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Application of Matrix Theory to Some
Problems in Oscillatory Motion

R. D. HARTMAN' and Y. S. KIM*
Department of Physics, Oklahoma State University, Stillwater

Matrix theory, or more generally linear algebra, is a relatively recent
mathematical development. Its roots extend back 100 years to the work
of Hamilton, Cayley and Sylvester (Finkbeiner, 1960) but it has attracted
widespread interest only in the past two or three decades. The growth of
its applications and usefulness has been remarkable. Although other
branches of higher mathematics may be applied more intensively, and
perhaps by more people, few branches have been applied to so many diver-
sified fields as has the theory of matrices. Today, matrices are effective
tools in such disciplines as psychology, education, chemistry, physics, engi-
neering, mathematics, and economics, just to name a few. In particular,
matrices are widely used in microscopic processes, such as encountered
in nuclear interactions, wave mechanics (Schiff, 1955) and molecular spec-
troscopy (Wilson, et al., 1955).

In a series of papers (Adem and Moshinsky, 1952; Moshinsky, 1951;
Adem, 1939) several macroscopic physical processes are described by col-
umn vectors or matrices instead of single functions; thus, a simplification
in the mathematical solution of such processes has been achieved and,
{xence. has made possible the solution of a variety of problems with matrix

echniques.

The purpose of this paper is to apply matrix theory to some problems
involving macroscopic physical systems which are undergoing one-dimen-
sional oscillation. The application of matrices consists of the following:
(1) form a real symmetric matrix, 4, which shall be called the configura-
tion matrix, from the equations of motion of the system in question; (2)
solve the eigenvalue equation equation; (8) determine the eigenvectors;
(4) normalize the eigenvectors; and (5) perform an orthogonal transfor-
mation on the configuration matrix. The general solution of the differen-
tial equation of motion is the sum of the particular and the complementary
solutions as usual.
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ONE-DIMENSIONAL UNIFORMLY ACCELERATED SYSTEM

Consider a system of coupled oscillators consisting of three masses
m,, m, and m, connected in series by four weightless, noninteracting springs
of force constants k,, k, k, and k, respectively. Let the loose ends of
springs 1 and 4 be rigidly fastened to a weightless frame. Mount this linear
system of coupled oscillators horizontally in the X-Y plane, and impart a
uniform acceleration, a, to the system by tranporting the weightless
frame along the +X axis.

The equations of motion for the mass system are’:

mx", = —kx, + k(x,—2,) + ma
(1) mx®, = K.(2,—2,) + k,(z,—2x;) + ma
mx”, = —k(x,—2,) — k&, + ma

where x”, represents the second time derivative of x, ; and x, represents
the displacement of mass m, from equilibrium.

For simplicity let m, — m, — m,, and k, — k, — k; = k, = k. Further
let b = k/m. Then Eq. (1) becomes

z", = —2bx, + bz, +a
(2) X7, = bx, —2bx, + bx, + a
x7, = bx, —2bx, + a

Using matrix notation, Eq. (2) may be written as

(3) X" —AX + @
where:
|, |—2b b 0 | a
(3a) X = ]x,‘ ; A = |b —-2b b ;and G = |a
EX 0 b =2 a

Thus, step 1 of the procedure, namely that of forming a real sym-
metric matrix from the equations of motion of the system, has been ac-
complished. Next, we proceed to the eigenvalue equation.

Consider the complementary solution of Eq. (3), as found by setting
G = 0. Then

(3b) X7 — AX
The eigenvalue equation for A4 is given by:
(4) AY, =\, Y,

where Y, is the eigenvector and ), is the eigenvalue. The characteristic
equation for Eq. (4) is:

where I represents the identity matrix. In order for Eq. (5) to hold for
all ¥, we require the determinant of the coefficient of Y, to be zero. Hence,
from Eqs. (3a) and (5) we obtain:

—2b— b 0
18) det b —2b— b
(1] b —2b--)

b for obtaining the equations of motion has been
-mployed. The last term in each of the equations is the contrfbution of the linear ac-
tleration of each mass to the potential energy term.

i
:
£
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Solving Eq. (6) gives for the eigenvalues:

A = 20
(4} A= [=2 + (2)%)
M= [—2 — (2)%]d
The corresponding eigenvectors as obtained from Eq. (4) are:
I(14)% % h:]
(8) Y, = ’ 0 P ¥, = [(%)%] ; and ¥, = [—(14)%
— (%)% % %

Thus steps 2 and 3 have been achleved.

It may be verified that the eigenvectors are orthonormal by forming
the scalar product according to

(9) (Y,,Y,) =z Y4 Y, =3,

where Y*, represents the complex transpose of Y,, and 3,, is the Kronecker
deita. Hence step 4 has also been completed.

Now the complementary solution of Eq. (3) may be written by in-
spection as:
(10) X. = 3 ¢X,
where { — 1,2,8, and the ¢,’s are determined by the initial conditions. By
performing an orthogonal transformation on Eq. (3b) the matrix, 4, will
be diagonalized. This results in the eigenvalue equation, with the eigen-

vectors ¥, corresponding to the transformed X,. For a nondegenerate set
of eigenvalues, the orthogonal transformation matrix, T, will take the

form:
(11) T = (Y, 7, ..Y%.]

I

12) T7T =

(Yo¥s) o (Y.Y.) 0 0 0.1
since (Y,Y,) =3§,,.

Upon transforming Eq. (3b) one obtains for the X,'s:
(13) X| = Y| sin (Q|‘ + ¢|)

where o, = (—),)% (Dettman, 1962) and ¢, is the initial phase angle of
the ith mode.

The complementary solution, Eq. (10), now becomes:
(14) X. =Z2c¢ Y, sin(ut + ¢)

where ¢, and ¢, are the arbitrary constants determined by the boundary
conditions,

Next, we must find the particular solution. Let the particular solution
of BEq. (3) be of the form:

G
'8
s

where the ¢,’s are constants. Then X” is zero, and Egq. (3) becomes:
18) ) AX, — @G.

(18) X, =
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Expanding Eq. (16) results in:
(17 q, = 3a/2b; 4, = 2a/db ; and q, = 3a/2b.

The general solution of Eq. (3) is now obtained by adding Eq. (15),
with the ¢,’s determined, to Eq. (13). Thus:

2, (%)% %4
(18) z,, =aq 0 | sin(mt + ¢) + ¢ [(%)%] sin(at + ¢0) +
z, — (%)% %
| Sa/2b
c, I—(%)“ sin(wt + ¢,) + |2a/d
% 3a/2b

It should be recalled that for the previous discussion, the masses and
spring constants were set equal to constants. In the event that m, £ m,
the matrix, 4, will not be symmetric and the results are complicated con-

siderably.
ONE-DIMENSIONAL NONUNIFORMLY ACCELERATED SYSTEMS

Consider the same mass-spring configuration as previously discuased.
Let a(t) represent a nonuniform acceleration of the reference frame of
the system in question, once again taken as along the + X axis,

The equations of motion for the nonuniformly acclerated system are:

z", — —=2bx, + bz, + a(t)
(19) z", = bx, — 2bx, + bx, + a(t)
z7, = bx, — 2bx, + a(t)

where again m, = m, =m, k, =k, — k, = k.= k ,and b = k/m.
The matrix form of Eq. (19) may be written as:
(20) X" —=—AX + F

where A is identical with that of the uniformly accelerated case. Hence
we know immediately that the complementary solution for the nonuniform-
ly accelerated case will be identical with Eq. (14).

It remains to find the particular solution. Consider a(¢) to be such
that a(0) = 0, a(t,) = 0 and a(t) = O for t — mt, where m is an integer.
This function,' a(t), may now be expanded in a Fourier sine series with
a period of 2t, according to:

“As stated, this acceleration corresponds to an on-off, periodic per-
turbation with a period of 2t,, For an aperiodic acceleration, the solution
ozltained will still be valid if one allows 2t, to approach an infinitely large
value.

(21) a(t) = = [ba 8in (mwt/t,))
Where ba = (2/t,) [, a(T) sin (mnwT/t,) 4T ; m = 1,2,3...
Now, let 6. (t) = b, sin (m7t/t,) = [Fa] .
Assuming a solution of the form:

(22) X = Z, sin (mwt/t,)

and substituting Eq. (22) into Eq. (20) ylelds:

(23) —p'm 2o — AZ, = B, ba
where wn = (ma/t)?; and B — !b.l
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Since the set of eigenvectors of A forms a basis for the n-dimensional
vector space, and Z, is no more than a vector in an n-dimensional space,
then Z.. may be expressed as a linear combination of the eigenvectors:

(24) » = Z ymaYa
Substitution of Eq. (24) into Eq. (23) yields:
(28) Yo = —(Bu, Y )/ (pla + 2 )
B B B

Eq. (25) generates the y's from which the Z,’s may be obtained. Further
substitution into Eq. (22) produces X, which is a particular solution cor-
responding to an a, (t). Since this is true for every m, the complete
particular solution may be found by adding the m solutions together, i.e.,

(28) X, — 2, sin (z2/t,) + Z,8in (27t/t,) +...2, 8in (mnt/t,)

Hence, the total solution to Eq. (20), formed by adding Eqs. (14) and
(26), becomes:

(21) X = S.(0Y, 8 (0t + ¢0)] + 2,02, sin (frt/t)]

SUMMARY

In summary, both uniformly and non-uniformly accelerated one-di-
mensional oscillating systems have been treated, with the motion of the
systems described by n-linear differential equations of motion. The sys-
tem of equations was written in matrix representation and orthogonal
transformations were performed on the configuration matrix, thus render-
ing it diagonal. By employing matrices, a compact form for the oscilla-
tion of the systems is obtalned.
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