Pulsed Magnet System for Production of High Magnetic Fields¹

K. J. RUSSELL¹ and W. J. LEIVO Research Foundation and Physics Department Oklahoma State University, Stillwater

In recent years there has been considerable interest in the production of high magnetic fields. Much work involving high magnetic fields is in progress in nuclear, plasma and solid state physics. A pulsed magnet system has been constructed at Oklahoma State University to furnish high magnetic fields. The pulsed magnet system has been successfully used in the investigation of high-field magnetoresistance in semiconducting diamond (Russell and Leivo, 1965) and will be used in future solid state experiments. In particular, it was designed for infrared cyclotron resonance experiments in solids. The magnet system provides up to 45 kilojoules of stored energy for producing the magnetic fields.

The high magnetic fields are obtained by discharging a bank of capacitors through an electromagnet. Several different magnets have been tested each of which falls into one of the three following classes:

1) The magnet coil is constructed of a beryllium-copper alloy and is in the form of a continous helix turned from a solid bar. The coil is clamped between two thick endplates, and, to further enhance the strength, the space around the coil between the endplates is filled with a cement (epoxy, Sauereisen, or calcium aluminate). Similar magnets have been described by others (Foner & Kolm, 1957). The highest magnetic fields were obtained with this type of construction. Fig. 1 shows a magnet of this type. In the magnet shown the end-

Fig. 1 Helical coil magnet

This work was supported by the U.S. Air Force Office of Scientific Research and the National Science Foundation.

Present address: Martin Co., Orlando, Fla.

plates were of stainless steel and were insulated from the coil. Magnetic fields up to 400 kilogauss were obtained with the magnet.

2) The magnet (Fig. 2) is of the flux concentrator type and has its primary winding embedded in the brass flux concentrator body which is shaped to enhance the field at the center. The method has been described elsewhere (Howland and Foner, 1962) and is between the first and third types in production of magnetic field strength.

Fig. 2 Flux concentrator magnet

3) The magnet is a multilayer coil of wire wound on an insulating mandrel. The wires are held in place by being coated with an epoxy cement during the winding process and by wrapping several layers of epoxy-impregnated fiberglass material around the coil. The magnet can easily be made to give very long period discharges. Fig. 3 shows a magnet of this type. The magnet gave over 100 discharges of 170 kilogauss peak magnetic field.

The pulsed magnetic fields were measured by integrating the output of a search coil inserted in the magnetic field. The integrated output was then displayed on an oscilloscope.

Fig. 4 shows a block diagram of the capacitive energy storage system. The system is composed of the capacitor bank together with associated charging and switching circuits. To produce a magnetic field the capacitor bank is charged to the desired difference in potential and then discharged into the load. With the crowbar circuit inoperative, the resulting discharge current through the electromagnet will have the time variation shown in Fig. 5a. The crowbar circuit is used to limit the energy dissipated in the magnet since the resulting heating may be objectionable because of sample heating or magnet deterioration. The current pulse is limited by closing the crowbar switch at point A on the curve, Fig. 5a, and the resulting time variation of the current is essentially as shown in Fig. 5b.

Fig. 3 Wire wound magnet

Fig. 4 Block diagram of pulsed magnet system

To more fully describe the capacitive energy storage system consider it to be divided into four parts: 1) bank circuit, 2) bank-charging circuit, 3) crowbar circuit, 4) sequence control circuit.

First consider the bank circuit illustrated in Fig. 6. The capacitor bank is composed of fourteen energy storage capacitors of extended foil construction connected so they may be discharged in parallel. The capacitors are 180-microfarad, 6000-volt units, which, in parallel, give a total

I = Current Through Magnet

a) Uncrowbarred b) Crowbarred

Fig. 5 Magnet current versus time

capacitance of 2520 microfarads and a maximum total stored energy of 45,360 joules. The equivalent series inductance of each capacitor is less than one microhenry, thus allowing efficient use of the bank with low inductance loads. Fourteen ignitrons, V_4 through V_{11} , one mounted on top of each capacitor, discharge the capacitor bank into the load. The simultaneous firing of the 14 ignitrons is accomplished by the discharge of the small energy storage capacitor, C_{21} through the ignitors of the 14 ignitrons. This discharge is initiated by a signal received at A from the sequence control circuits. The signal causes the blocking oscillator to produce a firing pulse for the hydrogen thyratron, V_{21} which then discharges C_2 through the ignitor of V_1 which then simultaneously fires the 14 ignitrons.

The capacitor bank and the trigger capacitors are charged by equipment in the bank-charging circuit shown in Fig. 7. The capacitor bank is charged by the three-phase full-wave bridge power supply which furnishes a variable output voltage from 0 to over 6500 volts by the threephase variable autotransformer, T_{a} , in the primary circuit of the high voltage transformer, T_{a} . The operation of the power supply is controlled by contactor K_{i} which operates upon a signal from the sequence control circuit. The power supply is capable of charging the capacitor bank to full rated potential in 18 seconds, thus allowing rapid repetition of experiments and keeping small the time the bank is charged. The trigger capacitors, C_{i} and C_{m} , are charged by the two single-phase full-wave bridge power supplies. Two Schmitt trigger circuits are used to monitor the bank voltage. One of the circuits is used to stop the charging of the bank when a preset potential level is reached, and the other is used to prevent the bank from being overcharged.

The ignitron tubes, V, through V_{11} , used for discharging the capacitor bank into the load lose their rectifying properties for the currents and pulse times associated with magnets of the first type and thus become closed switches conducting equally well in both forward and reverse directions. As stated previously, the crowbar circuit shown in Fig. 8 stops the current through the magnet after approximately one-half cycle. The crowbar circuit, as used in this application, provides a low impedance current path in parallel with the electromagnet after approximately onehalf cycle of magnetic field oscillation has taken place. Referring to Figs. 6 and 8, the crowbar circuit shorts the bank through crowbar re-

Fig. 8 Crowbar circuit

sistors R_m through R_m and R_m through R_m by means of ignitron tubes V_m through V_m . The ignitrons V_m through V_m are simultaneously fired in the same manner as those used in discharging the bank. In this case, however, the firing signal travels through a delay circuit which delays the firing of V_m through V_m until the proper time. The delay circuit consists of a phantastron delay followed by a differentiating and pulse-forming circuit. The delay is adjustable so the crowbar circuit may be used with magnet coils giving different periods of oscillation.

The operation of the capacitor bank is controlled by the sequence control circuit, Fig. 9. Terminals H and Q are connected to the operating coil of the relay, K,, which furnishes power to the charging equipment. Therefore, the operation of the capacitor bank-charging circuit is controlled by relays K_s , K_s and K_t , and switch S_t . Relays K_s and K_t are connected to the Schmitt trigger circuits, Fig. 7, and shut off power to the charging equipment when the desired voltage or an overvoltage is present on the bank. Relay K_s is concented so as to be self-energizing when the charge-start push button, S_t is pressed. Switch S_t is a charge-halting switch which, when operated, cuts power to the charging circuits and discharges the capacitor bank through resistor R₁₀₄ and the trigger capacitors through resistors R_{100} and R_{102} . These resistors are used to 1) furnish an alternative means of discharging the bank, 2) bleed off the remaining bank energy after a normal discharge (un-crowbarred or crowbarred discharge through the load). Two different modes of operation of the capacitor bank may be selected by means of switch S_s. The circuit diagram, Fig. 9, shows switch S, in position for the automatic mode of operation. In this mode, after the desired capacitor bank potential has been set on R_{i1} and S_{i1} , Fig. 7, switch S_{i1} may be operated, thus causing the capacitor bank to be charged to the preset potential and then to discharge automatically through the load. The alternate position of switch S, selects the manual mode of operation. In this mode when switch S, is pressed, the capacitor bank is charged to the preset potential, power to the bankcharging circuit is cut off and power is supplied to the time-delay relay K_{12} . At any time within the next three minutes switch S₂ may be pressed, thus discharging the bank. If the bank is not discharged at the end of the three-minute period, the time-delay relay K_{11} automatically discharges the bank and the trigger capacitors through R_{100} and R_{100} and R_{102} respectively. tively. The bank can be discharged manually through R₁₀₆, and the trigger capacitors can be discharged manually through R₁₀₁ and R₁₀₅ by operating switches S₁, S₄ and S₅. Switch S₁₂ may be used to manually stop the charging of the bank without discharging it. The pulse needed to initiate the action of the blocking oscillator in Fig. 6 and the phantastron delay circuit in Fig. 8 is obtained by furnishing power to the input of transformer T₁₁.

Table I lists the components used in the pulsed magnet system.

The capacitor bank is enclosed in a masonry room for safety. Each capacitor is connected by a RG-19 coaxial cable to a collector plate located outside the capacitor bank room. The magnet is then connected to the collector plate. Ear protection is worn during the operation of the capacitor bank in case there is a failure of the magnet or collector plate insulation.

Although this paper is concerned with the design, operation, and performance of the pulsed magnet system, it is of interest to know whether experiments in pulsed fields can be carried out successfully. There are, of course problems in making electrical measurements during the discharge of the system because of large electrical and electromagnetic disturbances. In general, it is possible to subtract the effects of the system from the desired signal. For instance, the high field magnetoresistance measurements in semiconducting diamond which were previously mentioned were quite reproducible, and at lower fields where measurements could be made with dc magnets the results were identical.

	RESISTORS & POTENTIOMETI	28.5		CAPACITY	ORS
ъ የ	20k-ohms	1w	บี	.05µf	400VDC
ጜ	2.7k	w %	び	1n10.	10KVDC
R,	300	M\$∕i	ບໍ	50 Jul	3,500VDC
r.	820	lw	C, to C.	180 μf	6,000VDC
R.	20k	1w	ບ້	$20 \mu \mu f$	300VDC
r L	12	2w	ບໍ່	0.1 M	400VDC
R, to R"	5.6	2w	ರೆ	20µµ£	300VDC
R _n to R _n	6.2	2w	ರ್	0.1 س۲	400VDC
R" to R"	.0778	Special Res.	ہ	1,500µµf	300VDC
в.	4.17k	2.4kw	ರ್	3,300µµf	500VDC
R.,	Smeg	8w	ਹੈ	.05µ£	400VDC
R.	50k,500k Pot (dual)	M \$fi	ರೆ	500µµ£	500VDC
R"	20K	1w	ರೆ	.05 µ£	400VDC
R.	100k	₩\$ \	రా	1 41.	400VDC
R.,	15k	M.\$4	р <mark>я</mark>	20µf	3,500VDC
R.,	64Jk	м%	ರೆ	.02µ£	200VDC
R.,	5 meg	8w	" ت	Jul 10.	10KVDC
R.	75K	2w	ະບໍ ^ະ ບໍ	10µ£	150VDCW electrolytic

TABLE I. PULSED MAGNET SYSTEM COMPONENTS LIST

PHYSICAL SCIENCES

		TABLE I	(Continued	(
R.	100k	m Şi	ರೆ	25µf	6VDCW	electrolytic
R	10k	M %	ບ້	1045	150VDCW	electrolytic
R	100k	m %	౮	.02µf	200VDCW	
R.	15k	₩ %	ບັ	25µf	ev DCW	electrolytic
				SWITC	CHES	
R .	62k	M 51	S.	2PDT	250V	34
R.,,R.,	25k	100w	స	2PDT	110V	10A
	10k Pot.	5w	S.S.	1PST Special	3,500V	V I
	20k	10-tur n linear Pot.	S.S.	1PST Special	6,000V	10.4
R,,	10k Pot.	5w	ŝ	2PDT	110V	104
.	22k	M\$∕r	ູ່	4PDT	110V	3.4
.	1meg	1/2 W	ຜູ	2PST	110V	A 44
R, ,	3.3k	₩%	S,	1PST	250V	34
R	1meg	₩ <u>5</u> 4	S ₁₁	2PST	110V	25A
R.	47k	M 54	S ₁₁	1PST	250V	34
В.,	22K	₩¥		TUB	ES	
ľ,	2.2k	w2ł	۷,		6SN7	
R,	56k	у .	\mathbf{V}_{z}		6268	
Ŗ,	150	2w	V ₃ to	V,,	G1-7703	
Р.	100k	አያ	V _n to	$\mathbf{V}_{\mathbf{n}}$	G1-872A	

132 PROC. OF THE OKLA. ACAD. OF SCI. FOR 1965

مر میدون وردی در دورها بر میدون وردی وردی وردی وردی وردی وردی وردی وردی		TABLE I	(Continued	(
"	20k	1w	V.,		6AS7-GA	
er.	2.7k	₩ 5 4	٧'n		5965	
	300	₩ 5 4	V 24		6AS7-GA	
off.	820	1w	V_{π}		5965	
ر ال	2.5k	1w	V ₂₀ to	V.s.	8020	
k _{is} to R _{ni}	12	2w	V.*		5814	
4. to R.	.0444	Special Res.	$\mathbf{V}_{\mathbf{r}}$		5725	
t _{im} to R _{im}	25k	100w	V _{as}		5727	
č104, R.106	1.43k	2.8kw	×.		6SN7	
Ĵ	100k	m %	V*0		6268	
ج. م	100k	₩\$ 1	V ₄ to	V.	G1-7703	
8 44	51	1w	۷		5727	
	10 k	₩\$ \		TRAN	SFORM ERS	
P114	20k	1w	Т,	300V	1-1-1	pulse
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10k Pot.	5w	T,	115V to 2.5V		ı
and the second se	150	2w	f	240V	3 phase	9.7KVA variable auto- trans- former
and the second s	100k	m %	ц,	3-5KVA, 4,800-12 transformers con for 3-phase oper	20/240V inected ation	

PHYSICAL SCIENCES

		TARLE I,	(Continue	. (P		
.Ŧ	10k Pot.	5 w	f	AOGI	2.3KVA	variable auto- traus- former
Ĵ.	150	ж Х	ч,	115V to 3000V at	350ma.	10KV insula- tion
	100k	3 M	ų,	120V to 1,900V		AVAT.
.1	10	1	Т. Т.	300V	1-1-1	pulse
.7	10k Pot.	5w	Ч,	115V to 2.5V		ı
	1500	ж¥	ч,	115V	35VA	isola- tion
	510	₩¥	ч,	2000V	1-2-1	pulse
, F	10	1w		METERS	DION	3
J	1.61	м¥	M,	0-7,500 VDC	ם"ם מ	3,000 PIV, 750 ma.
Ē	100k	*	M,	0-3.0 ADC	D, to D,	200 PTV 750 ma
Ē	51	** *	M., M.	0-5,000 VDC		
	350k	75w	M,	0-99,999.9 hrs		
	75k	₩\${		PANEL	LIGHTS	
-	30k	1w	ភ	Red Jewel	1~	
F	7.5meg	15w	4	Red Jewel	r.	

PROC. OF THE OKLA. ACAD. OF SCI. FOR 1965

	A LANDAU MALINA MALI	der nit some den sinder en gebruiktingen verstendigt.	TABLE I,	(Continued)		
Russ Rus	5m	eg.	10w	1	Green Jewel 1"	
R ₁₈ to R ₁₈	1k		25w	Г	Amber Jewel 1"	
R _{1M} to R _{1M}	200		20w	L, to L,	Red Indicator	
Ru	12k		₩\$4	L, to L,	Green Indicator	
R,e	56k		2w	L _u to L,	Red Indicator	
	RE	el.Ays			FUSES	
K,	3PST	240V	90A	F.	20 amp. Buss super lag	
K., K.	3PDT	10k ohm	6.1 ma	F,	20 amp. Buss super lag	
K, K	2PST	VOLL	10A	Ĕ.	20 amp. Buss super lag	
K., K.	2PDT	110V	10 A	FI.	5 amp. 250 V	
К, К,	1PST and	3,500V	V I	F,	1 amp. 250 V	
	1PDT	V011	1A Special Relay	F.	1 amp. 250 V	
К,	1PST	6,000V	10A	F,	1 amp. 250 V	
	IPDT	110V	V I			
			Special Relay		POWER SUPPLIES	A CALLER AND A CALLER A
Ku	4PDT	110V	10A Latching Relay	PS,	+100 VDC	rated 100 ma. 0.1% regulation
K"	1PST-NC	110V	2 sec. time Delay Relay	PS	+300 VDC	rated 100 ma.

PHYSICAL SCIENCES

			TABLE I. (Continued)
K.,	JN-TS41	110V	180 sec. time Delay Relay
Ku Ku	4PDT	V011	10A Latching Relay
Kas Ka	1PST-NC	V011	180 sec. time Delay Relay
Ku	2PDT	V011	10A
K ₁₀ K ₁₀	2PDT	10k ohm	4.5 ma

LITERATURE CITED

Foner, S. and H. Kolm. 1957. Coils for the production of high intensity pulsed magnetic fields. Rev. Sci. Instr. 28: 799.

Howland, B. and S. Foner. 1962. High Magnetic Fields. H. Kolm et al, eds. John Wiley and Sons, Inc., New York, pp 249-258.

Russell, K. J. and W. J. Leivo. 1965. High field magnetoresistance of a semiconducting diamond. Bull. Amer. Phys. Soc. 10: 1092.