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An earlier, analytical solution for the hypervelocity impact of a por­

ous plate on a solid aluminwn slab is extended to the impact of a sphere
on a slab in this paper. This solution shows the compaction ot the sphere
and the flow ot the compressed materials ot the sphere and ot the target
in the early stages ot the impact. This problem originated during an
investigation ot the Impact of micrometeoroids on space vehicles in orbit.
The analytically predicted velocities of impact range from 30,000 to 2~O,OOO

ft/sec. Since micrometeoroids tend to be spherical in shape, this paper
considers a porous sphere of rock with a mass of 10" g. Micrometeoroids
are most commonly silicates, mainly enstatite or olivine, with some com­
posed of iron-nickel alloys (Donn, 1964) • Mlcrometeoroids are usually
not solid, but consist of a fluffy agglomerate. A typical, but not an aver­
age, density could be one, i.e., the same as that ot water.

Papers on hypervelocity impact have already been presented to the
Academy by members ot this group (Lake, 1962: Sodek, 1963; Hardage,
1966) and this paper is a continuation of this series. Lake considered the
shock propagation in aluminum from a hemispherical source. Sodex ex­
tended the solution to a solid aluminwn sphere impacting on an aluminum
8lab but did not follow the position of the interlace. Hardage considered
a porous thin plate impacting on an aluminwn slab and followed the posi­
tion of the interlace. All solutions made the usual asswnption ot Inviscid
flow of the highly compressed material. In this paper, a theoretical inves­
tigation of the early stages of the impact ot a porous sphere of rock on a
solid, alwn1num slab is reported. The position of the interlace is fol­
lowed, as well as that of the shock front. There are several refinements
in this solution which are expected to permit the solution to be continued
at a later time to show the propagation of the shock from the fluid region
into the plastic region where the shock front separates into two shock
fronts and to follow this complicated shock into the elastic material ot
the target.

INITIAL CONDmON8

The initial and boundary conditions tor the problem are summariZed.
A sphere is approaching normal to a seml-1nflnite slab at a velocity V and
is assumed to touch at zero time; I.e. t = O. The axl8 of symmetry, o-Z,
is determined by the point of contact, P, and UeB along the ax1B of ap­
proach as indicated in Figure 1. Since the system has radial symmetry,
a solution is required for only a thin, wedge-shaped piece of pie, with the
point on the axis ot symmetry. This three-dimensional wedge may be
represented by a sketch In two dimensions that extend up trom the axl8
of symmetry in the halt-plane as tar as may be required to show the
effect ot the impact. No flow may occur &Ol"O88 the faces of thls wedge,
but material may flow out the back.

The origin of the spherical coordinate system is placed on the axis
o-z, at a distance ot three radil of the sphere above the point of contact.
A two-dlmeDBlonal mesh is formed by· drawing Un. of constant angle
and Unes ot constant radius as Indicated in Figure 2. The center of each
cellln this mesh is given by two coordinates, L(r) and M(r,I). The radial
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FlIUre 1. Coordinate system tor porous rock impacting on "semi-infi­
nite" Blab of aluminum.

len,th 111 represented by L. and the angular position by M. The direction
of Increase of these quantities is indicated.

HYDRoDYNAMIC EQUATIONS FOR VISCID FLow

The equations for conservation of mass. momentum and energy are
the fundamental equations of flow. The derivations of these equations
are found in many books (Bird et al., 1960; Amer. Inst. Phys. Handbook,
1988). In vector fonn and with Eulerian coordinates. the three equations
of flow with the vi8co8lty are:

OoDMrvatton of m&88. or the continuity equation

dp/dt -PV·V =0
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o
Figure 2. Polar coordinates for section of sphere on right entering alumi­

num slab on lett.

Conservation of momentum, or the equation of motion

Conservation of energy, or the energy equation

pdE/dt -v·(pV) -V.(Sij~)=0 (3)
The form for the energy equation was derived on the aasumption of adl­
abatic energy flow. By using this equation for everything except the
Initial compression up the Hugon1ot curve, any subsequent compression
and/or expansion will remain on the same adiabat. The preceding equa­
tions are valid for both fluid and plastic flow. At the high pressures in
the immediate vicinity of the impact. the flow Is considered to be lnviscld,
or without vfscos1ty. The equations tor plastic flow are asaumed to
apply below a more or less arbltrarUy selected pressure.

In the preceding equations, V("'''''''''''k) is the velocity of the material
in functional notation, p is the density, p 18 the pressure, B 18 the total
energy and 8., is the stress tensor. Tb1s tensor is zero for inv18ctd flow
but, for p1ast1c flow, it 18 very important and hu the following form:

(4)
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where 'fa Sa the bulk viaco8lty, and " is the shear viscosity. It is generally
ueumed that ,. Sa zero. The term 3., Is the Kroneker delta. The strain
rate componenta 4.) are defined by the relation

eI' J = OJHav.;ax,) + (av./ax.)] (5)

It the material .. elastic and not strained above the elastic limit,

lItJ = ).eKX3'J + 2p81' (6)

where p. .. the modulus of rigidity and ). is the Lame's lambda. The terms6., are the .train components

elJ = O.l5[ (ar,/axl) + (arl/ax,)] (7)

where r. and r, are the components ot the displacement vector tor the
material, which results trom elastic deformation only. The displacement
of a body through lpace at a constant velocity does not affect the magni­
tudes of theae components.

For a pJastlc solid, the viscosity is a decreasing tunction of the strain
rate teMor. The following relation was proposed for the viscosity of a
plutic solid (Eirich, 1956).

" = 'I' + &lISI (8)

The terms in thla relation are the viscosity, '10; the yield value in shear,
s.; and the value of the strain rate tensor lSI, which was defined in Equa­
tion 4. Thla model was used to describe plastic flow in hypervelocity
Impact (Riney, 1963), and it is employed in the plastic region for this
Itudy. In the literature, this model for the viscosity is designated as
Btqham plutlc flow.

The preceding terms for 'I' and So are not constants, but are functions
of the pre88ure and temperature. For a plastic solid it is known that the
following inequalities are required: of/olOp > 0; aSo/p > 0; of1olOT < 0;
aSolaT < O.

With these conditions, a first approximation for these two functions may
'!lave the following form.

,. = CIs + ClaP + Gale (9)
S. = b1 + btp + b./e

where 6 .. the internal energy and the (J's and b's are constants which
are &elected by trial and error in order to obtain the normal values for '10
and S. at standard temperature and pressure. Since e is proportional to
the temperature, the inequalities tor temperature are satisfied. The pre­
ceding approximations are employed for the calculations in this paper.

EqUATIONS OF STATE

The three conaervation relations, Equations 1, 2 and 3, are not suffi­
cient to 101ve for the shock and flow since there are four variables, V, p,
p and ., in these relations. The fourth relation between these variables
Ia usually taken as an empirical, or semi-em.pirical, equation of state. For
alum1Dum, an equation of state was proposed by Tillotson (1962) which
baa been widely U8ed and 1a used for this work. ThIs equation has the
form

P = (0 + b/[B/B.m·) + l])pB + A,. + B,.I (10)

where P lit the preaure in megabars, B 1a the spec1tic internal energy, p
lit the deDalty under compression, m Is the ratio pi". where ". is the nor­
mal denIIlt7. and ,. ='M-l. The terms JI., A, B, (J, and b are constants.
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A more compUcated equation of state 18 requlred for the Impacting
sphere of porous rock. At the high pre88Ure8 developed during the 1m-

.. pact, inviscld fluid flow 18 generally assumed. This was assumed for
aluminum in all calculations famlUar to our group except .ame by Riney
(1963). Wagner et &1. (1964) have shown that the constants in the un­
modified Tlllotson equation of state cannot be adjuated to give a cloae
fit to the Hugoniot curve that 18 found for porous stone by experiment.
An equation ot state for porous materials proposed by Soviet scienttsta
provides a good fit with the experimental data (Konner et &1., 1982;
Al'tshuler et aL, 1962). McCloskey (1964) has modified and extended
the Russlan work. Wagner et al. (196.) have added some corrections to
McCloskey's work. The proposed equation of state for porous rock as­
sumes that P and B may each be written &8 the sum of three functions.

P(m,T) = Pc (m) + p. (m,T) + p. (m,T) (11)

B(m,T) ::= Be (m) + B. (m,T) + B. (m,T) (12)

In these relations, T 18 the temperature. The three functions are dlstln­
guished by subscripts. The subscript c indicates compression with inter­
actions of the atomic lattice at 0 K; the 8ubscript fa denotes the contribu­
tion trom the thermal vibrations ot the lattice tons; and the 8ubscript e
represents the contribution from thermally excited electrons. To illustrate
the relatations in equation 11, the pressure is plotted in Figure 3 as a tunc­
tion of m for three taotherms.

COMPUTING PRocmURES

The computer i8 programmed to solve the preceding equations with
the boundary conditions (some have not been mentioned) to obtain values
for p. 14, W, E and P. The velocities u and ware the B and B components
of the velocity vector V. The computer solution to obtain these variablea
as functions of space and time proceeds by the following steps.

1. Convert Equations 1, 2 and 3 into a finite dltference fonn. Use
central differencing for space derivatives, and forward differenc­
ing for time derivatives.

2. Label the center of each cell in Figure 2 with the 1n1tlal values of
p, v, '10, B and P at time t = O.

3. Solve the finite difference equations from step 1 for the v&1uu of
p, te, '10 and B at time t = t + At.

4. Solve Equations 10 and 11 for the values of pressure at the center
of each cell in the mesh at tlme t + At.

5. Replace each cell value of p, Uo" 10" B and P with the new values at
t = t + At.

6. Step time by an amount At.

1. Repeat steps 8 through 8 unW a final time Sa reached, i.e., t =
t ra...

RE8VL'f8

The fluid flow solution agree8 with and extenc.ta previOWl renlts from
this laboratory. Aa an WUltration of tbl8 work, a 101utlon 18 shown at aD
instant during the formation of the crater In Flpre 4- The relative post­
tions of the compreued atone, the shock front and ejecta from the target
are Wustrated. The pressure baa DOt yet decreued autftctenUy to show
the coupllDg to the pJaatlc region. The lDftlal conditioD8 for the IIOlutlon
in the sketch were for a .tone sphere ot 60% porolIlty aDd mua 10-' •
which tmpact,ed on a thick aluminum slab at ae km/NC.
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Figure 4. Section ot crater that was calculated tor one instant during
the' crater tonnatlon.

Computer solutions were obtained tor a wide range ot initial condi­
tions. These include different initial velocities. two diameters ot the im­
pacting sphere and a range of porosities. Solutions were extended to shock
coupling from the fluid to the plastic region and then to the elastic regions
of the target.

Details of these further solutions wUl be published e18ewhere.
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