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From the hypervelocity impact of microparticles on a massive target,
the high concentration of energy in the material at the impact region
produces a dense plasma. As the energy content and the per cent of
ionization of a dense plasma increases, the interaction between the electric
microfields from the ions and electrons results in a decrease in the ioniza-
tion potential of the atoms and ions in the plasma. The effective ioniza-
tion potential, I,*, for each ionic species, i, is given in Fig. 1 by equation 1,
where AI, is the reduction in the ionization potential for the {** species
of the atom and I, is the ionization potential of the isolated jonic species.
The reduction in the jonization potentjal was found by experiment and
was reported (Elenbaas, 1951) and it has been recognized in several theo-
retical studies (Ecker et al., 1958; Margenau et al., 1959). The micro-
fields result in the disappearance of the upper energy levels of the atoms
and ions as they merge into the continuum.

The purpose of this study is to ascertain the most accurate value for
the density of ionization from an application of the corrected Saha equa-
tion, Equation 2 in Fig. 1, to dense plasmas. Solutions are obtained with
a computer by a cyclic calculation of the convergence on the electron
density. The results in this paper indicate that the amount of ionization
for dense plasmas at low temperatures is substantially higher than previ-
ously predicted. As a consequence, the effective temperature is much
lower than was expected from earlier studies.

Low DENSITY PLASMAS

There are essentially two methods for determining the reduction in
ionization potential, AI,, One becomes a direct calculation of AI,, such
a8 on the basis of thermodynamics (Ecker et al.,, 1958), or on the broad-
ening of bound energy levels (Margenau et al., 1959). The second is a
calculation of the maximum quantum number, g,°, which is used to obtain
AI, and is illustrated by the Rouse paper which is considered below. The
simplest way to estimate A, from the maximum quantum number is to
assume that no bound state may have a radius greater than the Debye
radius.

In one form or another, the preceding calculations usually employ the
Debye radius. This quantity is an effective radius for the action of the
electric field from an ion. Beyond this radius, the electric field from an
ion is assumed to decrease abruptly from the Coulomb value to zero. This
assumption was postulated during early work on electrolytes (Debye et al.,
1923; Fowler et al., 1939). The density range for an accurate application
of the Debye equation was established by Kirkwood and Poirler (Kirk-
wood et al., 1954) and will be compared with the results which will be
given later in this paper. According to Equation 4, Fig. 1, the numerical
value of the Debye radius, D, varies as the square root of the temperature,
or the square root of the effective kinetic energy of the atoms and ions,
and inversely as the square root of the maximum jonic charges in the
plasma. The term, Z,, in this equation is the dimensionless charge para-
meter expressed in number of electron charges.
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Solutions of the Saha equation on the basis of the g,° method were
reported in a series of papers for a plasma in ionization equilibrium.
(Rouse, 1961, 1962a, 1962b, 1962c). This series of papers is chosen for
special consideration because it is claimed that they are applicable to
liquid metals and constitute the only group which has been found in the
published literature. In the first two papers, values of the jonization
were obtained by use of the uncorrected Saha equation, which is equivalent
to using the perfect gas law for the equation of state. In the third paper,
a correction for A, was introduced but this method was modified for the
last paper. In the final paper, which was to apply to liquid metals, A,
was obtained from computed values of the maximum quantum number,
g, on the basis that no bound state may have a radius greater than the
Debye radius. Kelley’'s relation, Equation § in Fig. 1, was used for g,
in which a, is the radius of the first Bohr orbit, D is the Debye radius and
Z, is the dimensionless core-charge parameter. A Balmer type of equa-
tion was assumed for determining the maximum effective fonization poten-
tial. For this approximation, AI, is given in Fig. 1 by Equation 6. This
is essentially a Debye correction of the ionization potential and it would
be valid only in regions of high temperature and low density for which the
Debye-Hiickel theory is valid.

The preceding discussion on the Rouse papers is concerned with lower-
ing of the ionization potential on the assumption that the energy levels
of the bound states are not affected by the microfields. In addition to the
reduction of the ionization potential, the microfields change the positions
of the bound levels. This may be introduced into the Saha equation by
means of the electronic partition function, @,, which is given in Fig. 1 by
Equation 3. The partition function is expressed as a summation over
bound states for which w,, and E,, are the degeneracy and the energy,
respectively, of the g* level. Corresponding to the lowering of the ioniza-
tion potential, the atom has a highest bound excitation state with a prin-
cipal quantum number g, The summation, in Equation 3, is limited by
this maximum quantum number. Since the Saha equation is affected
much more by the ionization potential than by this secondary considera-
tion, the effect of the modified partition functions was neglected.

DENSE PLASMAS

The major difficulty in applying the Debye-Hiickel theory is its limited
region of validity. In addition to this, Duclos and Cambel (1962) have
shown that in the density region for which the theory is valid, the resulting
corrections are very small and may, in many cases, be neglected. It may
be shown that the upper density limit for a valid application of the
Debye-Hlickel theory is given in Fig. 1 by Equation 7 (Ecker and Krdll,
1963). In this equation, the critical density, n., 18 the maximum total
particle density for which the Debye theory is valid. It is dependent upon
the cube of the absolute temperature and inversely upon the sixth power
of the maximum ionic charge in the plasma.

Recently, equations were reported that may be used for the direct
calculation of the reduction of the ionization potential for plasma densities
above and below the critical density; see Fig. 2 and Equation 7 (Ecker
and Kr5ll, 1968). The upper limit of validity of these equations is reported
by the authors to be the semi-classical limit which is shown in Fig. 2 by
Equation 8. For this limit, the electron density is the limiting factor. A
comparison of the regions of validity, in a singly ionized plasma, for the
Debye theory and for the Ecker and Krdll equations is shown in Fig. 8.
The lines are the upper limit of validity. The region of interest for dense
gl:umas lies above the Debye limit and probably below the semi-classical

t.



98 PROC. OF THE OKLA. ACAD. OF SCI. FOR 1963

For dense plasmas, the reduction of the jonization potential is found
with the Ecker and Krll equations, which are Equations 9 through 13 in
Fig. 2. In these equations, D is the Debye radius, ¢, I8 the core charge in
e.s.u., epsilon’ is the dielectric constant (taken as unity to calculate the
curves) and 7 is the temperature in degrees Kelvin. The summation in
Equation 11 is over the distribution of lons and electrons at the critical
density. The average distance between particles is r,. This dependence
has & marked effect on the calculated degree of ionization at high densities
and Jow plasma temperatures. For particle densities, n,, which are less
than n,,, the jonization potential is given on Fig. 2 by Equation 8. When
ny i greater than n,,, Equation 10 must be used. The general character-
istics of the new solution is illustrated by the Ecker and Krill calculation
of Al, for a hydrogen plasma at various temperatures and electron densi-
ties which are shown in Fig. 4.

RESULTS

The degree of ionization at equilibrium for a dense aluminum plasma
was calculated for several temperatures and densities by use of the uncor-
rected ionization potential and by two other methods which determine a
value for Al,. The first calculation used the uncorrected Saha equation
and gave the lowest curve on both Figs. 5 and 6. A second computation
used Rouse’s correction, Fiquations 5 and 6, for the reduction of the ioniza-
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3Greek letters used in the figures are spelled out in the text.
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Fig. 3. Regions in which Debye theory and Ecker and Kréll's equations
are valid in a singly ionized plasma.

tion potential and this calculation gave the curve which is just above the
lowest in both Figs. 5 and 6. The third calculation used Equations 9
through 13, the Ecker and Krdll method, to determine Al,. A much higher
degree of ionization is found at high densities according to the curves in
Fig. 5 and at low temperatures according to the curves in Fig. 6. As the
energy per particle, or the effective temperature, {8 increased and as the
density of the plasma is reduced, the results from the three methods con-
verge to an identical degree of ionization. These results are to be expected.
All corrections reduce to zero as the temperature increases, or the density
decreases. When the corrections become zero, the uncorrected perfect gas
law is an accurate equation of state.
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Fig. 4. Lowering of the ionization potential (AI) as a function of the
charge carrier density s and temperature T. »,, is the critical
density; n, gives the limit for the classical description of the
electrons (Ecker and Krdll, 1968).
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Fig. 5. Comparison of ionization electron density calculated for several
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densities of an aluminum plasma. The three curves are solutions
of the three methods for determining ionization. Rho is the solid
density of aluminum.
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Fig. 6. Comparison of the calculated electron densities in an aluminum

plasma with a heavy particle density of 6.02 x 10%/cm®. The three
cmanpmtnluﬁmowmmmmwmmto
correct the fonization potential.
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