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INTRODUCTION

A computer solution is presented for the impact of a thin aluminum
plate, moving at hypervelocity, on a stationary, semi-infinite, aluminum
slab. The solution is obtained by the same procedure used in solving for
the impact of microparticles at hypervelocity on space vehicles. Hyper-
velocity is defined as a velocity in excess of the velocity of sound in both
of the impacting materials. The numerical values for the curves in this
report are for an initial velocity of the thin plate of 36 kilometers per
second, or 118,000 feet per second. The results were obtained in a non-
dimensional form; and consequently, solutions for other configurations may
be obtained from the data. This solution illustrates the velocity distribu-
tion at the start of the impact, the generation and the propagation of the
shock into the moving thin plate and into the infinitely thick slab, and the
amount of compression that is produced by the shock wave.

An estimate of the pressure from the Initial kinetic energy, 4Pv', for
the thin plate indicates that the pressure from the impact is in the multi-
megabar range; i.e. from several million to several tens of millions of
atmospheres. At these pressures, investigators assume that any material
flows as a perfect, non-viscous fluid so that the standard equations of
hydrodynamic flow may be employed. (Walsh et al., 1958; Bjork, 1958;
Sodek et al., 1963).

HYDRODYNAMIC EQUATIONS

The problem is solved in Eulerian co-ordinates which give the values
of the variables at mesh points in ordinary laboratory, or Carteslan co-
ordinates. A total of five relations are required to obtain a solution for
the propagation to a shock front and these equations are presented in
Fig. 1. The first three equations express the conservation of mass, momen-
tum, and energy, respectively. A fourth relation is not given specifically,
but it requires that the entropy must increase across the shock front. This
condition is satisfied by the introduction of a pseudo-viscosity term, gq.
which appears in the first three equations and is defined in equation 5.
The introduction of this term was suggested by John von Neumann (von
Neumann et al., 1950) and made possible a relatively simple solution for
the propagation of the shock with a computer. The partial differential in
equation 5 is the gradient of the velocity. By multiplying the true velocity
gradient by the absolute value of the velocity gradient, the term q always
has the sign which opposes either a positive, or a negative, change in the
pressure.

The fifth relation, which is given as equation 4, is an equation of state
which thermodynamic considerations require to employ three variabies;
these are the pressure, the density, and the energy density. The equation
of state must be valid over the range of these variables in the problem.
A suitable relation for aluminum is the Mie-Gruneisen equation of state.
It is deduced from experimental data and theeretical considerations. The
method of obtaining this equation was described in previous papers in this
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Conservation of Mass:
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Conservation of Momentum:
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Mie-Gruneisen Equation of State:
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Artificial Dissipation:
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p, density x, distance
V, materfal velocity t, time
E, specific energy a, Gruneisen Ratio

P, pressure

Fig. 1. Equations of Hydrodynamic Flow

series (Lake, 1962; Sodek, 1963). The Mie-Gruneisen equation gives the
preasure as a functon of the density and energy at any point in terms of
Pn and B, on the Hugoniot curve. The value of alpha’ is a known function
of the density. The Hugoniot curve is the pressure-density locus of the
final states of shock compression. After compression with an increase in
Qnt:'opy. the material expands along an adiabatic curve for the non-viscous
material.

The above equations are converted to a non-dimensional form to con-
serve computer storage and for convenience in scaling numerical magni-
tudea. From the dimensionlesa solution, problems with different velocities
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[ on. a & specific case, resul ven with arbitrary
units of distance and time. 4

THE NUMERICAL METHOD

The partial differential equations are converted to finite difference
equations for solution on a computer by methods which are similar to those
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that were reported by Longley (1960). The method of transformation is
fllustrated in Fig. 2. The involved region in space is covered with an
equally spaced mesh which creates a number of cells, The thin plate
moves parallel to the x-axis of the coordinate system. For every solution
corresponding to an instant of time, each mesh has a numerical value of
the density, velocity, energy, pressure, and viscosity which represents the
mean value of the quantity in that cell. These values vary with time.
The system of partial differential equations is replaced by a set of ordi-
nary, algebraic, simultaneous, difference equations. This is accomplished
by replacing the differentials with small, but finite increments. The pro-
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(a) Finite Difference Net.
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(b) Exaomple of Differenced Equation.

| Figure 2. lllustration of Finite Difference Method.
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cedure corresponds to the use of central differences instead of space deri-
vatives and forward differences in place of time derivatives.

As an example, known values for all parameters in cells at the time,
nAt, permit the calculation of the density in any cell, j, for the time,
(n+1)At from Equation 1. This is illustrated in Fig. 2. New values for
all other parameters may be obtained with suitable difference equations
from the original difference equations. The order is to calculate the dens-
ity, velocity, energy, pressure, and viscosity for the new time. This pro-
cedure is repeated for as many times as are desired to carry the solutions
for all dependent variables forward in time for each cell in the net. This
cyclic procedure was programmed and run on an IBM 650 computer.

RESULTS

From the preceding description of the method for obtaining a solution,
it is obvious that the solution must start from an instant when the values
of all parameters are known. The initial conditions at the time zero are
illustrated in Fig. 3. Initially, the thin plate is fifteen units in length and
placed immediately adjacent to the semi-infinite target. Both projectile
and target are aluminum. The initial velocity of every point in the thin
plate is the same, 88 kilometers per second. The velocity for the cells of
the target is zero. At the time, ¢ — O, the density is everywhere that of
normal aluminum, 2.785 g per cm®; the potential energy of compression, the
pressure, and the pseudo-viscosity are all equal to zero.

The spatial velocity distribution, very soon after the impact starts,
is shown by the solid line in Fig. 3. The presence of two shock fronts
is apparent, one to the left into the thin plate and one to the right into the
slab. Although the velocity of the shock front into the thin plate is oppo-
site to the motion of the incident plate, the initial plate velocity is so great
that this shock front is actually moving slowly to the right in the initial
direction of the thin plate.
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Typical pressure profiles for different instants of time during the for-
mation and propagation of the two shock fronts are presented in Figs. 4,
5, 6, 7 and 8. [Each profile is labeled with N, the number of iterations
which have been completed. Pressure-distance graphs are shown at inter-
vals of approximately thirty iterations. The back edge of the thin plate
is marked in each curve by a dashed line.

Soon after the impact atarts, a single pressure peak starts at the inter-
face between the thin plate and the slab. This is indicated in Fig. 4. The

Number of iterations, N=29
%120
[}
F-]
S 115
[ ]
=
Stio
5
34,5 Back Face
4 lof Thin Plate
a ]
J + { ’
5 10 15 20
Distance (Arbitrary Units)
N=63
‘€120
o
Fe]
o115
@
2
O'LIO
2
'évﬁ :
a I
4 b} { -+
5 10 I5 20
Distance (Arbitrary Units)
Iﬁgure 4. Pressure-Distance Profiles ot Different Times.




122 PROC. OF THE OKLA. ACAD. OF SCI. FOR 1963

growth and expansion of the pressure peak is shown in Fig. 5. The peak
has grown but it is now predominantly in the face of the target slab.

As time progresses, two shock fronts of approximately equal strength
develop as shown in Fig. 5. Although one front faces into the thin plate,
it is really being carried to the right by the initial velocity of the thin
plate. The other shock front is moving into the target at a rapid rate.
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A sharp decrease in pressure develops between the left and right
shocks very early in the impact and is almost certainly real. It means
that two shocks exist and they propagate substantially as separate shocks
from soon after the initiation of the impact. The rarefaction wave from
the back of the thin plate will effectively eliminate the shock into the thin
plate and leave a single shock into the slab. A discussion of this phenom-
enon has been presented in a report (Todd, 1962).

The sharpness and exceptional height of the initial peak in these and
other curves of the shock front is not real, but is a characteristic of the
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computer and the size of the space interval, In the finite difference equa-
tions, the g-term tends to damp out this sharp peak, but in turn causes
a dip immediately preceding the peak pressure.

The p?rumre distribution after 121 iterations is shown in the lower
part of Fig. 5. The impact starts with the contact of the thin plate and
the slab at 15. At the time for this curve, the back of the thin plate has
penetrated completely past the initial position of the semi-infinite slab to
about 16.5. The shock front into the thin plate has not yet reached the
back face of this plate.
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Profiles after 151 and 180 iterations are shown in Fig. 6. The thin
plate continues to compress the material of the target and of itself. The
penetration of the shock wave into the target material is now the important
feature of the results. In the upper portion of the tigure, the left traveling
shock front has just reached the back face of the thin plate and will be
reflected as a rarefaction wave. The development of this expansion with
time is indicated in the lower part of the illustration. The back edge of
the thin plate has practically come to a complete stop at a position of 20
units while the remaining shock wave now progresses into the aluminum
with a peak pressure of about 20 megabars.

As time progresses, the shock from the impact becomes a single shock
front propagating into the slab, as indicated in Fig. 7. The peak value of
the shock pressure is probably false and is a result of employing large
space intervals in the difference equations. The back edge of the plate
remains stationary as the shock propagates into the slab. The shock front
has reached a position of about 45 units after 244 iterations.

The last calculated profiles, in Fig. 8, indicate a decay in the strength
of the shock front. Since the shock propagates into a non-viscous fluid,
the decay results from two factors, the damping by the pseudo-viscosity
and the spreading of the shock energy. The actual shock must propagate
indefinitely into the slab until the increase in entropy at the shock front
consumes all of the energy in the shock and this is a very slow process.

In summary, calculations were made and are presented which show
the development of a traveling shock wave in a semi-infinite solid which
is struck by a high-velocity thin plate. The hydrodynamic model also
describes the existence of a second shock front moving from the point of
contact into the thin plate and its reflection from the back edge of the
thin plate as a decompression wave which travels into the semi-infinite
slab.
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