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Effect of Body Porosity on Hypervelocity Impact’
B. A. HARDAGE and F. C. TODD
Oklahoma State University

An analytical and computer solution is presented of the hypervelocity
impact of solid and porous bodies. Very low density micrometeoroids are
found in space and some are believed to originate in comet tails. If well
outgassed micro-micrometeoroids collide in the vacuum of outer space,
their rough tips can usually weld from the intermolecular forces. An
aggregate of these particles would form a porous micrometeoroid of the
observed density. These considerations require an analytical investigation
of the effect of porosity on hypervelocity impact.

A considerable amount of analytical and computer work has been per-
formed on the hypervelocity impact of normal density materials (Bjork,
1058; Walsh, 1964). Papers describing shock propagation in solid-body,
hypervelocity impacts were presented to the Academy by former members
of this group (Lake, 1962; Sodek, 1963). There has been little investiga-
tion of the hypervelocity impact of porous bodies. This paper compares
impacts by flat plates of solid iron and of iron with a pore volume of 50%
at 118,000 ft/sec on a thick aluminum slab. This velocity i8 much greater
than the velocity of sound in aluminum, which is 16,740 ft/sec; hence, the
impact is called “hypervelocity.” The problem was written in FORTRAN
IV for an IBM 7040-7084 computer assembly.

HYDRODYNAMIC FLOW AND OTHER EQUATIONS

Pressures of many megabars are generated in the hypervelocity im-
pact; and consequently, the elastic limit and other mechanical properties
of the solid may be neglected. On this basis, the assumption was made
by Bjork (1858), and others after him, that the shock propagation may
be calculated as a hydrodynamic shock in a nonviscous fluid. The solution
in this paper was obtained from the Eulerean equations of hydrodynamic
flow, additional equations and the proper boundary conditions. The three
equations for hydrodynamic flow are listed as a, b and ¢ in Fig. 1. They
express the conservation of mass, the conservation of momentum and the
conservation of energy, respectively. In these equations, rho is the spe-
cific density, w is the material flow velocity, p is the pressure, E is the
total specific energy, ¢t 18 the time and z is the space coordinate, Since
the problem considers a thin plate impacting on a thick slab, the problem
requires only one space coordinate.

There are four variables, rho, 4, p and E, in the three equations so
a fourth equation is required to obtain a solution. The propagation of the
shock can be calculated, provided the equation of state is known for the
medium (Bethe, 1842). Walsh, et al. (1957) have shown that the Mie-
Gruneisen equation of state may be employed for the fourth equation
since this relation includes the increase in entropy across the propagating
shock front. Hugoniot showed that the entropy must increase across the
shock front. A substitute equation of state for solid and porous materials
was recently suggested by Tillotson (1962) and is given as Equation d
in Fig. 1. This equation with his recommended constants was employed
for the different materials in this problem.

The shock front is a discontinuity for the usual solution for propags-
tion with a digital computer. In order to remove this discontinuity and
t;lrermlt a computer solution, one technique is to introduce a pseudo-vis-

ty term which is added to the pressure. It replaces the jump discon-
tinuity by a large, but continuous gradient. This technique was suggested
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Fig. 1. Hydrodynamic flow equations and equations of state

by von Neumann and Richtmyer (1950). A relation for the dissipative
term was suggested by Landshoff (1855), and it is

g=AdVV(|divV |+ A)

where V is the material velocity vector, and 4, and A, are constants that
are found by trial. At the shock front, where there is a large gradient in
the flow velocity, ¢ has a value comparable to the peak pressure of the
shock wave. Behind the front, where the flow velocity is fairly uniform
with no large gradients, ¢ has a negligible value. The pseudo-viscosity
term is introduced into the flow equations of Fig. 1 by replacing p with
the sum of the two terms, p + ¢q. To facilitate the numerical solution
with the computer, the equations are converted to the dimensionless form.

PRESENTATION OF RESULTS

The solution for the hypervelocity impact of the porous and the solid
thin plates onto a thick aluminum slab are obtained from the computer
a3 numerical values of the variables at different instants of time during
the impact. Graphical presentations are presented of the pressure, the
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flow velocity, the density and the internal energy at several instants dur-
ing the impact. For this linear solution of impacting solid plates, the
solution in dimensionless variables may be scaled to problems with dif-
ferent velocities and different thicknesses of the impacting plate. The
scaled solutions will be correct until the shock reaches the back face of
the thin plate. The rupture of the back face of the thin, solid plate cannot
:: ucﬁ::’i. The solution with different porosities of the thin plate cannot
8¢ N

The distribution of the pressure throughout the impact-affected zone
is presented for specified instants of time during the impact. For the
results in Fig. 2 and in subsequent figures, the heavy, dashed, vertical
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line on the extreme left is the position of the interface at ¢ — 0 when the
plate and slab first touch. The thin iron plate is on the left and is mov-
ing to the right into the rest position of the uncompressed, stationary
aluminum slab. The interface position at the indicated time on each
curve is designated by 3 for the solid iron-aluminum interface and is
designated by 2 for the porous iron-aluminum interface., The pressure
distribution is shown solid for the solid plate and dotted for the porous
plate. In next to the lowest curve, the rear faces of the porous and of
the solid plate are shown by the vertical arrow. In the last curve, the
arrow is for the solid plate. The porous plate has been compacted into
a solid and the shock has ruptured off sections of the rear of the porous
plate. The curves as a group show the more rapid penetration of the
solid plate which results from its greater mass. The pressure for the
solid plate impact averages about 18 megabars, while the pressure of the
porous plate impact is only about 14 megabars.

After consideration of the pressure profiles, the velocity profiles do
not have any unusual features. The velocity profiles are shown in Fig. 8
where dimensionless units are given for the velocity. As was stated, the
velocity of approach is 118,000 ft/sec. After impact, the shock fronts to
the left and right of the interface must propagate at equal speeds into
the solid iron and into the solid aluminum. This material flow velocity is
less for the porous plate, as a consequence of compacting the pores in the
plate. The position of the shock front to the left is indicated by a rise in
velocity to that of the approaching plate, and to the right by a decrease
of the velocity to zero.

The density profiles are very similar to the preasure curves except
for the compaction of the porous plate. The results are presented in Fig.
4. In dimensionless units, the density of aluminum i{s 1.0 as appears to
the right of the interface and ahead of the shock front. The solid hori-
zontal line to the left of the interface represents the normal density of
iron which is 2.82 (corresponds to 7.86 g/cm®). The profiles show the ex-
pected steep, but continuous variation of the density across the interface.
The true interface is not continuous to the scale in the figure. The appear-
ance of the continuous variation results from the insertion of the term ¢
into the calculations.

The most significant difference between the impact of the solid and
porous plates is the difference in the internal energy that is generated
in the two materials. The internal energy does not include the kinetic
energy, only the energy that appears as heat. The average energy content
of the shock-compressed porous plate is indicated by the helght of the
dotted curve to the left of 2. This is to be compared with the energy
content of the solid plate which is the height of the solid curve to the
left of 8. As for the preceding variables, some porous material has been
ruptured from the rear face of the porous plate in the lower curve (Fig. 5).
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Fig. 5. Specific internal energy profiles per gram
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