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INTRoDUCTION

A computer solution is presented for the impact of a thin aluminum
plate, moving at hypervelocity, on a stationary, sernt-infinite, aluminum
slab. The solution is obtained by the same procedure used in solving for
the impact of microparticles at hypervelocity on space vehicles. Hyper­
velocity is defined as a velocity in excess of the velocity of sound in both
of the impacting materials. The numerical values for the curves in this
report are tor an initial velocity of the thin plate ot 86 kilometers per
second, or 118,000 feet per second. The results were obtained in a non­
dimensional form; and consequently, solutions for other configurations may
be obtained from the data. This solution Ulustrates the velocity distribu­
tion at the start of the impact, the generation and the propagation of the
shock into the moving thin plate and into the Infln1tely thick slab, and the
amount of compression that is produced by the shock wave.

An estimate of the pressure from the Initial kinetic energy, %PV', fOl·
the thin plate indicates that the pressure from the impact is In the multi­
megabar range; i.e. from several million to several tens of millions of
atmospheres. At these pressures, Investigators assume that any material
flows as a perfect, non-viscous fluid 80 that the standard equations ot
hydrodynamic flow may be employed. (Walsh et al., 19rs8; Bjork, 19rs9;
Sodek et al., 1963).

HYDRODYNAMIC EQUATIONS

The problem is solved in Eulerian co-ordinates which gtve the values
of the variables at mesh points in ordinary laboratory, or Cartesian co­
ordinates. A total of five relations are required to obtaJn a solution for
the propagation to a shock front and these equations are presented in
Fig. 1. The first three equations express the conservation of mass, momen­
tum, and energy, respectively. A fourth relation is not given specifically,
but it requires that the entropy must increase across the shock front. This
condition is satisfIed by the introduction of a pseUdo-viscosity term, q.
which appears in the first three equations and is defined in equation rs.
The introduction of this term was suggested by John von Neumann (von
Neumann et al" 1950) and made possible a relatively simple solution for
the propagation of the shock with a computer. The partIal differential in
equation rs is the gradient of the velocity. By multiplying the true velocity
gradient by the absolute value of the velocity gradient, the term q always
has the sign which opposes either a positive, or a negative, change in the
pressure.

The fifth relation, which is given sa equation 4, is an equation of state
Which thermodynamic considerations require to employ three variables;
these are the pressure, the density, and the energy density. The equation
of state must be valid over the range of these variables in the problem.
A suitable relation for aluminum 18 the Mle-Grunelaen equation of state.
It is deduced from experimental data and theeretical conslderattoJl8. The
method of obtaiDing this equation wu deacrtbed in previous papers In t~

JSupporUd hI' National AeJ'onautle. aDd Space AdJIlJAbtratlOD CoDtraet No. MASr-"
acbainiatered throuah Jleaeareh FoaDdatioa. Olduo.. State Ual.....ltJ'.
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Con.ervation of Momentum:

£.1f.!l + af (ptg) + Pvvl • 0at ax
Conservation bf Energy:

2JUl + a{(p+g)V + pVE1
at ~)(

Hie-Cruneilen Equation of State:

Artificial Di •• ipation:

dens i ty x, distancep •

V, material ve locity t. time

E, specific energy 0', Gruneisen Ratio

p, pre"ure

Fl&,. 1. EquaUona of Hydrodynamic Flow

(1)

(2)

(3)

(4)

(5)

,eriea (Lake, 1912; Sodek, 1968). The MJe-Grune1seD equation gives thepreaure u a tuncton of the denalty and energy at any point in terms ot,. and ... on the HUi'Onlot curve. The value of alpAa' Ia a known functionof the denalty. The Hugoniot curve 11 the pressUl'e-denalty locus of theftDa1 atatea of ahock compreulon. After compreaalon with an increase inentropy, the materlal expanda alone an adiabatic curve tor the non-viscousmaterial.

'!'be above equaUona are converted to a non-dlmenalonal form to con­IeJ'Ve computer storace and for convenience in 8C&Ung numerical magnJ­tudeL From the dlmeulonleu soluUon, problema with different velocitiesof lmp&Ct aDd dltterent dlmeulcma are read11y obtained In the presentc:ue. the thlc:kneu of the thtn plate determines the time 8C&le for theealcuJation. To aYOld a apec1tlc cue, ruulta wID be given with arbitraryunlb of dl8tance aDd time.

TID NmnaIc.u. 1O:rBoo
The putlal dltferentlal equatiODl are converted to ftnlte dltferenceequaUona tor 8OluUon on a computer by methods wblch are 8bnUar to tboee
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that were reported by Longley (1960). The method of transformation 18
illustrated in Fig. 2. The involved region in space 18 covered with an
equally spaced mesh which creates a number of eell8. The thin plate
movea parallel to the x-axis of the coordinate system. For every soluUon
corresponding to. an instant of time, each mesh has a numerical value of
the density, velocity, energy, pressure, and viaeoslty which represents the
mean value of the quantity in that cell. These values vary with time.
The system of partial differential equations 18 replaced by a set of ordi­
nary, algebraic, simultaneous, difference equations. Th18 is accomplished
by replacing the differentials with small, but finite increments. The pro-
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Time: N. 0, 1,2, ... " n,n+l ..... nM-I, nM.

(0) Finite Difference Net.
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(eV ) j+V'l - (p V) ;-LIl
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Pj - J)

Equation (I) is,

prj = pt+ ~~ {<pV)r-VZ-"V~-~/2}

(b) Example of Diff.renced Equation.

FiQure 2. Illustration of FinUe Difference Method.
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c.duN COl'l"aPOnda to the UIIe ot central d1tterence.s in8tead ot space deri­
vati... and forward differenca in place of time derivatives.

Aa an example, known values tor all parameters in cells at the time,
"6f, perm1t tile calculation of the density in any cell, j, for the time,
(,.+J)6f from Equation 1. Thi8 18 Ulustrated in Fig. 2. New values for
all other parameters may be obtained with suitable difference equations
from the origtDaJ difference equations. The order is to calculate the dens­
ity, veJoelty, eJ18I'1'Y, pressure, and v1sc08ity for the new time. This pro­
cedure 18 npeated for as many times as are desired to carry the solutions
for all dependent variables forward in time for each cell in the net. This
cyclic prOC!edure was programmed and run on an mM 650 computer.

REsuLTS

From the preceding description of the method for obtaining a solution.
It Is ObvtOU8 that the solution must start from an instant when the values
of all parameters are known. The initial conditions at the time zero are
Uluetrated In F1g. 3. Initially, the thin plate is fifteen units in length and
placed immediately adjacent to the semi-infinite target. Both projectile
and target are aluminum. The 1n1t1al velocity of every point in the thin
plate •• the earne, 38 kUometers per second. The velocity for the cells of
the target 18 zero. At the time, t = 0, the density is everywhere that of
nonnal aluminum, 2.7~ g per cm' ; the potential energy of compression. the
preuun. and the pseudo-viscosity are all equal to zero.

The spatial velocity dtstJibuUon, very soon aner the impact starts,
is shown by the soUd line in F1g. 3. The presence of two shock fronts
is apparent, one to the left into the thin plate and one to the right into the
alab. Although the velocity of the shock front into the thin plate is oppo­
lite to the motion of the incident plate, the Initial plate velocity is so great
that Ws shock front i8 actually moving 810wly to the right in the initial
direction ot the thin plate.
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Typical pressure profiles for different inatants of Ume during the for­
mation and propagation of the two shock fronts are presented in Figs. 4.
5, 6, 7 and 8. Each profile Is labeled with N, the number of iterations
which have been completed. Pressure-dlst&nce graphs are shown at inter­
vals of approximately thirty iterations. The back edge of the thin plate
is marked in each curve by a dashed nne.

Soon after the impact starts, a single pressure peak sw·ts at the inter­
face between the thin plate and the slab. This ia indicated in Fig. 4. The
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JI'OWth and expaulon of the preuure peak is shown in Fig. 5. The peak
bu I'J'OWD but It .. now predominantly in the face of the target slab.

A. Urne progreuea. two shock fronts of approximately equal strength
develop u .bown in Fig. 6. Although one front faces into the thin plate.
It .. really being carried to the rigbt by the Initial velocity of the thin
plate. The other .hock front I. moving into the target at a rapid rate.
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Fiour. 5. Prelsur.- Distance Profile. at Different Times.
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A sharp decrease in pressure develops between the left and right
shocks very early in the impact and 18 almost certainly real. It means
that two shocks exist and they propagate substantlally &8 separate shooks
from soon after the initiation of the impact. 'nle rarefaction wave from
the back of the thin plate will effectively eliminate the shock into the thin
plate and leave a single shock into the slab. A discussion of thla phenom­
enon has been presented in a report (Todd, 1962).

The sharpness and exceptional height of the initial peak in these and
other curves of the shock tront is not real, but is a characteristic of the
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FiGure 6. Pressure-Distance Profile. at Diff.rent Time••
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computer aDd the ... of the space interval. In the fiDite dlfterence equa­
do_ the q-term tends to damp out thI.8 Bharp peak, but in turn causes
& dip immediately preceding the peak preuure.

The preuure cB.trlbuUon after 121 iterations is shown in the lower
part of riC.~. The Impact arts with the contact of the thin plate and
the .lab at 1~. At the time for th1a curve, the back of the thin plate has
penetrated completely put the Initial position of the semi-infinite slab to
about 11.G. The ahock front into the thin plate has not yet reached the
back face of thia plate.
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Profiles after 151 and 180 iterations are shown in Fig. 6. The thin
plate continues to compress the material of the target and of itself. The
penetration of the shock wave into the target material is now the important
feature of the results. In the upper portion of the figure, the left traveling
shock front has just reached the back face at the thin plate and will be
reflected as a rarefaction wave. The development at this expansion with
time is indicated in the lower part of the lllustration. The back edge of
the thin plate has practically come to a complete stop at a position of 20
units while the remaining shock wave now progresses into the aluminum
with a peak pressure of about 20 megabars.

As time progresses, the shock from the impact becomes a single shock
front propagating into the slab, as indicated in Fig. 7. The peak value of
the shock pressure is probably false and is a result of employing large
space intervals in the difference equations. The back edge of the plate
remains stationary as the shock propagates into the slab. The shock front
has reached a position of about 45 units after 244 iterations.

The last calculated profiles, in Fig. 8, indicate a decay in the strength
of the shock front. Since the shock propagates into a non-viscous fluid,
the decay results from two factors, the damping by the pseudo-viscosity
and the spt'eading of the shock energy. The actual shock must propagate
indefinitely into the slab until the increase in entropy at the shock front
consumes an of the energy in the shock and this is a very slow process.

In summary, calculations were made and are presented which show
the development of a traveling shock wave in a semi-infinite solid which
is struck by a high-velocity thin plate. The hydrodynamic model also
describes the existence of a second shock front moving from the point of
contact into the thin plate and its reflection from the back edge at the
thin plate as a decompression wave which travels into the semi-infinite
slab.

55

-~ 20
0
.4
0

I~•!
10•..

~

tit• ~.,
~

30 35 40 4~ 50
Distance (Arbitrary Units)

.. 20..
0
.4

150
01•! 10
~
~
tit 5•!
~

Fi ure 8.



1ft PROC. OF THE OKLA. ACAD. OF SCI. FOR 1963

I..I'l'EaATUIIE CITED

Bjork, R. L. 19D9. ICttect. of a micrometeoroid impact on steel and
aluminum In ~e. Proc. Xth Internat. Astronautical Congress (Lon­
don). Sprtnpr-Verlag, Vienna.

lAke, H. a, and F. C. Todd. 1962. Digital computer solution for the
propoaaUon of a spherical shock wave in aluminum. Proc. Okla. Acad.
Set. 42: 111·186.

LoDlley, H. J. 1980 (April). Loa Alamos Scientific Laboratory, LAMS­
2319.

8odek, B. A., and Jr. C. Todd. 1963. Penetration of an Initially radial
Mock wave through an aluminum-glass interface. Proc. Okla. Acad.
SCi. 48: 118-82.

Todd, F. C. B. A. Sodek, L. Wang, and J. G. Ables. 1962 (July-Sept.).
Quart. Progr. Rept. No.8, Contract NASr-7. Oklahoma State Univer­
lity Ruearch Foundation.

von Neumann, J., and R. D. Richtmyer. 1950. A method tor the numerical
calculation ot hydrodynamic shocks. J. Appl. Phys. 21: 282-237.

Walsh, J. M., R. G. McQueen, and N. H. Rice. 195ft Compression of
80Uda by strong shock waves. SaUd State Physics, Advances in Re­
..arch and Applications. 6: 1-63. Academic Press. New York.


	p117
	p118
	p119
	p120
	p121
	p122
	p123
	p124
	p125
	p126

