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A study of transient heat conduction was initiated as an introduction

to the study of heat input to a metal surface by steady illumination from
an arc-image furnace or a c.w. laser. The present paper includes an
analytical study for one-dimensional heat conduction from a constant heat
input to a surface and of numerical solutions for: (a) a material with
thermal properties that are independent of the temperature; and (b) a
practical material, iron, with temperature-dependent properties. The class
ical case involves a differential equation with constant coefficients which
gives the temperature distribution in depth as a function of the time and
cannot include a solution over the temperature range which includes the
heats of fusIon and of vaporization. The numerical solution for iron in
cludes the effect of temperature dependence of the specific heat, the ther
mal conductiVity and the linear expansion over a temperature range from
300 0 K to the boiling point of iron at 3273°K. The classical and the numer
ical solutions are then compared. In addition, the numerical solution dem
onstrates some peculiarities of the computer solution, and the practical
interpretation of these peculiarities are discussed.

BOUNDARY CONDITIONS AND EQUATIONS

The mathematical statement of this problem is consistent with the
flow of heat in one dimension. Heat is assumed to be absorbed by an ir
radiated, flat surface at a rate of H o per unit area. The value of H o for
the numerical examples is assumed constant and is set equal to 500 cal
ories/emS-sec. Heat is conducted from the irradiated face into a thin
plate of thickness L and this thickness is taken as 1 em for the numerical
calculations. It is assumed that no heat is lost from the back face of the
plate. The partial differential equation for this problem is,

cl)2T/cI)xJ == (cp/k) cl)T/at

The boundary condition at x == 0 is
aT/cI)x == Ho/k

and the boundary condition at x = L is
aT/ax = 0

The last condition states that no heat is lost from the back face; i.e. the
back face of the thin plate is insulated to prevent the flow of heat away
from it. In these equations, t is the time, T is the temperature in abso
lute units, and x is the distance into the plate in a direction normal to the
front surface where x == O. The three, pertinent thermal properties for
the material are: c, the specific heat; p, the density; and k, the thermal
conductivity. The analytical solution for the preceding equations may be
found in many sources when the physical properties are assumed constant
and are entirely independent of the temperature. The recorded solution
for the above equation from one source' (C&rslaw and Jaeger, 1947) has
the following form:

T = To+HotlcpL - H.,x/k + H.,xs/2kL + H oL/3k 
00

HoLik :E 2jN1w"J exp (-KNIouJt/cpV) cos (Nrx!L)
N=1

'Supported by National Aeronautic. and Space Administration Contract No. NASr-~
administered throuah Research Foundation, Okl&boma State University.
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For the purposes of numerical calculation and to extend easily the
calculation to the same problem with different dimensions the fOllo~ng
substitutions are introduced. '

t* = tlV x* = x/L

The above solution may then be rewritten in the following form:

T = To + HoLik [t*/cp - x· + x*I/2 + % _
00

2/'11"2 ~ llNl exp (-kN~Jt*/cp) cos (Nvx*)]
N=l4

Provided the physical properties are taken to be constant, the above solu
tion is applicable for different thicknesses of the material.

For a numerical solution to be obtained on a digital computer, it is
necessary to restate the differential equation and the boundary conditions
in the form of difference equations. When these relations are properly
programmed for a digital computer, the problem may be solved tor a heat
input that is variable with time and for physical properties that are a
function of the temperature. For comparison with the classical solution
for constant physical properties, numerical results are obtained tor an
assumed heat input Ho = 500 calories/cm=-sec., a thickness ot the plate
L = 1 cm and an initial temperature To = 27°C. The physical properties
are assumed to have the values that are given for 300 0 K in the Figs. I, 2
and 3 for the specific heat, the density and the thermal conductivity, re
spectively. In order to obtain the results for different values ot H o and
L, the following relations are employed.

x = x*L ; t = t* Ii
or,

T H ,L = (T&OO. 1 - To) HoL/5oo + To.
0·45

~

-- EXPERIMENTAL DATA

--- - FITTED CURVES

o 500 1000

TEMPERATURE (. t< )

'ig. 1. Dependence of the specific heat on temperature below the meltlDg
point.
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Fig. 2. Dependence of density on temperature.

The partial differential equation and the boundary conditions are replaced
by the following difference equations

(TI + I. J -2T'J + T ,_I . J) / Llx' = a (TIJ ) [TI,J + I - T IJ ] / Llt
where

and at z = L,
(TI,l -T. -1.1) / Llx = 0

An inherent error in the differencing is introduced at the face where
z = O. In order to minimize this error, the third order approximation is
used for the boundary condition at x = O. This approximation is:

TI.1+I = TId + 2Lltla (TI,I) Llx' [T,.J 
T t •1 + H o Llx/k]

and to insure convergence, the following relation was employed,

Llt / Llx' = 1/6 alllia (TI • J)

where amlll varies in the solution and is the smallest value of a for each
temperature profile. This relation insures accuracy and a rapid converg
ence on the solution. The size of the mesh in the solution of the problem
is taken as

Llx = O.05L = 0.05 em

which is equivalent to 20 points for calculation between the irradiated facf
at z = 0 and the insulated face at z = 1.0.

It is not possible completely to generalize the results of the computer
solution because of the variable thermal properties. The same transfor
mations as for the analytical solution will give approximate results. Exact
results may be found if B. and L are chosen 80 the temperature remain:
invariant upon transformation; i.e. when BoL/500 = 1.
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For the computer solution with difference equations the dependence
of the physical properties on the temperature must be ln8erted in the com
puter. The computer program was "debugged" on an IBM 1410 with a
computer memory of about 40.000 bits. The space in the memory 18
somewhat limited. so the temperature dependence of the physical proper
ties is only approximated. The accuracy of the approximation to the phy_
sical constants are shown by Figs. I. 2. and 3 for the specific heat the
density and the thermal conductivity, respectively. •

With the dependence of the physical constants approximated by suit
able relations. the computer program may be formulated. The program
was assembled such that by changing the boundary condition routines,
the program may be adapted to a different physical problem, such &8 a
variable heat input. By a simple change in the thermal property sub
routines, the solution may be adapted to a different material with physical
constants that depend on the temperature in a different manner.

The program is extended through the melting temperature and to the
temperature of vaporization. Since very little data exists for this region,
the properties were assumed to vary linearly with the temperature. The
latent heat of fusion was assumed constant. As a first approximation,
these values were taken from a standard reference (Stull and Sinke. 1956).

The computer solution contains peculiarities that are inherent in the
solution of difference equations instead of differential equations. In re
viewing the data. the curves must always be recognized as the solution to
a difference equation and not a true differential equation. There are 20
cells per cm so each cell is 0.05 cm thick. Any sharp break from a con
tinuous curve is a consequence of the solution of a difference equation by
the computer.

The solutions from the computer, with temperature dependent thermal
properties, are compared with the analytical solution when the thermal
properties are constant. The values of the physical constants in the ana
lytical solution are taken as the value of the curves for the physical con-
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Fig. 3. Dependence of thermal conductivity on the temperature.
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stanta that are represented by the dotted lines on Figs. 1, 2, and 3. Fig.
4 represents the curves tor the temperature distribution through the plate
0.138 secs after the heat first starts to enter the plate; the computer and
the analytical solution can be compared. The surface temperature is
found to be higher for the computer solution with temperature-dependent
coefficients.
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Fig. 4. Comparison of calculated temperature distribution through the

plate by the computer solution (temperature-dependent constants'
and by the analytical solution (temperature-independent con·
stants). Time 0.138 seconds.
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As time progresses, the results of the computer solution for surface

temperature becomes still higher than those of the anaIyUcal solution.
ThiS is illustrated in Fig. 5 for a time 0.459 sec after time zero. The trans
formation from the magnetic to the non-magnetic forma of tron occurs
between 1000 to 125()°K, and the first opportuntty to observe the effects
on the transfonnation is in Fig. 5. There does not. however, appear to
be any significant change in the trend for the surface temperature to
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become much higher tor the computer solution than tor the analytical
solution. This 18 attributable, primarily, to a rapid change in the density
which accompanies the short range increase in the specific heat.

As the heat input continues, the surface temperature rises past the
heat ot fusion and approaches the boiling point of iron. The analytical
solution becomes too involved for practical results in this temperature
range. The curves in Fig. 6 show the temperatures of the first five cells
as a tunction at time. The cells are numbered from the surface, which is
Cell 1, toward the back ot the plate; there are 20 cells in the plate of one
centimeter thickness. The solid lines show the temperatures calculated by
the computer. An estimated surface temperature is indicated by the
dotted Une, which is designated z = O. The humps and irregularities in
these curves do not correspond to actual results but are introduced by the
computer.

The use of difference equations to replace the differential equations
for a computer solution introduces results that do not exist in reality.
A startling example of this are the horizontal segments in Fig. 6; the
horizontal sections seen in all the solid lines simply do not exist in fact,
likewise, the apparent pulses at the temperature above the fusion point
for Cell 1 are induced by the horizontal sections in Cells 2, 3, 4, etc., and
do not exist either. An estimate of the surface temperature in the physical
problem is indicated by the dotted line. The horizontal sections in the
temperature curve for each cell are a consequence of the finite size of the
meshes; that is why they have no parallel in the physical situation. The
flat sections occur when the computer treats each cell as a unit. The
temperature remains constant until sufficient energy flows into a mesh,
at constant temperature, to supply the heat of fusion for the entire volume
of the mesh. Then the heat must flow into the next mesh until it also
has received the latent heat of fusion. While the heat is flowing into
the second mesh, there is an inflection in the surface temperature, as indi
cated by the curve for the temperature of Cell 1. Actually, the metal
melts in infinitely thin layers which produce a change in slope of the curve,
but not a flat place such as indicated in Fig. 6.

In the computer solution, the time that a cell remains at a constant
temperature increases with depth of the cell below the surface. This is
expected for a constant rate of heat input which increases the surface
temperature. Some heat is reqUired to increase the temperature near
the surface and the fraction of the input heat that reaches a cell decreases
with depth below the surface. A longer time is then required to melt the
same volume of material. It should be noted that the flat sections will
decrease in length and the solution will approach the true solution as the
size of the mesh tor the computer solution is decreased.

CONCLUSIONS

The classical analytical solution cannot be extended by elementary
mathematical techniques over a temperature range that includes the
latent heat of fusion and the latent heat of evaporation. An analytical
solution for the surface temperature as a function of time after the start
ot the heat input was found with constant coefficients in the differential
equation tor temperatures up to 1100°K. This solution is shown by the
lower curve in Fig. 7 when the coefficients were taken as constant at
their values tor 3OOK. The comparable numerical solution with tempet
ature .dependent coefficients is shown by the upper curve in Fig. 7. Tte
difference is qUite signtticant. To show that the difference does not arlEe
trom the computer, as it obtains the numerical solution, the lower CUI'\ e
tor the analytical solution was checked by obtaining a numerical solutic n
with the computer. The results of the computer solution converged rapid' Y
to those that were predicted by the classical, analytical solution.

The temperature dependence of the coefficient in the differential equ ,-
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tlon for heat conduction must be considered in order to obtain accurate
results. This is troe for temperatures below the melting point. The only
apparent difficulty with the numerical solution above the melting point
for a change of phase is the discontinuity that occurs at each change of
phase, even when the change of phase is a small one, as at 1000 and 1200K
in the solid state. This paper shows that the effect of the discontinuity
can be minimized to any desired degree by a decrease in the size ot the
cells that are considered for the numerical solution.
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