressure.

In the preceding equations, V(v,,v,,v,) is the velocity of the material
in functional notation, , is the density, p is the pressure, ¥ is the total
energy and §,, is the stress tensor. This tensor is zero for inviscid flow
but, for plastic flow, it is very important and has the following form:

8 = (3p — 29/8)dxx8:; + 29dy, (4)
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where g5 is the bulk viscosity, and j, is the shear viscosity. It is generally
assumed that y», 18 zero. The term 3,, is the Kroneker delta. The strain
rate components d,, are defined by the relation

d,y = 0.5[3v,/9x,) + (ov,/3%y)] (5)
If the material is elastic and not strained above the elastic limit,
8, = Aéxxdiy + 2ue, (8)

where , is the modulus of rigidity and A is the Lame’s lambda. The terms
e,, are the strain components

6y = 05[(3r,/02,) + (ar/02y)] (7)

where r, and r; are the components of the displacement vector for the
material, which results from elastic deformation only. The displacement
of a body through space at a constant velocity does not affect the magni-
tudes of these components.

For a plastic solid, the viscosity is a decreasing function of the strain
rate tensor. The following relation was proposed for the viscosity of a
plastic solid (Eirich, 1956).

7 =1 + 8/|8} (8)

The terms in this relation are the viscosity, 5,; the yield value in shear,
§,; and the value of the strain rate tensor |§|, which was defined in Equa-
tion 4. This model was used to describe plastic flow in hypervelocity
impact (Riney, 1963), and it is employed in the plastic region for this
study. In the literature, this model for the viscosity is designated as
Bingham plastic flow.

The preceding terms for 5, and §, are not constants, but are functions
of the pressure and temperature. For a plastic solid it is known that the
l;tl;:\;}nz gtequalities are required: 3n./3p > 0; 38y/p > 0; 390/0T < O;
98./0T < 0.

With these conditions, a first approximation for these two functions may
‘have the following form.

=G + ap + a/e (9)
S8 =0b, + bp + b/e

where e is the internal energy and the a's and b's are constants which
are selected by trial and error in order to obtain the normal values for »,
and 8, at standard temperature and pressure. Since e is proportional to
the temperature, the inequalities for temperature are satisfied. The pre-
ceding approximations are employed for the calculations in this paper.

EQUATIONS OF STATE

The three conservation relations, Equations 1, 2 and 3, are not suffi-
clent to solve for the shock and flow since there are four variables, V, p,
and B, in these relations. The fourth relation between these variables
fa usually taken as an empirical, or semi-empirical, equation of state. For
aluminum, an equation of state was proposed by Tillotson (1962) which
?ubeanwldelyuaedmdhuaedtorthismrk. This equation has the
orm

P = (a + b/[B/Bon’) + 1])pE + Ax + Bg (10)

where P is the pressure in megabars, B is the specific internal energy,
is the density under compression, m is the ratio p/p, Where p, i3 the norg
mal density, and 4 — m—1. The terms K, 4, B, a, and b are constants.
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A more complicated equation of state is required for the impacting
sphere of porous rock. At the high pressures developed during the im-
.pact, inviscid fluid flow is generally assumed. This was assumed for
aluminum in all calculations familiar to our group except some by Riney
(1963). Wagner et al. (1964) have shown that the constants in the un-
modified Tillotson equation of state cannot be adjusted to give a close
fit to the Hugoniot curve that is found for porous stone by experiment.
An equation of state for porous materials proposed by Soviet scientista
provides a good fit with the experimental data (Kormer et al, 1962;
Al'tshuler et al, 1962). McCloskey (1964) has modified and extended
the Russian work. Wagner et al. (1964) have added some corrections to
McCloskey’s work. The proposed equation of state for porous rock as-
sumes that P and F may each be written as the sum of three functionas.

P(m,T) = P. (m) + P, (m,T) + P, (m,T) (11)
E(mT) = E. (m) + B, (m,T) + B, (m,T) 12)

In these relations, T is the temperature. The three functions are distin-
guished by subscripts. The subscript ¢ indicates compression with inter-
actions of the atomic lattice at 0 K; the subscript n denotes the contribu-
tion from the thermal vibrations of the lattice ions; and the subscript e
represents the contribution from thermally excited electrons. To illustrate
the relatations in equation 11, the pressure is plotted in Figure 3 as a func-
tion of m for three isotherms.

COMPUTING PROCEDURES

The computer is programmed to solve the preceding equations with
the boundary conditions (some have not been mentioned) to obtain values
for o, 4, w, E and P. The velocities u and w are the R and § components
of the velocity vector V. The computer solution to obtain these variables
as functions of space and time proceeds by the following steps.

1. Convert Equations 1, 2 and 3 into a finite difference form. Use
central differencing for space derivatives, and forward differenc-
ing for time derivatives.

2 Label the center of each cell in Figure 2 with the initial values of
p %, W, E and P at time ¢t —= 0.

3. Solve the finite difference equations from step 1 for the values of
o % wand E at time ¢t — ¢ + At

4. Solve Equations 10 and 11 for the values of pressure at the center
of each cell in the mesh at time ¢ + At.

5. Replac_ei_ ezch cell value of p, ¥, w, E and P with the new values at
t=1 t.

8. Step time by an amount A?.
7. Repeat steps 3 through 6 until a final time is reached, ie., ¢ =

teiea
RESULTS

The fluid flow solution agrees with and extends previous results from
this laboratory. As an illustration of this work, a solution is shown at an
instant during the formation of the crater in Figure 4. The relative posi-
tions of the compressed stone, the shock front and ejecta from the target
are {llustrated. The pressure has not yet decreased sufficiently to show
the coupling to the plastic region. The initial conditions for the solution
in the sketch were for a stone sphere of 50% porosity and mass 10° g
which impacted on a thick aluminum slab at 36 km/sec.
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Figure 4. Section of crater that was calculated for one instant during
the crater formation.

Computer solutions were obtained for a wide range of initial condi-
tions. These include different initial velocities, two diameters of the im-
pacting sphere and a range of porosities. Solutions were extended to shock
coupling from the fluid to the plastic region and then to the elastic regions
of the target.

Details of these further solutions will be published elsewhere.
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