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From the hypervelocity impact of microparticles on a massive target,
the high concentration of energy in the material at the impact region
produces a dense plasma. As the energy content and the per cent of
ionization of a dense plasma increases, the interaction between the electric
microfields from the ions and electrons results in a decrease in the ioniza
tJon potential of the atoms and ions iIi the plasma. The effective ioniza
tion potential, I,·, for each ionic species, i, is given in Fig. 1 by equation 1,
where 61, is the reduction in the ionization potential for the i'~ species
of the atom and I, is the ionization potential of the isolated ionIc specIes.
The reduction in the Ionization potentlal was found by experiment and
was reported (Elenbaas, 1951) and it has been recognized in several theo
retical studies (Ecker et al., 1956; Margenau et al., 1959). The mlcro
fields result in the disappearance of the upper energy levels ot the atoma
and ions as they merge into the continuum.

The purpose of this study is to ascertain the most accurate value for
the density of ionIzation from an application of the corrected Saba equa
tion, Equation 2 in Fig. 1, to dense plasmas. Solutions are obtained wIth
a computer by a cyclic calculation of the convergence on the electron
density. The results in this paper indicate that the amount of ionization
for dense plasmas at low temperatures Is substantially higher than preVi
ously predicted. As a consequence, the effective temperature is much
lower than was expected from earUer studies.

Low DENSITY PLASMAS

There are essentially two methods tor determining the reduction in
ionization potential, 6I,. One becomes a direct calculation of 61u 8uch
as on the basis of thermodynamics (Ecker et al., 1956), or on the broad
ening of bound energy levels (Margenau et al., 1959). The second is a
calculation of the maximum quantum number, g ,", which is used to obtain
61 j and is illustrated by the Rouse paper which is considered below. The
81mplest way to estimate 61, from the maximum quantum number is to
assume that no bound state may have a radius greater than the Debye
radius.

In one form or another, the preceding calculations usually employ the
Debye radius. This quantity is an effective radius for the action ot the
electric field from an ion. Beyond this radius, the electric field from an
ion is assumed to decrease abruptly from the Coulomb value to zero. Th1a
assumption was postulated during early work on electrolytes (Debye et a.l.,
1923; Fowler et al., 1939). The density range tor an accurate application
of the Debye equation was established by Kirkwood and Poirier (Kirk
wood et al., 19M) and will be compared with the results which wlll be
given later in this paper. According to Equation " Fig. 1, the numerical
value of the Debye radius, D, varies as the square root of the temperature,
or the square root of the effective kinetic energy ot the atoms and iou,
and inversely as the square root of the maximum Ionic chargM in the
pluma. The term, ZI1 in this equation is the dimensionle8s charge para
meter expressed in number ot electron charges.
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Solutions of the 8aha equation on the basis of the g,. method were
reported in a series of papers for a plasma in ionization equtUbrium.
(·Rouse, 1961, 1962&, 1962b, 1962c). This series of papers is chosen for
special consideration because it is claimed that they are applicable to
liquid metals and constitute the only group which has been found in the
pUbllshed literature. In the first two papers, values of the ionization
were obtained by use of the uncorrected Baha equation, which is equivalent
to using the perfect gas law for the equation of state. In the third paper,
a correction for 61. was introduced but this method was modified for the
last paper. In the final paper, which was to apply to liquid metals, 61.
was obtained from computed values of the maximum quantum number,
g/, on the basis that no bound state may have a radius greater than the
Debye radius. Kelley's relation, Equation 5 in Fig. I, was used for g,.,
in which (I. is the radius of the first Bohr orbit, D is the Debye radius and
Z. is the dimensionless core-charge parameter. A Balmer type of equa
tion was assumed for determining the maximum effective ionization poten
tial. For this approximation, 61, is given in Fig. 1 by Equation 6. This
is essentially a Debye correction of the ionization potential and it would
be valid only in regions of high temperature and low density for which the
Debye-HUckel theory is valid.

The preceding discussion on the Rouse papers Is concerned with lower
ing of the ionization potential on the assumption that the energy levels
of the bound states are not affected by the microflelds. In addition to the
reduction of the ionization potential, the microfields change the positions
of the bound levels. This may be introduced into the Saba equation by
means of the electronic partition function, Q" which is gIven in Fig. 1 by
Equation 3. The partition function is expressed as a summation over
bound states for which tv •• and E,. are the degeneracy and the energy.
respectively, of the g'. level. Corresponding to the lowering of the ioniza
tion potential, the atom has a highest bound excitation state with a prin
cipal quantum number 9 ,.. The summation, in Equation 3, is limited by
this maximum quantum number. Since the Saha equation is affected
much more by the ionization potential than by this secondary considera
tion, the effect of the modified partition functions wu neglected.

DENSE PLASMAS

The major difficulty in applying the Debye-HUckel theory is its limited
region of validity. In addition to this, Duclos and C&mbel (1962) have
shown that in the density region for which the theory ls valid, the resulting
corrections are very small and may, in many cases, be neglected. It may
be shown that the upper density limit for a valid application of the
Debye-HUckel theory is given in Fig. 1 by Equation 7 (Ecker and KrlSll,
1963). In this equation, the critical density, ncr, is the maximum total
particle density for which the Debye theory la valid. It la dependent upon
the cube of the absolute temperature and inversely upon the slxth power
of the maximum ionic charge in the plasma.

RecenUy, equations were reported that may be used for the dlrect
calculation of the reduction of the ionization potential for plasma deD8itlu
above and below the critical density; see Fig. 2 and Equation 7 (Ecker
and KriSll, 1963). The upper Umlt of validity of these equations fa reported
by the authors to be the seml-classlcal Umlt which la shown in Fig. 2 by
Equation 8. For thia limit, the electron density is the llmltlng factor. A
eompa.rison of the regions of vaUdlty, in a 8lDgly ionized pluma, for the
Debye theory and for the Ecker and KrlSll equations la shown in Fig. 3.
The lines are the upper llmit of vaHdity. The region of interat for deue
plaamas lies above the Debye ~mlt and probably below the Mml-e....lcal
Umtt.
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.vOl' deDM plallnU, the reduction of the ionlZation potentJal is found
with tbe Ecker and Kr6U equati0118. wblch are Equations 9 through 13 in
...... 2. In UIeIe equaUoJUJ. D .. the Debye radius. 6, is the core charge in
....u.. epeUoK' la the dielectric constant (taken .. unity to calculate the
CU1'\'e8) and T la the temperature in degrees Kelvin. The summation in
EquaUon 11 la over the dt8trlbuUon of lone and electroJUJ at the critical
deMity. The ave,...e dlatance between particl.. 18 r.. Tb.ia dependence
baa & marked effect on the calculated degree of ionization at blgh densities
and loW pluma temperatures. For particle deJUJities. ",", which are less
than tim the ionization potenUal la Jiven on Fig. 2 by Equation 9. When
..,. la ~ter than tI", Equation 10 must be used. The general character
lItlCl of the new .olution .. Illustrated by the Ecker and KliSll calculation
01 /iI, lor a hydrogen pluma at various temperatures and electron densi
Uu wblch .... IIhown In Fig.•.

REsULTS

Th. d.gree ot ionization at equUtbrium tor a dense aluminum plasma
wu calculated for .evera) temperatures and densities by use ot the uncor
rected iontzation potentIal and by two other methods which determine a
value tOT 61,. The first calculation used the uncorrected Saba equation
and gave the lowe.t curve on both Figs. 5 and 6. A second computation
used RouH'. correction. F.quations 5 and 6. for the reduction ot the ioniza-
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Fig. 3. Regions in which Debye theory and Ecker and Krijll's equations
are valid in a singly ionized plasma.

tion potential and thia calculation gave the curve which 18 just above the
lowest In both Figs. 5 and 6. The third calculation used Equations 9
through 13, the Ecker and Kr6U method, to determine 61,. A much higher
degree of Ionization 18 found at high densities according to the curves In
Fig. 5 and at low temperatures according to the curves in Fig. 6. As the
energy per particle, or the effective temperature, is increased and as the
density of the plasma 18 reduced, the results from the three methods con
verge to an identical degree of ionization. These results are to be expected.
All corrections reduce to zero as the temperature increases, or the density
decreases. When the corrections become zero, the uncorrected perfect gu
law fa an accurate equation of state.
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FI,.~. Lowertnc of the IoniaUOD potenUal (AI) as a fuDcUon ot the
ebarce carrier dena1ty fl and temperature T. tlcr Is the crlUcal
deDalty; fl. gtvea the llmlt for the claulcal descrlpUon of the
eleetroNJ (Ecker and KrGU. 1968).
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Fig. 5. Comparison ot ionization electron density calculated for HVeral

densities ot an aluminum plasma. The three curves are solutions
ot the three methods tor determining ionization. Rho 18 the soUd
density of aluminum.
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Comparlacm of tile calc:ulated electron deu1U. in an alumtnum
pJuma with a heavy partlcle deD8lty of 6.02 x lOU/ern'. The three
curves repreaent 8OluUona obtaJDed WIlDa the tndIcated metbod to
correct the fcm'ption poteDtIa1.
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