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Matrix theory, or more generally linear algebra, is a relatively recent
mathematical development. Its roots extend back 100 years to the work
of Hamnton, cayley and Sylvester (FInkbeiner, 1960) but it has attracted
widupread intere8t only in the past two or three decades. The growth of
ita applications and usefulness has been remarkable. Although other
branches ot higher mathematics may be applied more intensively, and
perhaps by more people, few branches have been applied to 80 many diver·
8itled fields as has the theory of matrices. Today, matrices are effective
tOO18 in 8uch discipllnes 88 psychology, education, chemistry, physics, engl·
neering, mathematics, and economics, just to name a few. In particular,
matrices are widely used in mlcroacopic processes, such as encountered
In nuelear Interaetions, wave mechanics (Schiff, 1956) and molecular spec.
troeeopy (Wilson, et al., 1956).

In a series ot papers (Adem and Moshinsky, 1962; Moshinsky, 1951;
Adem, 1969) several macl'08copie physieal processes are described by col
umn vectors or matrices instead ot single functions; thus, a simplification
in the mathematical solution of such proceBBe8 has been achieved and,
hence, has made poasible the solution of a variety ot problems with matrix
techniques.

The purpoee of this paper is to apply matrix theory to some problems
involving macroeeopic physical systema which are undergoing on~dimen

monaJ oaclllation. The application of matrices consista of the following:
(1) form a real symmetrle matrix, A, which shall be called the configura
tion matrix. from the equations of motion of the system in question; (2)
801ft the eigenvalue equation equation; (S) determine the eigenvectors;
(.) normal1ae the eigenvectors; and (6) perform an orthogonal transfor·
maUon on the eontIguraUon matrix. The general eoluUon of the differen
tial equation of motion 18 the sum of the particular and the complementary
eolutions .. uaual
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(1 )

ONE-DIMENSIONAL UNIFORMLY ACCELEBA'I'm SYSTEM

Consider a system of coupled oscillators consisting of three masses
m.. m, and ma connected in series by four weightless, nomnteracting springs
ot force constants k

"
kit ka, and k. respectively. Let the loose ends of

springs 1 and 4 be rigidly fastened to a weightless frame. Mount this linear
system of coupled oscillators horizontally in the X-Y plane, and impart &
untfonn acceleration, a, to the system by tranporUng the weightless
frame along the +X axis.

The equations of motion for the m&88 system area:

m,x"1 = -k,x, + k,(~-XI) + mla
maX", = k:(x,-x.) + ka(x.-x,) + mao
maX"a = -ka(x.-x.) - k.x. + m~

where x" I represents the second time derivative of Xl ; and XI represents
the displacement of mass m. from equilibrium.

For simplicity let m l = rnz = mao and k , = k, = k. = k. = k. Further
let b = kIm. Then Eq. (1) becomes

X", = -2bx, + bxz + G
(2) x"z = bx, -2bxz + bx. + a

x"z = bxz -2bx. + a

Using matrix notation, Eq. (2) may be written as

(S) X" = AX + G

where:

I'~'I 1-2b b 0 , !G!(3a) X = Ixz ; A = Ib -2b b I; and G = a
Ix3! 0 b -2b a

Thus. step 1 of the procedure. namely that of tanning a real 8ym
metric matrix from the equations of motion of the system. has been ac
complished. Next. we proceed to the eigenvalue equation.

Consider the complementary solution at Eq. (3), as found by setting
G = O. Then

13b) X" = AX

The eigE'.nvalue equation tor A is given by:

(4) AY. = ~IY.

where Y. is the eigenvector and >.. is the eigenvalue. The characteristic
equation for Eq. (4) is:

(5) (A - ~l)Y. = 0

where 1 represents the identity matrix. In order for Eq. (5) to bold tor
all Y I we require the determinant at the coefficient of Y. to be zero. Hence,
from Eqs. (Sa) and (5) we obtain:

1
_2b_~ b 0 I

18) det b -2b-~ b
o b -2b->.

IJI... u..~ tecllllique for obtaflllq tile equatAoDe of -.ot1oD .... NeD
- _... TIle Jut tera III eacb of tb. eqaatAoDe .. the coatributfoa of tb. 11...... ac-
e of eacb .... to the poteatial ftMI'1r7 tenL
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SolVing Eq. (6) glvee tor the eigenvalues:

A. = -211)., = [-2 + (2)"]b
A. = [-2 - (2)"]11

The corruponding eigenvecton u obtained from Eq. (4) are:

I ( ~ ) ~I I~ I I ~ IY. = I 0 ; Y. = (~ )~ ; and Y. = - PAd ~
-(~)~ % ~

Thua ateIN' 2 and S have been achIeved.

It may be verified that the eigenvectors are orthonormal by tonning
the acalar product according to

(9) (Y ..Y,) = ~ Y·IY, = 3.,
where Y· I represents the complex transpose of YIo and 3., is the Kronecker
delta. Hence step 4 has also been completed.

Now the complementary solution of Eq. (S ) may be written by in
8pection u:

(10)

where ( = 1,2,8, and the CI'S are determined by the initial conditions. By
performing an orthogonal transformation on Eq. (Sb) the matrix, A, will
be diagonallzed. This results in the eigenvalue equation, with the eigen
vectors Y, corresponding to the transformed XI' For a nondegenerate set
of eigenvalues. the orthogonal transfonnation matrix. T. will take the
form:

(11 )

(12) T T' =

T = [Y1 Y• ....•Y.]

(YuY,) ...... (YltY.)

=

1 0 0 0
o 1 0 0

(Y.,Y,) ...... (Y.,Y,,) 0 0 0...11
"nee (Y"Y,) =31"

Upon tran8formlng Eq. (Bb) one obtains tor the XI'S:

(18) XI = Y I 8ln (fIJ" + ~I)

where WI = (-).,) ~ (Dettman, 1962) and f/J, is the initial phase angle of
the tth mode.

The complementary solution, Eq. (10), now becOmes:

(14) X~ = 1: c, Y, a1n(w,' + ~,)

wbere c, and ~, are the arbitrary conatants determined by the boundary
condltlOll8.

Next. we must find the particular solution. Let the particular eolutton
ot JDq. (3) be ot the torm:

(10) Z. = 1::1
Where tbe q,'. are coutaDts. TbeD X· Is zero. and Eq. (I) becoIIle.:

(11) AZ. = Q.
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Expanding Eq. (16) results In:

(17) q, = Sa/2b; q, = 2a/b ; and q, = 3cJ/2b.

The general solution of Eq. (3) is now obtained by adding Eq. (115),
with the ql's determined, to Eq. (13). Thus:

(18) 1=:1' = CI I (~) ~I sln«(o)Jt + cf>s) + C, I(~) ~18in(w,t + ..) +
te, -(~)~ ~

Cs 1
1

_ (~) ~I sln(w,t + cf»,) + I::~:bl
% Sa/2b

It should be recalled that for the previous discussion, the masses and
spring constants were set equal to constants. In the event that ml =F mJ
the matrix, A, will not be symmetric and the results are complicated con
siderably.

ONE-DIMENSIONAL NONUNIFORMLY ACCELERATED SYSTEMS

Consider the same mass-spring configuration &8 previously discussed.
Let a (t ) represent a nonuniform acceleration of the reference frame of
the system in question, once again taken as along the +X axis.

The equations of motion for the nonuniformly acclerated 8ystem are:

X"I = -2hxl + bx: + aCt)
(19) x", = hXI - 2bx, + bz, + aCt)

x"s = bx, - 2bz. + aCt)

where again m l = m, = m 3, k l = k, = k, == k t == k , and b == kIm.

The matrix form of Eq. (19) may be written as:

(20) X" = AX + F

where A is identical with that ot the uniformly accelerated case. Hence
we know immediately that the complementary solution for the nonuniform
Iy accelerated case will be identical with Eq. (14).

It remains to find the particular solution. Consider a (t) to be such
that a(O) = 0, a(tl ) = 0 and aCt) = 0 for t == mt" where m is an Integer.
This function, t a ( t), may now be expanded in a Fourier sine series with
a period of 2t, according to:

t. As stated, this acceleration corresponds to an on-ott, periodic per
turbation with a period of 2t l • For an aperiodic acceleration, the solution
obtained will still be valid it one allows 2tl to approach an infinitely large
value.

(21) aCt) == 1: [b. sin (m?ft/tl »)

Where b. = (2/t,) f." aCT) sin (m?fT/t,) dT ; m = 1,2,3...

Now, let a.(t) = b. sin (mn/tl ) = [1'.] .

Aasuming a solution of the form:

(22) X. = Z. sin (m'1Tf/t,)

and substituting Eq. (22) into Eq. (20) ylelcl8:

(23) -".'. Z. - AZ. = B. Ibbb:.jwhere ".'. = (m'lf/t.)' ; aDd B =
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Since the set of e1genvecto1'8 of A forma a baBiB for the tI-dlmensional
vector 8J)&Ce, and Z... fa no more than a vector in an ,.-dimensional space.
then Z. may be expreued as a linear combination of the eigenvectors:

(24) Z. = % Ya4Ya

Substitution of Eq. (24) into Eq. (23) yields:

(23) y. = -(B•• Y }/(p'. + >. )
p p p

Eq. (2~) generatea the 'Y's from which the Z.'s may be obtained. Further
wbetituUon into Eg. (22) produces X •• which 18 a particular solution cor
reeponcUng to an a. (t). Since this is true for every m, the complete
particular solution may be found by adding the m solutions together, i.e.,

(28) X, = Z. sin (11't/'.) + Z, sin (2wtlt,) +...Z. sin (mwtlt,)

Hence, the total solution to Eq. (20), formed by adding Eqs. (H) and
(28), becomes:

(27) X =%.[c.Y. sin ("'It + t/>.» + ZI[ZJ sin (j'iTt/t,)]

SUMMARY

In summary, both uniformly and non-uniformly accelerated one-di
mensional oscUlating systems have been treated. with the motion of the
systems described by n-llnear differential equations of motion. The sys
tem of equations was written in matrix representation and orthogonal
transformations were performed on the configuration matrix, thus render
ing it diagonal. By employing matrices, a compact form for the oscilla
tion of the systems is obtained.
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