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Penetration of an Initially Radial Shock Wave
Through an Aluminum-Glass Interface'

B. A. SODEK, JR. and F. C. TODD, Department of Physics
Oklahoma State University, Stillwater
INTRODUCTION AND STATEMENT OF THE PROBLEM

This paper presents an analytical study and computer solution for the
propagation of an initially radial shock wave in aluminum through a
plane interface into glass. The problem originates from the investigation
of micrometeoroid impacts on photomultiplier tubes flown on space vehicles.
Micrometeoroids are arbitrarily defined as particles with a mass of less
than 10-* grams. Theoretical considerations indicate that these particles
may impact on the space vehicle with velocities in the range from 30,000
to 240,000 feet per second (Collins, 1960). There is a lower limit on the
mass of these particles of about 10 grams because of the Poyting-Robert-
son effect (Beard, 1961). This effect predicts that the radiation from the
sun will push very small particles outside the orbit of the earth. A typical
micrometeoroid may be assumed to have a mass of 10 grams and & veloc-
ity of 118,000 feet per second. According to Whipple, some micrometeorotids
with a relative density of 0.05 are presumably aggregates of material from
the tails of comets. The densities of micrometeoroids appear to vary
rather continuously from this low density up to that of iron-nickel with
a relative density of 8.0. A stone meteoroid would have a density of
about 4. The following calculation is not applicable for the very low
density micrometeoroids.

Experiments have been reported in which simulated micrometeorotds
are made to impinge at different velocities on a target. The penetration
of high velocity projectiles produces craters which are very nearly hemi-
spherical in shape and which show no apparent evidence of shear. Inter-
pretation of avallable data suggests basic hydrodynamic theory as the
first approximation to represent the cratering mechanism (Todd, 1960).
It i8 useful because it permits an analytical study to be made and the
results to be compared with experiment.

A typical crater from the impact of a glass sphere on an aluminum
plate is shown in cross-section in Fig. 1. The initial velocity of the glass
sphere was 28,500 feet per second. This slide was prepared in order to
show the relatively uniform thickness of the plastically deformed crystals
around the crater. The surface of the cavity under the projectile material
is quite smooth. This is evidence of plastic flow of the target material

during impact (Summers, 1959).

The basic assumption for the present calculation follows from such
experimental evidence. The impacting micrometeoroid is assumed to in{-
tiate a radial shock wave in the aluminum which propagates away from
the point of impact as a hydrodynamic shock wave in a non-viscous fluid.
The nature of the physical processes during the initial phases of impact
is not well understood; and consequently, the true conditions at the time
of contact between micrometeoroid and target cannot be specified for an
accurate analytical solution. The proposed problem is solved, however,
with approximate initial conditions in order to obtain information that
will assist in evaluating the relative importance of other possible mechan-
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Fig. 1. Crater Formed by a Glass Missile Impacting at 28,000 Feet Per
Second.

delineating conditions are known. As the shock moves from aluminum
into glass, the prime interest for this calculation is the reflection and
penetration of this wave at a plane interface. The interface moves during
the impact, which differentiates the problem from the common seismic
problem of reflection at an interface between two different media.

HYDRODYNAMIC EQUATIONS AND CONDITIONS

The pressure drop across a shock front is very much greater than the
elastic limits of either aluminum or glass. Under these conditions, Bjork
(1958) and others have assumed that the shock front is propagated as a
hydrodynamic wave through a non-viscous fluid which may be described
by the equations of fluid flow. These differential equations may be ex-
pressed in Eulerian or Lagrangean form. The Eulerian equations are
written with respect to fixed space coordinates. The Lagrangean equa-
tions describe the motion in terms of the paths of motion of individual
particles. In problems with two spatial coordinates and particularly for
8 muiltilayer target, the Eulerian form of the equations is perferred in
order to simplify the calculations on a digital computer. The hydrody-
namic differential equations, in Eulerian coordinates, are presented in Fig.
2. The origin of each equation is indicated.

Bethe (1942) has shown that the propagation of a shock wave through
any medium can be solved provided the equation of state is known for each
distinct material considered. In addition to the application of thess equa-
tions, Hugoniot showed that the entropy must increase across the shock
front. These two equations are presented in Fig. 8. The formal repre-
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Fig. 2. Hydrodynamic Flow equations in Polar Coordinates.

Sentation is the same for either aluminum or glass. The last relation in
this figure may be derived from the conservation equations and is the
Rankine-Hugoniot energy equation. This expression relates the internal
energy, pressure, and specific volume at the crest of a shock front to the
corresponding values for the material which is yet undisturbed. The shock
pressure-volume relationship of a given material is unique and is called
the Hugoniot equation of state. A comprehensive equation of state is not
immediately available for efther material.

The Mie-Griineisen (Gr(neisen, 1926) equation of state i{s one of the
most general relations possible. It relates pressure, volume and energy at
points in P, V, and E space to the values of Py, V4 and Ey on the H
curve. For both materials, experimental information is available for the
low, less than one megabar, pressure region (Wackerle, 1962; Walsh, 1058.)
Theoretical predictions, available from the use of the Thomas-Fermi sta-
tistical method, claim validity when pressures exceed twenty megabars.
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Equation of State in Gruneisen Form

P—R =rs (E-E) *

COnditiou across Shock Front

S(entropy)2 O )

Rankine-Hugoniot Relation (Derived)
5 83 E- B

P,V and E are pressure, volume, and internal energy
subscript O 1is in front of shock
subscript R is peak, or minimum values in the
shock front.
Y 1is the Gruneisen ratio and changes slowly with
the density, only.

Fig. 3. Additional Equations for Solution of Shock Propagation.

Adequate representation between these two extremes is made possible by
lnterpolatlon Equation of state curves for aluminum and glass appear
in Figs. 4 and 5. The heavy line in each figure is the Hugoniot curve along
which the material is compressed by a shock wave. The lighter curves
are typical adiabats along which the material expands after it has been
compressed by the shock front.

NUMERICAL SOLUTION OF FLOW EQUATIONS

To obtain a numerical solution on a digital computer, von Neumann
and Richtmyer (1950) suggest that the differential equations be modified
by the introduction of a pseudo-viscosity term. As a consequence, the
shock front changes from a true discontinuity to a narrow zone of large
gradients. The explicit form of the dissipative term in this problem is
based on a suggestion by Landshoff (1855). This term is taken as g, and
is given by Equation 8 in Fig. 6. This pseudo-viscosity term is added to
the preasure, p, in the preceding differential equations expressing conser-
g;lo: of momentum and energy. The modified equations also appear in

For convenience in scaling numerical magnitudes for a computer cal-
culation and to preserve computer storage, the relevant equations are
converted to a nondimensional form. A dimensionless solution also per-
mits scaling to problems involving different impacting velocities and
different sizes of particles. The resulting equations are then transformed
to finite difference equations by methods similar to those used by Longley
(1959) for cylindrical coordinates and prepared for solution by a digital
computer.
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BOUNDARY CONDITIONS AND SOLUTIONS

The finite difference equations yield a solution by the usual iterative
method employed with digital computers. To apply these equations, condi-
tions at time, ¢, equal zero must be completely specified. The assumption
that a micrometeoroid produces a radial shock is illustrated in Fig. 7. The
lower part of the figure shows the initial pressure distribution and the
modified profile produced by the ¢ term which permits a numerical method
of solution. This pressure is 14.1 megabars, or a little over 14 million
atmospheres, developed by the typical micrometeoroid of 10° grams im-
pacting with an initial velocity of 118,000 feet per second. The radius of
the shock front is 13 per cent greater than the radius of the micro-

meteoroid (Todd, 1961).

At later times, the shock wave propagates in aluminum and decreases
in amplitude as the energy of the shock is spread over greater areas.
After thie shock radius has become about one-fifth greater than its mw
value, the shock front encounters the aluminum-giass interface. The
pressure and the particle velocity are continuous across the material
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boundary; but the density and the intenal energy are discontinuous. The
introduction of material of a different density destroys the radial sym-
metry of the flow. Fig. 8 illustrates density-radial distance curves at
three different times. The ratio of the density to the normal aluminum
density of 2.785 grams per cubic centimeter is indicated on the vertical
axis. For example, at the start of the calculation, the density of the
shocked aluminum is 7.32 grams per cubic centimeter which is approxi-
mately two and one-half times normal aluminum density. The top third
of the figure shows the initial profile and a profile after 48 iteration cycles.
The shock wave has not yet encountered the interface and the profile is
identical along any radius. In the center graph, the leading point of the
shock wave on the 80° line has reached the interface. eahockfrontls
penetrating the interface and the building of a shock wave in the glass
can be noted. Apmﬂlenlongthes'nneisahoﬂwwn. Here, the disturb-
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Dissipative term which is significant only for layge velocity gradients
q= -Af (div V)e( div Vi +A,) (8)

when V is the material velocity vector, Al and Az are constants detorminaed

by trial and error.
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Fig. 6. Introduction of Viscous Damping Term for Integration Across
Shock.

aluminum has decreased. The density of the material immediately behind
the interface is lower than on the 5° line. This indicates the probability
of a rarefaction wave being propagated back into the aluminum as &
result of shock reflection at the interface. The interface has moved out-
ward as the shock front passes. The old and new positions of the dividing
line between aluminum and glass have been marked in the figure.

The behavior of the internal energy is similar to that of the density.
The velocity and pressure are continuous across the material boundary
and profiles of these variables have the same general character as those
of the density front in aluminum. Calculations are in progress on later
phases of this problem.

'l'heassumedradialshocktrontmulungtmmtholmputofamicro-
meteoroid on a multilayer target has been propagated through the alumi-
num layer and made to impact on the aluminum-glass interface. The
incident shock front produces a transmitted shock wave in the glass and
a reflected rarefaction wave traveling back into the aluminum.
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Fig. 7. Assumptions for Impact of a Sphere
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