Application of Matrix Theory to Some Problems in Oscillatory Motion

R. D. HARTMAN' and Y. S. KIM ${ }^{2}$

Department of Physics, Oklahoma State University, Stillwater

Matrix theory, or more generally linear algebra, is a relatively recent mathematical development. Its roots extend back 100 years to the work of Hamilton, Cayley and Sylvester (Finkbeiner, 1960) but it has attracted widespread interest only in the past two or three decades. The growth of its applications and usefulness has been remarkable. Although other branches of higher mathematics may be applied more intensively, and perhaps by more people, few branches have been applied to so many diversified fields as has the theory of matrices. Today, matrices are effective tools in such disciplines as psychology, education, chemistry, physics, engineering, mathematics, and economics, just to name a few. In particular, matrices are widely used in microscopic processes, such as encountered in nuclear interactions, wave mechanics (Schiff, 1955) and molecular spectroscopy (Wilson, et al., 1955).

In a series of papers (Adem and Moshinsky, 1952; Moshinsky, 1951; Adem, 1959) several macroscopic physical processes are described by column vectors or matrices instead of single functions; thus, a simplification in the mathematical solution of such processes has been achieved and, hence, has made possible the solution of a variety of problems with matrix techniques.

The purpose of this paper is to apply matrix theory to some problems involving macroscopic physical systems which are undergoing one-dimensional oscllation. The application of matrices consists of the following: (1) form a real symmetric matrix, A, which shall be called the configuration matrix, from the equations of motion of the system in question; (2) solve the oigenvalue equation equation; (3) determine the eigenvectors; (4) normalise the eigenvectors; and (5) perform an orthogonal transformation on the configuration matrix. The general solution of the differential equation of motion is the sum of the particular and the complementary solutions as umual.

[^0]
ONE-DIMENSIONAL UNIFORMLY ACCELERATED SYETEM

Consider a system of coupled oscillators consisting of three masses m_{1}, m_{3} and m_{3} connected in series by four weightless, noninteracting springs of force constants k_{1}, k_{2}, k_{3}, and k_{1} respectively. Let the loose ends of springs 1 and 4 be rigidly fastened to a weightless frame. Mount this linear system of coupled oscillators horizontally in the $X-Y$ plane, and impart a uniform acceleration, a, to the system by tranporting the weightless frame along the $+X$ axis.

The equations of motion for the mass system are ${ }^{2}$:

$$
\begin{align*}
& m_{1} x^{n_{1}}=-k_{1} x_{2}+k_{2}\left(x_{2}-x_{1}\right)+m_{1} a \\
& m_{1} x^{n_{2}}=k_{2}\left(x_{1}-x_{2}\right)+k_{3}\left(x_{3}-x_{2}\right)+m_{1} a \tag{1}\\
& m_{3} x^{n_{2}}=-k_{3}\left(x_{3}-x_{2}\right)-k_{1} x_{3}+m_{3} a
\end{align*}
$$

where $x^{\prime \prime}$, represents the second time derivative of x_{1}; and x_{1} represents the displacement of mass m_{1} from equilibrium.

For simplicity let $m_{1}=m_{2}=m_{3}$, and $k_{1}=k_{2}=k_{3}=k_{4}=k$. Further let $b=k / m$. Then Eq. (1) becomes

$$
\begin{align*}
& x^{\prime \prime}=-2 b x_{1}+b x_{2}+b \tag{2}\\
& x^{n_{2}}=b x_{1}-2 b x_{2}+b x_{3}+a \\
& x^{n_{2}}=\quad b x_{2}-2 b x_{3}+a
\end{align*}
$$

Using matrix notation, Eq. (2) may be written as

$$
\begin{equation*}
X^{n}=A X+G \tag{3}
\end{equation*}
$$

where:

$$
X=\left|\begin{array}{l}
x_{1} \tag{3a}\\
x_{2} \\
\left|x_{y}\right|
\end{array}\right| ; A=\left|\begin{array}{ccc}
-2 b & b & 0 \\
b & -2 b & b \\
0 & b & -2 b
\end{array}\right| ; \text { and } G=\left|\begin{array}{l}
a \\
a \\
a
\end{array}\right|
$$

Thus, step 1 of the procedure, namely that of forming a real symmetric matrix from the equations of motion of the system, has been accomplished. Next, we proceed to the eigenvalue equation.

Consider the complementary solution of Eq. (3), as found by setting $\boldsymbol{G}=0$. Then

$$
\begin{equation*}
\mathbf{X}^{\prime \prime}=\mathbf{A X} \tag{3b}
\end{equation*}
$$

The eigenvalue equation for A is given by:

$$
\begin{equation*}
\Delta Y_{1}=\lambda_{1} Y_{1} \tag{4}
\end{equation*}
$$

where Y_{1} is the eigenvector and λ_{1} is the eigenvalue. The characteristic equation for Eq. (4) is:

$$
\begin{equation*}
(A-\lambda I) Y_{1}=0 \tag{5}
\end{equation*}
$$

where I represents the identity matrix. In order for Eq. (5) to hold for all Y, we require the determinant of the coefficient of Y_{1} to be zero. Hence, from Eqs. (3a) and (5) we obtain:

$$
\operatorname{det}\left|\begin{array}{ccc}
-2 b-\lambda & b & 0 \tag{6}\\
b & -2 b-\lambda & b \\
0 & b & -2 b-\lambda
\end{array}\right|
$$

[^1]Solving Eq. (6) give for the eigenvalues:

$$
\begin{align*}
& \lambda_{1}=-2 b \\
& \lambda_{3}=\left[-2+(2)^{k_{1}}\right] b \tag{7}\\
& \lambda_{1}=\left[-2-(2)^{*}\right] b
\end{align*}
$$

The corresponding eigenvectors as obtained from Eq. (4) are:

$$
Y_{1}=\left|\begin{array}{c}
(1 / 2) \tag{8}\\
0 \\
-(1 / 2)^{2}
\end{array}\right| ; Y_{2}=\left|\begin{array}{c}
1 / 2 \\
(1 / 2) \% \\
1 / 2
\end{array}\right| ; \text { and } Y_{3}=\left|-\binom{1 / 2}{(1 / 2} \%\right|
$$

Thus ateps 2 and 3 have been achieved.
It may be verifted that the eigenvectors are orthonormal by forming the scalar product according to

$$
\begin{equation*}
\left(\boldsymbol{Y}_{1}, \boldsymbol{Y}_{1}\right)=\Sigma \boldsymbol{Y}^{*}{ }_{1} \boldsymbol{Y}_{1}=\boldsymbol{\delta}_{11} \tag{9}
\end{equation*}
$$

where Y^{*}, represents the complex transpose of Y_{1}, and δ_{1}, is the Kronecker delta. Hence step $\&$ has also been completed.

Now the complementary solution of Eq. (3) may be written by inspection as:

$$
\begin{equation*}
x_{c}=\Sigma c_{1} X_{1} \tag{10}
\end{equation*}
$$

where $1=1,2,8$, and the c_{1} 's are determined by the initial conditions. By performing an orthogonal transformation on Eq. (3b) the matrix, A, will be diagonalized. This results in the eigenvalue equation, with the eigenvectors Y_{1} corresponding to the transformed X_{1}. For a nondegenerate set of eigenvalues, the orthogonal transformation matrix, T, will take the form

$$
\text { (11) } \left.\quad \text { (12) } \quad T \quad T^{\prime}=\left\lvert\, \begin{array}{cc}
T=\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array} \ldots . . Y_{n}\right.
\end{array}\right.\right] \begin{array}{cc}
\left(Y_{1}, Y_{1}\right) & \ldots \ldots\left(Y_{1}, Y_{n}\right) \tag{11}\\
\vdots & \vdots \\
\vdots & \vdots \\
\left(Y_{n}, Y_{1}\right) & \ldots \ldots\left(Y_{n}, Y_{n}\right)
\end{array}\left|=\left|\begin{array}{ccc}
1 & 0 & 0 \ldots 0 \\
0 & 1 & 0 \ldots 0 \\
\cdot & & \vdots \\
0 & 0 & 0 \ldots i
\end{array}\right|\right.
$$

since $\left(Y_{1}, Y_{j}\right)=\delta_{1,}$.
Upon transforming Eq. (3b) one obtains for the X_{i} 's:

$$
\begin{equation*}
X_{1}=Y_{1} \sin \left(\omega_{1} t+\phi_{1}\right) \tag{18}
\end{equation*}
$$

where $\omega_{1}=\left(-\lambda_{1}\right)^{\text {h }}$ (Dettman, 1962) and ϕ_{1} is the initial phase angle of the ith mode.

The complementary solution, Eq. (10), now becomes:

$$
\begin{equation*}
X_{c}=\Sigma c_{1} Y_{1} \sin \left(\omega_{1} t+\phi_{1}\right) \tag{14}
\end{equation*}
$$

where c_{1} and ϕ_{1} are the arbitrary constants determined by the boundary conditions.

Next, we must find the particular solution. Let the particular solution of Eig. (3) be of the form:

$$
x_{v}=\left|\begin{array}{l}
\boldsymbol{q}_{\boldsymbol{z}} \tag{15}\\
\boldsymbol{q}_{2} \\
\boldsymbol{q}_{\boldsymbol{z}}
\end{array}\right|
$$

where the q_{1} 's are constants. Then $X^{\prime \prime}$ is sero, and Eq. (3) becomes:

$$
\begin{equation*}
\Delta x_{p}=0 \tag{16}
\end{equation*}
$$

Expanding Eq. (16) results in:
(17)

$$
\begin{equation*}
q_{1}=3 a / 2 b ; \quad \quad q_{2}=2 a / b ; \text { and } q_{3}=3 a / 2 b \tag{17}
\end{equation*}
$$

The general solution of Eq. (3) is now obtained by adding Eq. (15), with the q_{1} 's determined, to Eq. (13). Thus:

$$
\begin{align*}
& \left|\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right|=c_{1}\left|\begin{array}{c}
(1 / 2)^{4 / 4} \\
0 \\
-(1 / 2)^{4}
\end{array}\right| \sin \left(\omega_{1} t+\phi_{1}\right)+c_{2}\left|\begin{array}{c}
1 / 2 \\
(1 / 2) \% \\
1 / 2
\end{array}\right| \sin \left(\omega_{3} t+\phi_{2}\right)+ \tag{18}\\
& c_{3}\left|\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right| \sin \left(\omega_{3} t+\phi_{3}\right)+\left|\begin{array}{l}
3 a / 2 b \\
2 a / b \\
3 a / 2 b
\end{array}\right|
\end{align*}
$$

It should be recalled that for the previous discussion, the masses and spring constants were set equal to constants. In the event that $m_{1} \neq m_{1}$ the matrix, A, will not be symmetric and the results are complicated considerably.

One-Dimensional Nonuniformly accelerated Systems

Consider the same mass-spring configuration as previously discussed. Let $a(t)$ represent a nonuniform acceleration of the reference frame of the system in question, once again taken as along the $+X$ axis.

The equations of motion for the nonuniformly acclerated system are:

$$
\begin{align*}
& \begin{array}{l}
x_{1}^{\prime \prime}=-2 b x_{1}+b x_{2} \\
x_{2}^{\prime n_{2}}=b x_{1}-2 b x_{2}+b x_{2}+a(t) \\
+a(t)
\end{array} \tag{19}\\
& x^{n_{2}}=\quad b x_{2}-2 b x_{3}+a(t)
\end{align*}
$$

where again $m_{1}=m_{2}=m_{3}, k_{1}=k_{2}=k_{2}=k_{1}=k$, and $b=k / m$.
The matrix form of Eq. (18) may be written as:

$$
\begin{equation*}
\boldsymbol{X}^{\prime \prime}=\boldsymbol{A X}+\boldsymbol{F} \tag{20}
\end{equation*}
$$

where A is identical with that of the uniformly accelerated case. Hence we know immediately that the complementary solution for the nonuniformly accelerated case will be identical with Eq. (14).

It remains to find the particular solution. Consider $a(t)$ to be such that $a(0)=0, a\left(t_{1}\right)=0$ and $a(t)=0$ for $t=m t_{1}$, where m is an integer. This function, $a(t)$, may now be expanded in a Fourier sine series with a period of $2 t$, according to:

[^2]\[

$$
\begin{equation*}
a(t)=\Sigma\left[b_{m} \sin \left(m \pi t / t_{1}\right)\right] \tag{21}
\end{equation*}
$$

\]

where

$$
\begin{array}{ll}
\text { where } & b_{m}=\left(2 / t_{1}\right) \int_{0}{ }^{11} a(T) \sin \left(m \pi T / t_{1}\right) d T ; m=1,2,3 \ldots \\
\text { Now, let } & a_{m}(t)=b_{m} \sin \left(m \pi t / t_{1}\right)=\left[F_{m}\right]
\end{array}
$$

Assuming a solution of the form:

$$
\begin{equation*}
X_{m}=Z_{m} \sin \left(m \pi t / t_{1}\right) \tag{22}
\end{equation*}
$$

and substituting Eq. (22) into Eq. (20) yields:
(23) where

Since the set of eigenvectors of A forms a basis for the n-dimensional vector space, and Z_{m} is no more than a vector in an n-dimensional space, then Z_{m} may be expressed as a linear combination of the eigenvectors:

$$
\begin{equation*}
\boldsymbol{Z}_{\mathbf{m}}=\Sigma \gamma_{\mathrm{m}} \boldsymbol{\alpha} \mathbf{Y}_{\boldsymbol{\alpha}} \tag{24}
\end{equation*}
$$

Substitution of Eq. (24) into Eq. (23) yields:

$$
\begin{equation*}
\gamma_{\beta}=-\left(B_{m}, Y_{\beta}\right) /\left(\mu_{m}^{2}+\lambda_{\beta}\right) \tag{25}
\end{equation*}
$$

Eq. (25) generates the y 's from which the $Z_{\text {m's may }}$ me obtained. Further aubstitution into Eq. (22) produces X_{m}, which is a particular solution corresponding to an $a_{m}(t)$. Since this is true for every m, the complete particular solution may be found by adding the m solutions together, i.e.,

$$
\begin{equation*}
X_{0}=Z_{1} \sin \left(\pi t / t_{1}\right)+Z_{z} \sin \left(2 \pi t / t_{1}\right)+\ldots Z_{m} \sin \left(m \pi t / t_{1}\right) \tag{28}
\end{equation*}
$$

Hence, the total solution to Eq. (20), formed by adding Eqs. (14) and (26), becomes:

$$
\begin{equation*}
X=\Sigma_{1}\left[C_{1} Y_{1} \sin \left(\omega_{1} t+\phi_{1}\right)\right]+\Sigma_{1}\left[Z_{1} \sin \left(j \pi t / t_{1}\right)\right] \tag{27}
\end{equation*}
$$

SUMMARY

In summary, both uniformly and non-uniformly accelerated one-dimensional ascillating systems have been treated, with the motion of the systems described by n-linear differential equations of motion. The system of equations was written in matrix representation and orthogonal transformations were performed on the configuration matrix, thus rendering it diagonal. By employing matrices, a compact form for the oscillation of the systems is obtalned.

LITERATURE CTTED

Adem, Julian. 1959. Matrix differential systems with a parameter in the boundary conditions and related vibration problems. Quart. Appl. Math. 17 (4) : 165-171.

Adem, Julian, and Marcos Moshinsky. 1952. On matrix boundary value problems. Quart. Appl. Math. 9 (4) : 424-431.
Dettman, John W. 1862. Mathematical Mothods in Physics and Engineering. McGraw-Hill, New York, New York.
Finkbeiner, Daniel T. 1960. Introduction to Matrices and Linear Transformations. W. H. Freeman and Co., San Francisco, California.
Kim, Y. S. 1984. Applications of Real Symmetric Matrices in Vibration Problems. M.S. Thesis. The University of Tulsa, Tulsa, Oklahoma.
Moshinaky, Marcos. 1951. Boundary conditions for the description of nuclear reactions. Phys. Rev. 81 (3) : 347-352.

Schiff, Leonard I. 1955. Quantum Mechanics. McGraw-Hill, New York, New York.

Whson, C. Bright, Jr., J. C. Decius, and Paul C. Cross. 1955. Molecular Vibrations. McGraw-Hill, New York, New York.

[^0]: Mational Sofeme Founda:ion Science Faeulty Fellow 1965-66.
 Present addrem: 800n: 8ill Academy, Yongan, 8coul, Korem

[^1]: Here, the Lagrangian teehnique for obtaining the equations of motion has boen - mologed. The hat term in each of the equations is the contribution of the linear acoloration of each mese to the potential esperimy termi.

[^2]: - As stated, this acceleration corresponds to an on-off, periodic perturbation with a period of $2 t_{1}$. For an aperiodic acceleration, the solution obtained will still be valid if one allows $2 t$, to approach an infinitely large value.

