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Puised Magnet System for Production
of High Magnetic Fields'

K. J. RUSSELL’ and W. J. LEIVO
Research Foundation and Physics Department
Oklshoma State University, Stiliwater

In recent years there has been considerable interest in the production
of high magnetic fields. Much work involving high magnetic fields is in
progreéss in nuclear, plasma and solid state physics. A pulsed magnet

‘has been constructed at Oklahoma State University to furnish high
magnetic fields. The pulsed magnet system has been successfully used
in the investigation of high-fleld magnetoresistance in semiconducting
diamond (Russell and Leivo, 1965) and will be used in future solid state
experiments. In particular, it was designed for infrared cyclotron reso-
nance experiments in solids. The magnet system provides up to 45 kilo-
joules of stored energy for producing the magnetic fields.

The high magnetic fields are obtained by discharging a bank of capa-
citors through an electromagnet. Several different magnets have been
teated each of which falls into one of the three following classes:

1) The magnet coil is constructed of a beryllium-copper alloy and
is in the form of a continous helix turned from a solid bar. The coil
is clamped between two thick endplates, and, to further enhance the
strength, the space around the coil between the endplates is filled
with a cement (epoxy, Sauereisen, or calcium aluminate). Similar

ets have been described by others (Foner & Kolm, 1957). The
highest magnetic fields were obtained with this type of construction.
Fig. 1 shows a magnet of this type. In the magnet shown the end-

Fig. 1 Helical coll magnet
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plates were of stainless steel and were insulated from the coil. Mag-
netic fields up to 400 kilogauss were obtained with the magnet.

2) The magnet (Fig. 2) is of the flux concentrator type and has its
primary winding embedded in the brass flux concentrator body which
is shaped to enhance the tield at the center. The method has been
described elsewhere (Howland and Foner, 1982) and is between the
first and third types in production of magnetic field strength.

Fig. 2 Flux concentrator magnet

3) The magnet is a multilayer coil of wire wound on an insulating
mandrel. The wires are held in place by being coated with an epoxy
cement during the winding process and by wrapping several layers
of epoxy-impregnated fiberglass material around the coil. The magnet
can easily be made to give very long period discharges. Fig. 3 shows
a magnet of this type. The magnet gave over 100 discharges of 170
kilogauss peak magnetic field.

The pulsed magnetic fields were measured by integrating the output
of a search coil inserted in the magnetic field. The integrated output was
then displayed on an oscilloscope.

Fig. 4 shows a block diagram of the capacitive energy storage sys-
tem. The system is composed of the capacitor bank together with as-
sociated charging and switching circuits. To produce a magnetic field the
capacitor bank is charged to the desired difference in potential and then
discharged into the load. With the crowbar circuit inoperative, the result-
ing discharge current through the electromagnet will have the time varia-
tion shown in Fig. 5a. The crowbar circuit is used to limit the energy
dissipated in the magnet since the resulting heating may be objectionabie
because of sample heating or magnet deterioration. The current pulse is
Hmited by closing the crowbar switch at point A on the curve, Fig. 5a, and
%mﬂﬂngﬁmevarhﬂonottbecumthmﬂanyushmmmg.
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Fig. 3 Wire wound magnet
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Fig. 4 Block diagram of pulsed magnet system

To more fully deacribe the capacitive energy storage system consider
it to be divided into four parts: 1) bank circuit, 2) bank-charging circuit,
3) crowbar circuit, 4) sequence control circuit.

First consider the bank circuit illustrated in Fig. 6. The capacitor
bank is composed of fourteen energy storage capacitors of extended foil
construction connected so they may be discharged in parallel. The capa-
citors are 180-microfarad, 6000-volt units, which, in parallel, give a total
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I= Current Through Magnet

Tim.o-—u Tim;

a) Uncrowbarred b) Crowbarred

Fig. 5 Magnet current versus time

capacitance of 2520 microfarads and a maximum total stored energy of
45,360 joules. The equivalent series inductance of each capacitor is less
than one microhenry, thus allowing efficient use of the bank with low
inductance loads. Fourteen ignitrons, V, through V,;,, one mounted on top
of each capacitor, discharge the capacitor bank into the load. The simul-
taneous firing of the 14 ignitrons is accomplished by the discharge of the
small energy storage capacitor, C,, through the ignitors of the 14 igni-
trons. This discharge is initiated by a signal received at A from the se-
quence control circuits. The signal causes the blocking oscillator to pro-
duce a firing pulse for the hydrogen thyratron, V,, which then discharges
C, through the ignitor of V, which then simultaneously fires the 14 igni-
trons.

The capacitor bank and the trigger capacitors are charged by equip-
ment in the bank-charging circuit shown in Fig. 7. The capacitor bank
is charged by the three-phase full-wave bridge power supply which fur-
nishes a variable output voltage from 0 to over 6500 volts by the three-
phase variable autotransformer, T,, in the primary circuit of the high vol-
tage transformer, T,, The operation of the power supply is controlled by
contactor K, which operates upon a signal from the sequence control cir-
cuit. The power supply is capable of charging the capacitor bank to full
rated potential in 18 seconds, thus allowing rapid repetition of experiments
and keeping small the time the bank is charged. The trigger capacitors,
C, and C,, are charged by the two single-phase full-wave bridge power
supplies. Two Schmitt trigger circuits are used to monitor the bank volt-
age. One of the circuits is used to stop the charging of the bank when
a preset potential level is reached, and the other is used to prevent the
bank from being overcharged.

The ignitron tubes, V, through V,,, used for discharging the capacitor
bank into the load lose their rectifying properties for the currents and
pulse times associated with magnets of the first type and thus become
closed switches conducting equally well in both forward and reverse direc-
tions. As stated previously, the crowbar circuit shown in Fig. 8 stops the
current through the magnet after approximately one-half cycle. The
crowbar circuit, as used in this application, provides a low impedance
current path in parallel with the electromagnet after approximately one-
half cycle of magnetic field oscillation has taken place. Referring to
Figs. 6 and 8, the crowbar circuit shorts the bank through crowbar re-
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sistors R, through R, and R, through R,, by means of ignitron tubes V,,
through V, The ignitrons V,, through V, are simultaneously fired in
the same manner as those used in discharging the bank. In this case, how-
ever, the firing signal travels through a delay circuit which delays the
firing of V,, through V,, until the proper time. The delay circuit consists
of a phantastron delay followed by a differentiating and pulse-forming
circuit. The delay is adjustable so the crowbar circuit may be used with
magnet coils giving different periods of oscillation.

The operation of the capacitor bank is controlled by the sequence
control eircuit, Fig. 8. Terminals H and Q are connected to the operating
coll of the relay, K, which furnishes power to the charging equipment.
Therefore, the operation of the capacitor bank-charging circuit is con-
trolled by relays K,, K, and K,, and switch 8,. Relays K, and K, are con-
nected to the Schmitt trigger circuits, Fig. 7, and shut off power to the
charging equipment when the desired voltage or an overvoltage is pres-
ent on the bank. Relay K, is conecnted so as to be self-energizing when
the charge-start push button, S, is pressed. Switch S, is a charge-halting
switch which, when operated, cuts power to the charging circuits and dis-
charges the capacitor bank through resistor R,, and the trigger capaci-
tors through resistors R,,a2nd R,,. These resistors are used to 1) furnish
an alternative means of discharging the bank, 2) bleed off the remaining
bank energy after a normal discharge (un-crowbarred or crowbarred dis-
charge through the load). Two different modes of operation of the capa-
citor bank may be selected by means of switch S,. The circuit diagram,
Fig. 9, shows switch S, in position for the automatic mode of operation.
In this mode, after the desired capacitor bank potential has been set on
R,, and S,, Fig. 7, switch S; may be operated, thus causing the capacitor
bank to be charged to the preset potential and then to discharge auto-
matically through the load. The alternate position of switch S, selects
the manual mode of operation. In this mode when switch S, i{s pressed,
the capacitor bank is charged to the preset potential, power to the bank-
charging circuit is cut off and power is supplied to the time-delay relay
K,. At any time within the next three minutes switch S, may be pressed,
thus discharging the bank. If the bank is not discharged at the end of
the three-minute period, the time-delay relay K,, automatically discharges
the bank and the trigger capacitors through R,, and R,, and R,, respec-
tively. The bank can be discharged manually through R,, and the trigger
capacitors can be discharged manually through R,,; and R,, by operating
switches S,, S, and 8,. Switch S,, may be used to manually stop the
charging of the bank without discharging it. The pulse needed to initiate
the action of the blocking oscillator in Fig. 6 and the phantastron delay
circuit in Fig. 8 is obtained by furnishing power to the input of trans-
former T,,.

Table I lists the components used in the pulsed magnet system.

The capacitor bank is enclosed in a masonry room for safety. Each
capacitor is connected by a RG-19 coaxial cable to a collector plate located
outside the capacitor bank room. The magnet is then connected to the
collector plate. Ear protection is worn during the operation of the capaci-
:rr bank in case there is a failure of the magnet or collector plate insula-

on.

Although this paper is concerned with the design, operation, and
performance of the pulsed magnet system, it is of interest to know whether
experiments in pulsed fields can be carried out successfully., There are,
of course problems in making electrical measurements during the dis-
charge of the system because of large electrical and electromagnetic dis-
turbances. In general, it is possible to subtract the effects of the system
from the desired signal. For instance, the high field magnetoresistance
measurements in semiconducting diamond which were previously men-
tioned were quite reproducible, and at lower fields where ineasurements
could be made with dc magnets the results were identical
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