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Ionization in Hydrogen Plasmas; Comparison of

Two Methods of Calculation
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This paper reports the results that are obtained by two methods for
calculating the density of ionization in hydrogen plasmas. In a limited.
low-density range, the density of ionization may be calculated by use ot
the Saha equation and the perfect gas law. This method is limited to the
low-density range by the requirements for equilibrium in the plasma. As
the density of the plasma increases, the overlapping tields from the pro­
ducts ot ionization give rise to microfields which reduce the ionization
potential and make it necessary to use a more complex equation of state.

One method to calculate the lowering ot the ionization potential and
the increase in the density of ionization was proposed by Ecker and Kr611
(1963). This method is applicable to all atomic species but it is an ap­
prOXimate calculation. When the method was applied to a dense plasma
(Bruce and Todd, 1964), the calculated density of ionization was between
one and two orders ot magnitude higher than that predicted from the
perfect gas law; a more thorough study of the problem is accordingly
indicated. The second method is designated as the Yukawa method be­
cause it consists of substituting the Yukawa potential in the Schroedinger
equation to obtain the effective ionization of hydrogen. This is an exact
calculation which can be made over a limited range of moderate densities.
From the calculated density of ionization, other thermodynamic constants
are to be detemined. The methods tor calculating these constants are
being developed. In the present paper, the changes in pressure will be
calculated and used to illustrate the applicability of the method.

CALCULATIONS OF ELECTRON DENSITY

For comparison and discussion of their relative merits, three methods
are presented and compared for calculation of the density of ionization.
The first and simplest method is to assume an ideal gas that is described
by the perfect gas law. The density of ionization is calculated by the ap­
plication of the Saha equation. The results are applicable for a diffuse
plasma prOVided complete equilibrium is attained. As the density in­
creases, the error becomes larger.

The preceding method neglects the interaction of the fields of the
electrons and ions with the components of the plasma. These fields are
referred to as the microfields and they become very important as the
density of the plasma increases. They have the effect of lowering the
ionisation potential and of storing energy in the microfields. The stored
energy reduces the pressure in the plasma and requires a modification of
the perfect gas law in order to have an applicable equation of state. The
reduced ionization potential, 1·, is defined in the first table of equations
(Fig. 1) and the value is always less than the ionization potential in free
space, 1. In order to calculate the amount of ionization, the reduced ioniza­
tion potential, 1-, is employed in the 8aha equation (Ecker and Wetzel,
19M; Margenau and Lewis, 19(9). An approximate method for calculat­
ing the lowering of the ionization potential was suggested by Ecker and
KriSll (1963). They employ two equations, one for densities less than a
critical density and the other for densities in execess of this density. The
critical density is defined by equation 4 and is the limit of validity of the
Debye theory (Debye and Hftckel, 1923; Kirkwood and Poirier, 1954). The
relations are presented in equations 5, 6, 7 and 8. The results are ap­
proximate over the entire range of densities. They are rather accurate for
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I SAHA EQUATION

2 EFFECTIVE IONIZATION POTENTIAL Itt: I - 6 I

3 DEBYE RADIUS 0: r Eo k T 1'/2
l8Tl e2 "'eJ

4 CRt TICAL DENSITY

5 61 ~OR NT ~"cr

7 CONSTANf C IN 6

8 A'v'ERAGE PARTICLE DIS TA\jCE

SYMt30LS DEFINEG

t~ -. UNIONIZED PARTICLE DENSITY

Nj - ION DENSITY

Ne - ELECTRON DENSITY

NT - TOTAL PARTICLE DENSITY

Nee,.- ELECTRON DENSIT' AT CRITICAL DENSITY

OJ - ELECTRONIC PARTITION FUNCTIONS

T - TEMPERATURE

e - ELECTRONIC CHARGE

h - PLANCK I S CONSTANT

k - HOlTZMANN 's CONSTANT

me - ELECTRON MASS

Eo - DIELECTRIC CONSTANT

Fig. 1. Equations.
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EQUATIONS II

9. YUKAWA POTENTIAL V ( , ) : e 2 e x0 ( - r /0)
~o r

2

[CI +-
C; e-X] u(x)10 EIGENVALUE EQUATION d u(x) + 0d;2

II. r. 1 IN "10" C, 2 0 m. 0 2 r- / t12

12. C2 IN "10" C2 : 2.0 e2 m 0 / ~2e

13. EFFECTIVE JONIZATION POTENTIAL

PRESSORE EQUATIONS

14. TOTAL PRESSURE P
TOT

: PPER+- PDEB + PMA+ PDEG

15. IDEAL GAS PRESSURE PpER: NT k T

16.0EBYE CORRECTION PDEB - e2~/ (3 Df.o)

17. MAYER C~RECTION

16 l m+l3- [ 9. U'ol ]P : -kTNeL (-I) (_ a ~ b~( l?JO ) -MA
),I: I m:1 T

18. or IN "17" aT : a foo k T / e2

19 ¢D IN " 17" "0 0/ 0

[_ %+ [ ~2
1/2

120,0 IN "18" AND "19" 0 : + A.O] _

21. A IN "20" A ,2 /~ok T

22. DEGENERACY CORRECTION

P
DEG

: N. k T rCy (W/k T}3Y/2
y:1

? [ J2
/

3
W : (h-/2 "\) (3Ne)/(8n)J

Fig. 2. Equations.
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low densities as long as equilibrium exists. The high denalty equation la
made to correspond to the low density solution at the Debye limlt. It fallll
at high densities when the microfields interact strongly. The deDaity at
which the equation fails is not clearly established.

There are equations for an exact calculation of the effective ionization
potential for hydrogen provided the density of the plasma is not too great
and provided equilibrium exists. In this method the value of 1. la obtained
by solving SchrOedinger's equation with the Yukawa potential function
inserted into that equation. The resulting elgen-value problem. equation
10, has been studied by several authors (Sachs and Goeppert-Meyer. 1988;
Hulthen, 1942). Hulthen and Laurikainen (1951) have pUbllahed numer­
ical values for the eigen-functions and the eigen-values that correapond to
O. and 0,. The effective ionization potential for the hydrogen atom. equa­
tion 13. is obtained in terms of the values of C. and Ca. The magnitude of
the ionization potential decreases with the Debye length. D, &II 18 llluatrated
by the curve in Fig. 3. The very steep slope for small Debye lengths l8
indicative of pressure ionization. The Yukawa potential taUI at high
densities. The range of applicability is certainly as great &II that of the
Debye theory. which is discussed by Kirkwood and Poirier (19M).

Comparisons between the density of ionization that is predicted by
the three methods assist in evaluating the range of applicability and the
accuracy of the different solutions. The variation of the ionization with
density was investigated for isotherm curves with energies of the particles
of 2 ev and 5 ev. The results from the three methods are shown in the
inserted curves in Figs. 7 and 8. The results for the perfect gas law were
taken from Rouse (1962). Deviations between the three methods become
larger as the densities increase and the temperature decrease.
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Fig. 3. Effective ionization potential for hydrogen .. a funcUon of the
Debye length.
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CALCULATION OF THE PKEsSl.TRE-DENSITY RELATION FOR

CoNSTANT TEMPERATURE

The energy that is stored in the microfields reduces the pressure below
the value that is predicted by the perfect gas law. In this paper the cor­
rections to the perfect gas law from the energy in the microfields and from
the degeneracy correction are considered. The correction for degeneracy is
introduced to account for the approach to Fenni statistics for the electrons
at high densities. The total pressure is divided into four parts for calcula­
tion as indicated by equation U. These are: (a) the pressure from the
perfect gas law, PPEB; (b) the decrease in pressure from the Debye-HUckel
limiting law, P DBB ; (c) the increase in pressure from the Mayer correction,
PM.: and (d) the increase in pressure from the degeneracy correction, P DBG•

The part of the pressure from the two terms, P DRB and P'MA> is currently des­
ignated as the Mayer Cluster Integral correction but tabulated values are
available for P MA (Poirier, 1953). The partial pressure, PDF:B, is the Debye­
HUckel limiting pressure and is described in an early paper (Debye and
HUckel, 1923). This tenn is always negative and may have a larger
absolute value than the perfect gas pressure. The numerical value is cal­
culated from equation 16. The partial pressure, PMA> is a positive pressure
but only includes the correction for the Coulomb potential. The value is
calculated from equation 17 with numerical values of the terms within the
square brakets for various values of a and ." that are taken from the paper
by Poirier (1953). The basic considerations for the derivation of the par­
ticular degeneracy correction that is employed for P DEG was derived by
Stoner. The equations in the form of equations 22 and 23 were presented
in a fonn for computation in a later paper (McDougall and Stoner, 1939).
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method.
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Only the Coulomb potential is explicitly introduced in the equation to
determine the effect of the mlcrofields, but Mayer has suggested that all
"other interactions" between the particles may be approxlmated by &
proper choice of the distance of closest approach, 4. The "other interac­
tions" would include all short range forces and, in particular, the abort
range repulsive forces between the cores of the ions and electrons. From
the complexity of the interaction, no single numerical value of 4 can be
valid for all ranges of density and temperature. Duclos and Cambel (1982)
suggest that the parameter, 4, may be made a function of the Debye length
which is given in equation 20. This is equivalent to introducing a depend­
ence of a on the temperature in order to extend the range of appllcablUty.

The relative magnitude of the different components of the pressure
was investigated for 5 ev-particles in the plasma over a wide range of
densities. The Yukawa method was employed and equation 20 was used
for the distance of closest approach. The components of the pressure are
shown in Fig. 4 and the total pressure is given as the curve that 18 labeled
Yukawa in Fig. 8. The perfect gas pressure, PYle., Is positive and 18 a
straight line. The limiting Debye-HUckel pressure is negative and the
absolute value is greater than the perfect gas pressure for dense plasmas
where the accuracy is becoming questionable. Both the pressure from the
Mayer effect, P 1lfA, and the pressure from the degeneracy, P DSO' are posi­
tive. The magnitude of P MA depends on the value of a and the total press­
ure will be negative with a small value a. A small value of a hall the
effect of storing too much energy in the microfields. The slope of the PI/U
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curve depends on whether a. is a true constant or is a function of the tem­
perature through equation 20. The latter choice appears more realistic
and gives a lower pressure in dense plasmas. There does not appear to be
definitive experimental evidence on the proper choice in the range ot
density that is of interest to this project.

The distance of closest approach affects P)U so significantly that the
subject was investigated analytically by both the Yukawa and the Ecker
and KriSll methods. The analytical comparison consisted of calCUlating
the relation between the pressure and density for three distances ot closest
approach in a plasma with particles that are in equilibrium with an energy
of ~ ev; i.e. to calculate the 5 ev isotherm. The isotherms by the Yukawa
method were calculated for the distance that is given by equation 20, by
twice this distance and by ten times this distance. Duclos recommended
that latter value for the closest approach in order to obtain results that
are believed to exist in the plasma. The results ot these calculations are
presented in Fig.~. The isotherms by the Ecker and Kroll method were
calculated for the same three distances of closest approach and the results
are presented in Fig. 6. There is no practical dilfference in the predictions
of the Yukawa method and ot the Ecker and Kroll method at densities
that are less than 10·' g/cm' and there is only a minor difference in the
very high density range from 10-2 to 1. The minor differences between the
two methods of calculation do show a difference in the slope with which
the curves approach the highest density.

The effect of temperature on the pressure-density relations is indicated
by the calculation of the isotherms for particles in the plasma with an
energy of 2 and of 5 ev. The calculations were made by the three available
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methods: the perfect gas law approximation, the Yukawa method and
the Ecker and Kroll method. For the latter two calculations, the distance
of closest approach was assumed to be 10 tmes the distance that is given
by equation 20; Le. by the distance that is recommended by Duclos. The
isotherms for 2 ev that were calculated by the three methods are presented
in Fig. 7. The inserted curves in the upper right show the ionization va.
the density for the same three methods. The isotherms for 5 ev by the
same three methods are presented in Fig. 8. In comparing the curves in
these two figures, the most interesting difference is the rapid increase in
ionization with density for the 2 ev isotherms as compared with the 5 ev
electron volt group. The difference occurs since the ionization is prac­
tically complete for all densities in the 5 ev plasma while the ionization is
increasing rapidly with the pressure at high densities in the 2 ev plasma.
This effect is designated "pressure ionization" at an earlier position in this
paper.

In conclusion, the difference between the lx and the lOx curves In
Figs. 5 and 6 represents an approximation for the short range repulsive
forces which has not yet been calculated. There is not much reason tor
a choice between the Yukawa and the Ecker and Kroll results. Since the
latter method is applicable for all ions, the nearness of the Yukawa and
Ecker and Kroll results yields confidence for the application to other Ions.

ACKNOWLEDGEMENT

The authors wish to thank Dale D. Grosvenor, Oklahoma State Uni­
versity Computing Center for his assistance and for the Center's facUlties,
without which this report could not have been completed.

,-------_._------,--.......-------_._---_. --_.._----

1<Jl

10-1 1()'2 1()'3 IlJ"'l IO·~ 10'6

MASS DE~IlY (~/,,,,31

~ e- _ISOTH~RMS

'0' , ,Oil

MASS DENSITY (9'" I cm3 )

k d KriSll and the ideal gsa
Comparison of the Yukawa, the Ec er ~...... ioniZation curvea are
Isotherms for 2 ev particles. Corresponuu,&
shown in the upper right.



124 PROCK OF THE OKLA. ACAD. OF SCI. FOR 1964

~\,
'\\,
"'~

~~" "":: Y A

ECKER - ,-"
AND KROLL "

~"

lONZATIQItj - T ' 5 Iv

10"1 10.2 10'3 10"4 10-5 10'6

MASS DENSITY (91ft / em3 )

5 ev ISOTHERMS

• o' =10 X

MASS DENSITY

Fig. 8. Comparison of the Yukawa, the Ecker and Kroll, and the ideal
gas isotherms for 5 ev particles. Corresponding ionization curves
are shown in the upper right.

LITERATURE CITED

Debye, P. and E. HUckel. 1923. On the Theory of Electrolytes, I. Freez­
ing Point Depression and Related Phenomena. Z. Physik 24: 185-206.

Duclos, D. P. and A. B. Cambel. 1962. Equation of State of an Ionized
Gas. Progr. Intern. Research Thermodynamic and Transport Prop­
erties. Academic Press, New York.

Ecker, G and W. Weizel. 19t)6. Partition Function and Effective Ioniza­
tion Potential of an Atom in the Interior of a Plasma. Ann. Physik
114: 126-140.

Ecker, G. and W. KrOll. 1963. Lowering of the Ionization Energy for a
Plasma in Thermodynamic EqUilibrium. The Phys. Fluids 6: 62-69.

Gertenhaus, S. 1964. The Blements 01 Plasma Phy8ic8. Holt, Rinehart
and Winston, New York, Ch. IV.

Hulth~, L. 1942. Arkiv. Mat., Astron. Fysik. !3A: 1-12.

HUlth~n, L. and K. V. Laurikaien. 19t)1. Approximate Eigensolutions of
(a'~ / dx' ) + [a+b(e-· / Xl ~ = O. Rev. Mod. Phys. 13: 1-9.

Kirkwood, J. C. and J. C. Poirier. 1954. The Statistical Mechanical Basi':
of the Debye-Hftckel Theory of Strong Electrolytes. J. Phys. Chem.
68: 691-598-

Margenau, H. and M. Lewis. 19t)9. Structure of Spectral Lines fron!
Plasmas. Rev. Mod. Phys. 31: 696-616.



PHYSICAL SCIENCES 125

Mayer, J. E. 195(). The Theory of Ionic Solutions. J. Chern. Phys. 18:
1426-1436.

McDougall, J. and E. C Stoner. 1939. The Computation of Fermi-Dirac
Functions. Trans. Royal Soc. (London) 237: 67-10..

poirier, J. C. 1953. Thermodynamic Functions from Mayer's Theory of
Ionic Solutions. J. Chern. Phys. 21: 965-985.

Ronse, C. A. 1962. Ionization Equilibrium Equation of State II. Mix­
tures. Astrophys. J. 135: 599-615.

Sachs, R. and M. Goeppert-Mayer. 1938. Phys. Rev. 53: 991-993.


	p116
	p117
	p118
	p119
	p120
	p121
	p122
	p123
	p124
	p125a

