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of a Spherical Shock Wave in Aluminum'
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INTRODUCTION AND STATEMENT OF PROBLEM

This paper presents an analytical study and computer solution for the
propagation of a hemispherical shock wave into a semi-infinite block of
aluminum. With this statement, the solution to be presented is accurate
and the paper is properly titled. The origin of the problem is from
micrometeoroid impact on space vehicles which explains the reason for
employing the particular numerical values that follow.

Micrometeoroids are arbitrarily defined as particles with a mass of
less than about 10* grams and with velocities in the range from 30,000 to
240,000 feet per second (Collins & Kinard, 1860). There is a lower limit
on the mass of these particles since the pressure from sunlight will push
very small particles outside of the orbit of the earth. For numerical cal-
culations, a typical micrometeoroid is assumed to have a mass of 10
grams and a velocity of 118,000 feet per second. According to Whipple,
some micrometeoroids have very low densities and are presumably aggre-
gates of material from the tails of comets. Other micrometeoroids are of
normal stone with a density of about 3.9 and a few are of an fron-nickel
eutectic with a density of 8.0. The following calculation is not applicable
for the very low density micrometeoroids.
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Experiments are reported in the literature in which simulated micro-
meteoroids are made to impinge at different velocities on a target. From
these experiments (Chartres, 1960), a typical curve of depth of penetration
as a function of the velocity of impact is reproduced in Fig. 1. Typical
shapes of cavities from the impacts in three different velocity ranges are
{llustrated in this tigure. It is evident that there are at least two different
mechanisms of impact with an overlapping region between them. The
penetration at low velocities, which is actually in the velocity range of the
so-called high-velocity rifle bullet, is characterized by shear about the
entering bullet. In the highest velocity range, the craters are nearly
hemispherical in shape and evidence of shear is not so apparent. The
transition between low- and high-velocity craters appears to develop when
the initial velocity of the micrometeoroid first exceeds the velocity of
sound in the material of the target.

The physical mechanisms during the initial phases of impact are not
yet well understood; and consequently, the true boundary conditions cannot
be specified for an accurate analytical solution. The problem is solved,
however, with conditions that are probably incorrect in detail in order
to obtain information that will assist in evaluating the relative importance
of possible mechanisms and to gain experience for a more exact solution
when the boundary conditions are better known. This approach was
employed in the successful study of atomic blasts. In particular, informa-
tion is obtained on the order of magnitude of the pressure developed, the
duration of shock propagation and the volume of the region through which
the shock is propagated. The analytical solution was obtained on an IBM
6850 computer and the limited capacity of this machine required further
simplification of the boundary conditions in order for the solution to be
obtained in a reasonable time. The basic assumptions for the initial
boundary conditions are that the impacting micrometeoroid is spherical,
that it is incompressible and that it produces a hemispherical shock wave
that propagates away from the point of impact as a hydrodynamic wave
in a non-viscous fluid.

CONDITIONS AND EQUATIONS FOR SHOCK PROPAGATION
IN ALUMINUM

The pressure drop across the shock wave is initially many hundreds
of times the elastic limit of the aluminum. Under these conditions, Bjork
(1959) and others have assumed that the shock wave is propagated as a
hydrodynamic shock through a non-viscous liquid and that the usual
hydrodynamic equations of flow apply. The hydrodynamic equations may
be expressed in the Eulerian or the Lagrangian form. The Eulerian equa-
tions are with respect to space coordinates that are fixed. The Lagrangian
equations describe the motion in terms of the paths of motion of the
shocked material. When the motion is symmetrical, such as a hemi-
spherical shock wave, experience has shown that the Lagrangian coordi-
nates are generally the simplest to solve. An identity may be used to
convert either the differential equations or the solution from one form of
coordinates to the other.

The hydrodynamic equations for the propagation of a spherical shock
wave have the form, in Lagrangian coordinates, which are presented in
Fig. 2. The basis of each equation is indicated. These equations and an
equation of state are necessary and sufficient to describe the motion of the
material at all points in the medium except across the shock front. These
equations do not contain terms for viscous, or other, losses.

Bethe (1942) has shown that the propagation of a shock through any
medium can be solved with the hydrodynamic equations of motion pro-
vided the equation of state is known from theory or experiment for the
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FIGURE 1. EFFECT OF VELOCITY ON PENETRATION

problem. With the equation of state and the hydrodynamic equation of

flow, it is also necessary to specify that the entropy

shock front. These two equations are presented in Fig. 3. The last equa-
the equations and is the
tion in this figure may be derived from 1:u-e¢e(lmgme B A nergy,

Rankine-Hugoniot relation. This equation relates
pressure a.:uxg specific volume at the crest of the shock wave t'gh.
values for the medium which the shock has not yet reached. pres-
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sure-volume relation of a material during compression by a shock may be
expressed by the Rankine-Hugoniot function, Py — £(Vg,E). This curve is
not known along the entire pressure range. As in the procedure employed
by Bjork (1960), the curve may be interpolated between the curve for
pressures up to one megabar, determined experimentally by Fyfe et al.
(1861), and the theoretical curves given by the Thomas-Fermi statistics
(Courant and Friedrichs, 1948) for a plasma at pressures a little above
twenty megabars. The values of Py and V4 on this curve are the values in
the Grunisen quation of state that also appears in Fig. 3. The shape of
the interpolated, Hugoniot curve is indicated by the heavy line in Fig. 4.
This interpolated curve is fit by an equation for use in the calculations.
The lighter lines, which are extrapolated by dotted lines are typical adi-
abatic curves along which the calculations show that the material expands
after it has been compressed by the shock.

NUMERICAL SOLUTION FOR PROPAGATION
OF THE SHOCK

Two methods (Fyfe et al., 1961) are recognized for obtaining a solu-
tion of these simultaneous equations with a digital computer. One method
takes advantage of features of hyberbolic differential equations and uses
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Fig. 22 HYDRODYNAMIC EQUATIONS FOR SYMMETRICAL
FLOW IN SPHERICAL COORDINATES
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the method of characteristics. A representative description of thia method
appears in Courant and Friedrichs (1948) and was the first method devel-
oped. The second and probably better known method is that of von Neu-
mann and Richtmyer (1950) in which the equations are differenced, and
integration across the shock is accomplished by introducing a pseudo-
viscosity term which causes the shock front to change from a line of
discontinuity to a narrow zone of large gradients. For a practical spacing
of the net points, the pseudo-viscosity term is not closely related to the
true viscosity. Either of these methods could be used and their complexi-
ties are comparable for a simple problem of the type being described here.
The treatment of the shock propagation through a multiple layer medium
is probably a little more direct by the von Neumann and Richtmyer method.
Since our problem requires a study of shock propagation through a multi-
layer medium, this method was used.

The dissipative term for the solution of the problem of propagation of
a spherical shock wave is the one that was suggested by von Neumann
and Richtmyer in their original work. The dissipative term is taken as
Q, which has the form that is given by Equation 8 in Fig. 5. The dissi-
pative term is added to the pressure, P, in the preceding equations. This
requires that Equations 2 and 3 be modified to the form in Equations 9
and 10, respectively.

Equation of State in Gruneigen Form

P = — )
P—P =rr (E-E) ¢

Condition across Shock Front

S(entropy)2 O 6)

Rankine-Hugoniot Relation (Derived)
EFEE-p0sy o

P,V and E are pressure, volume, and internal energy
subscript O is in front of shock
subscript H is peak, or minimum values in the
shock front.
Y 1s the Gruneisen ratio and changes slowly with
the density, omly.

Fig. 3. ADDITIONAL EQUATIONS FOR SOLUTION OF
SHCCK PROPAGATION
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To obtain the most general solution to the problem, the preceding
equations are converted to non-dimensional coordinates by a substitution
that was proposed by Brode. The resulting equations were converted to
difference equations by standard methods and prepared for solution on
the computer.

INITIAL BOUNDARY CONDITIONS AND SOLUTIONS

The difference equations that are obtained give a solution by the
usual iterative method that is employed with digital computers. To apply
these equations, the initial boundary conditions must be specified. As
already mentioned, these boundary conditions are selected to require a
solution in the form of a symmetrical hemispherical shock wave. This is
necessary in order to obtain a solution in a reasonable time with an IBM
850 computer.
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Dissipative term which {s only significant for
large pressure gradients

Q:A2 dﬂ_ dl ()

where Az is a constant that is determined
by trial and error.

Conservation of Momentum
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Conservation of Energy
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Fig. 5. INTRODUCTION OF VISCOUS DAMPING
TERM FOR INTEGRATION ACROSS SHOCK

Within the limits imposed by the computer, the physical conditions
are approximated. The incident micrometeoroid impacts at a velocity far
in excess of the velocity of sound in the target material and the micro-
meteoroid is assumed to be spherical in shape and incompressible, At
the time that the micrometeoroid has penetrated half-way into the target
material, the physical situation is indicated in Fig. 6. The material of the
target is assumed to be compressed between the surface of the micro-
meteoroid and the dotted line which indicates the position of the shock
front. The pressure is 14.1 megabars, or a little over 14 million atmos-
pheres for the typical micrometeoroid of 10 grams impacting with an
initial velocity of 118,000 feet per second. Using the equations of flow
and the Hugoniot-Rankine relation, but omitting the conservation of mass,
the radius of the shock front is 13 per cent greater than the radius of the
incompressible micrometeoroid.

From the initial boundary conditions, the shock wave propagates and
decreases in amplitude as the energy of the shock increases in area with
increase in radius of the shock front. The pressure distribution during
the propagation is indicated by the series of shock fronts that are indi-
cated in the lower part of Fig. 6. Since the solution was obtained with
non-dimensional coordinates, the solution may be readily modified for
other sizes and speeds of impact. An illustration of the flexibility of the
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solution is indfcated in Fig. 7. This figure shows successive shock fronts
for the impact of a simulated meteoroid with a mass of one milligram and
a velocity at impact of 15,600 feet per second.
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FIGURE 7. IMPACT OF METEOROID
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