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The eDJineer is called upon to design either a single entity or a com­
plex group1Dc of entities that propose to provide certain usetul services at
80me future date. The particular systems design involving usually natural
phenomena bas never been undertaken before and ls too large to be experi­
mmted with. Generally. the phyBlcal prlnclples and natural phenomena
are not altopther undentood, and their mathematical equations are both
complex and of dubious value. To clreumvent these major "road blocks",
detallecl atudi. of prevloualy deIdped and operated systems are studied
and judlcioua traD8poeltlO1l .. undertaken. RMUslng the inadequacy of
tbIa proceclure. enameen bave reeorted to phyBlca1 or lCODlc models of
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the proposed sYstems. In structural problems true models, with the entire
proposed structures buUt at a reduced scale, have been used. In hydraulic
systems, distorted or adequate models, employing several scales at once,
have been developed to provide prediction equations. Most of the major
projects of the Corps of Engineers have been modeled in this fashion at
Vicksburg and operated under varying conditions. In Germany in the
1930's, I noted that each major river system had an iconic model, kept
up to date. Because of the limitations of this approach, analogs were
used on some water resources problems such as distribution systems
analysis and ground water draw-down recovery studies. Herein, an
analog between head loss (h), flow (Q), and resistance (T) on one hand
and voltage (E), current (1) and resistance (R) on the other was used
to predict system performance.

The mathematical relationships between 11., Q, and T were not analog­
ous to those of E, 1, and R unless a nonlinear system was used or adaptive
equations were developed. Both techniques were used and continue to
be used, though high speed digital computers are equally applicable to
these problems wherein the "Hardy-Cross" system of successive approxi­
mation is solved by machine iteration.

The system concept is a very general one and underlies the various
techniques for simulating behavior. A variation in the input will bring
about a particular variation or response in the output. The dependence of
output on input is defined by the relationships within the system. In water
resource development problems the total input-output relationships involve
several variants and stages, multivariant-multistaged. The complexity is
the result of the arrangement of the individoal elements, rather than their
intrinsic nature. Thus, it is not the complicated nature of the individual
events that causes complexity, but rather the combination of a large
number of effects, both simple and minor.

A water resource system, consisting of benefits to be gained from
power, irrigation, flood control, low-flow augmentation, and costs for
impoundment and treatment, presents a typical problem. At present, many
of these studies are conducted by combining on a one-to-one basis the
responses to the stimuli essentially under conditions of isolation. The
technique involves the ordering or ranking of several alternate combina­
tions of reservoirs and uses to arrive at the best alternate. If individual
performance of several reservoir costs to prOVide yields are known, com­
bination yields are in turn appraised in terms of benefits from combina­
tions of uses, power, irrigation, etc. The reactions in a given part, unfor­
tunately, depend not only upon what is going on in it, but also upon the
state of the whole system, or in reality a system of dynamically inter­
acting elements within a complex web of ecological relationships. Every
real system has an infinitely large number of possible inputs and outputs.
The designer is seeking that unique one optimal set of inputs and outputs.
The behavior of a system may be studied by means of an isomorphic one,
analogous in pattern, such as a mathematical model. A mathematical
model is simply a symbolic representation of a physical system or a set
of linear or nonlinear relationships between variables, measurable or not
subject to inequalities or constraints. A multistructured model depicts a
system involving a sequence of decisions or responses over time or space,
or a combination of both. The information pattern devotes the accumula­
tion of knowledge about the system as a consequence of responses to
decisions. Thus there is a feedback process. Dynamic programming is a
mathematical fonnulation of the feedback process that arises naturally
in the multistage decision process, a multistaged deci8ion process and a
sequential opt1mi.zation procedure. A polley is the procedure used to
determine responses. Simply, the policy ten. one what to do next in
terms of where one is and what is known.

Generally, models are divided into two categories, determiniatic and
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probabtUatic. In the determin1sttc model the adoption ot a certain policy
18 known to lead to, or aaaumed to lead to, a specitic outcome or value ot
the objective function. The model is built, or the polley established, with
aeb of decla10n variables, or noncontrollable variables (exogenous), and
parameters that are completely determined. Herein, the chance occur­
rence of variables 18 ignored and the model 18 considered to tollow a defi­
nite law ot certainty. On the other hand, the probabil1Btic model does not
meet theae requirements, but usually 18 one based on accumulated statlB­
tical data dictating the policy. The process 18 time-independent, and the
eequence of occurrence is ignored. Conventional flood routing or the unit
hydrograph 18 deterministic while the tlow-duration-curve procedure is
probabJl1Bt1c.

Models can take many forms, running the gamut from differential
equations subject to analytical solutions, to sets of nonlinear equations,
requiring either linear or dynamic programming techniques and simula­
tion analyses. Solution techniques are usually divided into graphical,
algebraic, and/or iterative methods. Graphical solutions are usually limit­
ed to problems involving one or two Independent variables. Algebraic
solutions include nearly all integral and differential equations, as well as
linear programming. In simulation analyses the model builder is no longer
restricted to models for which he devises analytical solutions. With the
use of high-speed machines and special iterative techniques, all possible
solutions ot the various inputs can be studied and optimal results obtained.

Setting up and solving a mathematical model should be standard
operating procedure before attempting a design. Many situations can
now be examined and explored and, despite the frequent necessity of
skeletontzation, valuable screening can be accomplished it not an optimal
solution.

Several examples might better illustrate the construction ot Water
Resource Models. Consider a simple inventory model wherein water need
be stored for a seasonal irrigation and used periodically: the storage
space has a cost per unit/yr. (w) associated with it; the storage facility
investment also has interest and associated costs (i); and the periodic
use has use costa (a). Now let (d) be the annual demand tor water,
(q) the periodically required quantity, and finally (c) the purchase price
per acre-ft. The mathematical model where all parameters are determined
is:

Total annual cost ($) = a(d/q) + cd + (icq/2) + 10(} (1)

To find the value ot (q) to minimize ($) the equation is differentiated
with respect to (q) and set equal to zero; then solved tor (q).

d($)/dq =- (ad/qIQ) + 0 + (w/2) + 10 (2)

and q = (2ad/w + 210) ~ (3)

More explicitly, if d = 2000 Al'l e = $1.00/Al'l

• = 0.18, a = $10.00, and finally 10 = $0.10

then q = 833 AI!

SlmUarJy, a brine pollution gradient can be modeled in differential
equation form

dc/dt = (B4'Clu) - (Udc/u) -lee (')

wherein the gradient equals dlftUslon le88 evectioD and reaction. The
equation can be evaluated when (dc/tit) = 0, at steady state, providing a
uaetul dlmenslonleaa conatant
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As an example ot a model requiring a linear programming assume that
water can be used for irrigation and/or for power, at a benefit of $2/AF
and $8/AF respectively. Assume further that of the total 600 AI!' avail·
able, only 400 AF can be used for irrigation, and only 300 AF can be used
for power.

Maximize the Benefit Function:

Max /(x1x,) = 2x1 + 6x,

Subject to the following constraints:
Xl equal to or less than 400
x, equal to or less than 300
Xl + X, equal to or less than 500
XII X, equal to or greater than zero.

The graphical solution is shown in Fig. 1.
The algebraic and simplex solution are based on the completion of the
inequalities with slack variables as follows:

Z = 2xl + 5x, + 0(81 + 8, + 8,) (7)
Xl + 8 1 = 400
x, + 8, = 300
Xl + X, + 8, = 500

and a rather simple stepwise procedure is used to optimize z.

Xt =300

t(x" )(2) = 1900 =2 x.+5x2,

-------~--...;..-...-'---+-~---- XI

X,i-Xf: 500

FIG. I
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One highly lnteratlng model is the one developed to optimize waste
treatment and low flow augmentation wherein the input-output relation­
ships are nonUnear and require simulation analyBe8. They are shown
schematically In FIg. 2.

wa sf e f n

FIG, 2
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and optimized C=S(E,r)

B" = p (e', r )

Nil '= n (N.', r )
J-------.-.t L II =m(L' I r )

T I =0 (0 , r'
p' =y (P, r )

N, L, T, B, and P represent nutritional biodegradable, thennal, bac­
terial and persistent chemical pollution. The T represents the dilution
ratio of stream now to waste now necessary for certain stream charac­
teristics to provide an acceptable water qualIty (RQ8) and e represents
the efficiency ot the treatment.

The previous model is not constructed to include the statistical vari­
ability of the river input which would require the generation of synthetic
hydrographs. The generation of a synthetic hydrograph involves the use
of a stochastic model. Actually such a model incorporates both deter­
m1D18tic and probabUiatic elements. A typical form:

Qft+l = 9 + a [9' - Q] + fJ%, [1-"']~ (8)

where1n 9 + a [Qi-Q] assures a linear relationship between successive
periods. the determ1nlst1c elements, and fJ%, (1-"') ~ estimates the unex­
plained variance. the random component.

New teclmtquea, dating in some respects to simulation processes called
'-War Gam.... dect8lon theory, and l1Dear and dynamic programming,
made poalble by high speed machines, have made what has been taken
tor cranted aa a world with a geometry ot three dimensions, now one
with a l'lOIDetry of as many dlmensiona as variables, each being equiva­
lent to & coordlnate. S1nCle and multiple syatems models may be built
and ualped for every poulble polley.
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