The Effect of Homing on Channel Catfish Population

Estimates in Large Reservoirs ${ }^{1}$

ALFRED HOUSER, Oklahoma Fishery Research Laboratory, Norman

The number of reservoirs in Oklahoma has continued to increase. Some 32 already are completed, others are in various stages of construction while still more are planned. Where fishery management was once mainly concerned with farm ponds, streams and small municipal reservoirs, it is now turning toward the more complex problems of large impoundments. Any past efforts to define and solve these problems have generally been based upon conclusions reached through study of relatively scant data. The adoption of expensive, large-scale management programs have been difficult to justify on these grounds.

There is an urgent need for more precise knowledge regarding size and structure of fish populations in Oklahoma's large impoundments. Eifforts to initiate radical management programs for reservoirs at this time must necessarily proceed with some caution because of the uncertainties of interpreting relatively small sample data to evaluate results. Fish population sampling by the use of rotenone has been the only method which has offered reasonably reliable information with regard to population structure, and any further projection of these data to estimate population size for reservoirs is viewed with some apprehension.

The indirect methods of estimating population size by mark-and-recapture as presented by Schnabel (1938) and Schumacher and Fichmeyer (1943) have been applied to many Oklahoma ponds and mall lakes (Jenkins, 1955, 1956 and 1958), (Houser, 1957). These techniques have generally given satisfactory results. While a certain amount of error apparently cannot be eliminated in this type of estimate, it usually can be restricted to some acceptable limit for work in smaller bodies of water. Homing is one source of error which may be encountered and if not compensated for can introduce a serious bias. This type of bias can be effec-

[^0]tively eliminated by using randomly chosen daily trapping stations in the manner suggested by Cooper (1952).

Figure 1. Map of Lake Lawtonka.

Selectivity of the gear is also a source of error for which one cannot tully compensate. Latta (1959) demonstrated that in addition to selection by mesh size, trap nets are also selective for larger fish. He points out that estimates of population size not based on size classes are too small. Based upon this conclusion he presented a method for calculating an estimate by individual size classes.

Since knowledge of population size has been shown to be of utmost importance in managing smaller bodies of water, it was considered that similar knowledge would also be required for larger lakes. With full realisation that any attempt to conduct mark-and-recapture estimates on these large reservoirs would present many new problems that could not be anticipated. Such a project was undertaken during the summer of 1958 by workers at the Oklahoma Fishery Research Laboratory. The probloms encountered were many, and detailed discussion will be reserved for later presentation; however, an outstanding discrepancy arising from what was apparently homing behavior in channel catfish will be considered here.

A second astimate was attempted on Lake Lawtonka in the summer of 1809 in which channel cattish were tagged in order that closer observations could be made of supposed homing. Buidence that there is homing In fish has already been presented by Gerking (1953), Cooper (1952), MHler (1804) and others. If channel catfish do exhibit homing, we wish to know what effect it might have on determining the population size under comaltions impoeed by a large reeervoir.

Description of the Reservoirs

Fort Gibson Reservoir is a 19,500 -acre impoundment, on the Grand River in northeastern Oklahoma, constructed for flood control and hydroelectric power in 1952 by the U. S. Army, Corps of Engineers. A thorough description has already been presented (Anon., 1956).

Lake Lawtonka is a 2,000 -acre municipal reservoir on Medicine Creek in Comanche County, Oklahoma near Medicine Park and serves as a water supply for the City of Lawton and the Fort Sill Military Reservation (Figure 1). It was constructed in 1905 and the dam has since been successively raised to impound more water in 1909, 1918, and 1953. A more complete description has previously been presented by Wilson (1953).

Methods and Materials

Standard equipment for both studies was the trap net, constructed , according to Crowe (1950), which utilized a single pot having a one-inch stretched mesh. In the Fort Gibson study, a large trap net and a haul seine were also used. The large trap net had an 8 -by 8 -by 20 -foot pot of two-inch stretched mesh. The heart was also of two-inch mesh and graduated in height to 18 feet. The lead was of three-inch mesh and 18 feet deep by 700 feet in length. The haul seine contained both two and threeinch mesh stretched measure. It was 18 feet in depth and 1,400 feet in length.

Because of the great length of the area sampled (27 miles) in Fort Gibson Reservoir it was divided into three areas and equal fishing effort was attempted in each. Five small trap nets were used continuously in each area and the large trap net was moved about in all areas. Seining was restricted to two areas since there were no cleared sites in the headwater region. Large open areas of deep water, rough bottom conditions and a current that occurred in the mainstream during high runoff prevented any attempt to select sampling stations randomly. Weather conditions, as well as the tremendous effort that would have been required, prevented regular weekly relocation of trap nets as planned. They were relocated periodically, but no schedule could be,maintained.

All fish were marked by fin-clipping. Releases were made indiscriminately at distances of one to five miles from the station of capture.

From the period of June 3 to August 22, 1858 there were 55 days of fishing during which 367 small trap-net lifts, 25 large trap-net lifts and 40 seine hauls were made.

Only the small traps nets were used in Lake Lawtonka. Trapping stations were restricted to shoreline areas. Deep water sets below 15 feet were attempted but a lack of oxygen due to stratificaiton caused fish to die before they could be removed for marking. Using shoreline sets around this somewhat circular lake provided a situation in which homing behavior in channel catfish could be observed by releasing tagged fish at a central release point, while at the same time conducting a population estimate.

The period of study on this lake begai on June 9 and ended on July 29, 1959 during which 15 trap nets were fished at 17 stations. There wore 23 days of fishing in which 388 trap net lifts were accomplished. During the first 13 days 1,002 channel catifish were tagged with metal fayr tace and released. Marking of all fish by fin-clipping continued throughout the entire period.

Table 1. Length frequencies of channel catfish in creel census of 1955 and 1958, rotenone and population estimation sampling in 1958, Fort Gibson Reservoir.

Total length Inches	$\begin{aligned} & \text { Rotonone } \\ & 1958 \end{aligned}$	Creel Census		1958 Population		Estimate	
		1955	1956	Small	Large		
				Trap	Trap		
				Net	Net	Soine	
1	1						
2	1						
3				4			
4	1			4			
5	2						
6	2	1		10			
7		1		35	4	1	
8	3	4	5	67	19		
9	4	5	8	241	56	17	
10	3	28	10	198	20	8	
11	7	35	32	308	31	12	
12	7	30	22	378	50	12	
13	11	23	10	332	46	7	
14	5	19	12	294	49	4	
15	4	15	3	248	58	2	
16	4	7	8	131	31	1	
17	4	12	7	89	29		
18 19	2	7	5	36	11		
19	2	7	2	35	20		
20 21		1	1	15	9		
21 22		3	1	6	4		
22		3	2	9	3		
23		2	3	4	3		
24			3	3	5		
25		1		1	1		
2627							
28				2			
Number of							
fish	63	204	134	2448	449	64	
Average							
length	12.0	13.2	13.2	12.6	13.6	11.1	

Separate records were maintained for each station and all but a small number of fish were weighed and measured. Numbers marked and recaptured were recorded for each station.

In both studies the population size was calculated by the Schnabel method and the Schumacher and Eschmeyer method. A third method preeented by Latta (1850) was also applied to the Lake Lawtonka data.

Fort Gibson Study
The eatimates of the Fort Gibson Reservoir channel catfish populatiok, hased upon 12,108 marked individuals and 685 recaptures were 112, 489 by the Schnabol method, and 108,489 by the Schumacher method (Figure 2). Based upon these eatimates, the standing crop was either 8.8 finh and 4.3 pounds or 5.3 fish and 4.7 pounds per acre.

Figure 2. Channel Catifish Population Enatimate for Fort Gibson Reservoir.

Cove rotenone samples in 1956 yielded estimates of 61 fish and 26.1 pounds per acre. In 1957, estimates by the same method were 45 fish and 34.4 pounds per acre (Houser, 1956 and 1957). From the 1958 samples 31 fimh and 18.1 pounds were estimated (Summers, 1959). A creel census conducted on this reservoir during 10 months of 1954 and 1955 estimated an angler harvest of 11.1 channel catfish per acre with a weight of 11.2 pounds. During a 12 month period of 1955 and 1956, 17.1 fish and 11.1 pounds per acre were estimated for the angler harvest of the species. The population estimates compared with these results were inconsistent and appeared to have been much too small. Previous samplings have been replicated and the results obtained were consistent. For that reason it appeared that the population estimate may contain some serious error which had not been defined. It should certainly have exceeded the angler harvest and should have at least approached the results obtained by rotenone.

Selectivity by mesh size in the gear was recognized but no great discrepancles existed between the minimum size of fish effectively sampled by either anglers or trap nets and the seine (Table 1). The average length of angler-caught fish was 13.2 Inches in both creel census periods. Average lengths of fish taken by each type of gear were: small trap net 12.6 inches, large trap net 13.6 inches and seine 11.1 inches.

Extrapolation of the population estimate to include the sizes of fish not sampled effectively, but which appeared in the rotenone samples, was also attempted. Based upon these samples, only 92 percent of the total population was sampled by the mark-and-recapture method. Adding an additional 8 percent, for flish too small to capture, produced an estimate of 112,394 fish. With this addition there were 5.76 fish per acre but this was atill far below the minimum expected for an estimate of the standing crop.

Insufficient evidence was obtained to determine that recruitment may have affected the channel catfish population estimate, however more complete data for other species demonstrated that they had experienced a small amount. Any such bias contained in the channel catfish data would have tended to produce an estimate that was too great. This was not the case, but rather, it was considered too small.

During the course of the study it appeared that channel catfish were being recaptured at a much higher rate than were other species. Catchablilty was calculated and found to be much higher than for other species and homing was suspected. Incomplete, but significant, data were obtained from recaptures of a small number of distinctively marked fish which demonstrated that homing was occurring. Unfortunately the study was nearing its ends before any attempt was made to evaluate this behavior, but sufficient evidence had been provided whereby the discrepancies that were eventually revealed in the calculations might be explained. Since homing increases the number of recaptures, which in turn depresses the estimates derived through the methods used, it appears most likely that this eatimate was too small as a result of the unknown extent of error introduced by homing fish.

Lake Lawtonka Study

During the 33 days of tishing on Lake Lawtonka, 3,883 channel catfish were marked and 400 were recaptured. Disregarding any influence due to homing the population eatimates by the following methods were: Schumacher, 18,339; Schnabel, 21,231 (Figure 3); Latta, 24,231 (Table 2). Conspicuous difforences are evident in these estimates. The Schumacher method is preferred over the firat order approximation of the Schnabel
method for reasons outlined by DeLury (1958), but the simplified method presented by Latta offered a greater versatility for this estimate in which selectivity and homing were recognizable.

In his discussion on trap net selectivity and fish population statistics, Latta pointed out that a pronounced variation in catchability with size was experienced in Michigan lake studies. Bluegill, rock bass, yellow

Table 2. Population estimate of channel catfish by size without regard to effect from homing fish, Lake Lawtonka - 1959.

Length Inches	Number Measured	Number Marked M_{1}	Number Recaptured R_{1}	R as \bar{M} percent	$\begin{gathered} \text { + Adiusted } \\ R_{1} \end{gathered}$	\hat{p}
5.0-5.9	2	6	0			
6.0-6.9	6	18	6^{*}		6	36
7.0-7.9	33	99	1	6.3	6	866
$8.0-8.9$	28	84	6	5.4	5	748
9.0-9.9	119	356	22	5.9	21	3196
10.0-10.9	278	831	47	6.8	57	6474
11.0-11.9	209	625	54	6.9	43	4855
12.0-12.9	105	314	21	10.9	34	1607
13.0-13.9	117	350	65	14.2	50	1400
14.0-14.9	137	410	67	17.2	71	1389
15.0-15.9	103	308	52	14.8	46	1185
16.0-16.9	56	167	12	15.0	25	641
17.0-17.9	32	99	22	13.2	13	427
18.0-18.9	25	74	11	21.0	16	208
19.0-19.9	22	65	17	17.8	12	209
20.0-20.9	6	18	0	13.4	2	90
21.0-21.9	8	23	2		2	900
22.0-22.9	6	18				
23.0-23.9	1	3				
24.0-24.9	2	6				
25.0-25.9	1					
26.0-26.9	1	3				
30.0-30.9	1	3				
	1298	3883	405		409	24,231

* Combined with adjacent size classes having recaptures
+ Determined by weighted moving average of three R_{1} and M_{1}
bullheads, brown bullheads and white suckers exlibited consistently greater catchability with increasing size. Wide variations between various size groups were seen in largemouth bass but no consistent trend was established.

Channel catfish in Lake Lawtonka generally exhibited increased catchability with size (Table 2). A population estimate by the Latta method yielded a somewhat higher estimate. No tests have been given however, whereby a comparison could be made with the precision offered by other methods. This method is expressed as the estimated population, $P_{i}=\frac{M_{1}{ }^{2}}{2 R_{1}}+\frac{M_{1}}{2}$, where M_{1} is the number of marked fish and R_{1} is the number of recoveries of marked fish in the i size class.

In the Lake Lawtonka study we were most interested in determininic the rate at which channel catfish may return and be recaptured at a partic-
ular location after having been displaced. In an effort to obtain some kind of meanure of homing, 1,002 channel catfish were jaw-tagged in the first 18 daya of trapping. During the 33 days of fishing 96 tagred fish wrere recaptured, of which 87 or 86, percent were taken at their home station (Table 8). Since alr 17 mitations were located at different distances from the release point, ranging from 1,450 feet to 6,180 feet, the various catch-

Figure \& Population IFtimates for Channal Catrinh in Lake Lawtonk Disregarding the Eloming Eirfect.
abilities for homing flish were compared by distance traveled (Table 4). The highest catchability was experienced at the most distant station but no trend was evident according to distances traveled.

The time elapsed between release and recapture ranged from 4 to 41 days (Table 5). Although the tendency appeared to be slightly in favor of early return to the home station, it should be pointed out, that aince tagging and recapturing was carried out simultaneously many more fish with fewer days of freedom were avallable as the study progressed. The

Table 3. Number of tagged channel catfish recaptured at any station and at home station, Lake Lawtonka - 1959.

Langth Range	*Total Number Togged Measured	Number Tugged Recaptures	Number Homing Fish
$5.0-5.9$	0		
6.0-6.9	6		
7.0-7.9	24	1	
$8.0-8.9$	18		
9.0-9.9	92	3	2
10.0-10.9	219	15	7
11.0-11.9	160	10	3
12.0-12.9	86	2	1
13.0-13.9	85	8	2
14.0-14.9	103	17	5
15.0-15.9	83	19	9
16.0-16.9	42	7	4
17.0-17.9	22	3	1
18.0-18.9	19	5	1
19.0-19.9	18	4	2
20.0-20.9	5		
21.0-21.9	8	2	
22.0-22.9	4		
23.0-23.9	1		
24.0-24.9	2		
25.0-25.9	1		
26.0-26.9			
30.0-30.9	1		
	999	96	87

* Total actually 1002; three fish released without being measured.
probability of recapturing a fish in the shorter time was therefore nomewhat higher. It appeared then that the number of days of freedom had little effect on homing behavior for the apace of time and dintance involved in this study.

A comparison of average total lengthe for three groupinge, by an increasing ordier of the number of days of freedom for homing finh, indicated that early recaptures included larger fich than thowe recaptured with longer periods of freedom. Theme differences could pomibly be attributed to an mereased activity of adult fish during the mpawning weamon which occurred during the work period.

During the period of study 1,002 channel catfish had been tagged and 87 (86.9 percent) were recaptured at the home station. On the last day of the estimate all trap nets were baited with cottonseed pellets in an effort to obtain hatchery broodstock. On the following day 12 homing frich were found among the 18 additional tagged fish that were recaptured. Although not inciuded elsewhere in this study it was interesting to note that the number of homing tish had been increased to 49 (43_percent) as a result of this one day of fishing with bait.

All mark-and-recapture estimates of population size depend upon the recapture of marked individuals. When the number of recaptures increases, the estimate is depressed. In these samples unrealistic estimates

Table 4. Catchability of homing channel catfish released at various distances from home station, Lake Lawtonka - 1959

Station Distance in Feet from Rolease Point	Station Numbers	Number of fish Tagged	Tagged Fish Recaptured at home Station	Catchability
1000-1500	16	67	2	. 0299
2500 -	5, 6	99	6	. 0606
8000.	4	64	2	. 0313
3500 -	1, 14	287	7	. 0244
4000 -	13, 15	6	0	. 0000
4500.	2, 7	155	6	. 0387
5000 -	3, 8	57	1	. 0175
$8500 \cdot$	9, 10, 12, 17	104	3	. 0288
6000 -	11	163	10	. 0613
		1002	37	. 0369

were obtained when no attempt was made to compensate for homing. A provious conception of population size derived from gill-net sampling and angler catch indicated a substantial number of channel catfish existed in the lake, but these estimates tended to minimize its size.

Through identification of recaptured homing fish a basis was provided for distributing a compensation for homing throughout the various size clanses. Estimates were determined using the Latta method. Through adjumiment of the number of recaptures in the data an increased estimate was obtained. Catchabilities for each size class were calculated for both the homing and for all fish. The catchabilities for homing fish were subtracted from the average of all fish which should have removed the homing effect. Because of the variability, moving averages of three of these catchabilities were used together with the numbers of marked fish to obtain an adjusted number of recaptures. After this adjustment the population estimate was calculated for each size class. The total population aise obtained by this method was 38,729 fish which appeared far more accoptable on the basis of the impression formed from sampling conducted prior to the estimate. Standing crop based upon this estimate was 19.4 fish and 10.86 pounds per acre (Table 6). Unfortunately the small number of recoveries of both the amaller and larger fishes prevented a uniformthy in the treatment for homing in all sime classes. For these size classes the entmite was direct and average catchability for all fish in the partioular simo class was used. Better estimates should be possible if the dat3 for fith not adoquately sampled are treated differently. Those fish in the lower as well as in the upper extremities of the length range could be ascregated and a aingle group estimate calculated for each. The results

Table 5. Time elapsed between release and recapture of homing channel catfish, Lake Lawtonka - 1959.

Number of days of Freedom	Number of Recaptured Homing Fish	Total Length Averages
4	2	A
5	1	
6	1	
7	2	15.4
8	1	
9	2	
10	1	\downarrow
14	2	\uparrow
16	5	
17	1	
18	1	
20	1	
21	2	13.6
22	2	
23	2	
24	2	
25	2	v
30	1	4
31	2	
33	1	
36	1	13.3
40	1	
41	1	∇

obtained may then be distributed throughout each length range in question on the basis of length frequency of the marked fish rather than by recaptures alone. A more equitable distribution of the weight estimate should be realized by this procedure.

Discussion

Methods presently in use for estimating population size by mark-andrecapture have been shown to perform quite adequately in amaller bodiea

0 water. Thene methode have not been fully tested for reservoirs but similar mformation on theee populations is also needed. Sampling by rotenone, giohing gear and creel consus are the principal techniques currently used in reecivols population study. Their importance is widely recognized and sccepted but mont woricors agree that in interpretation of these data there generally remaine a considerable margin of uncertainty. Management recommendations must, therefore, observe some restraint. Sound, but revolutionary and controverstal, programs may fail or never be attempted becaure of a lack of more reliable population statistics that may be needed to Juntify the recommendations. Population estimates by mark-and-recapture ued in conjunction with other accepted methods could greatly improve the precision with which reservoir populations are measured.

Table 6. Summary of entimated channel cattish
population in Lake Lawtonka, 1959.

Length-range	Anerage Totol length	Number of Fish	Number per acre	Average Woight Pounds	Total Pounds	Pounds per acre
5.6-7.9	7.8	4986	2.5	0.103	524	0.26
8.0-12.9	10.6	23,393	11.7	0.356	8328	4.16
18.0-17.9	14.8	8808	4.4	0.965	8498	4.25
18.0-28.9	20.0	1544	0.8	2.835	4377	2.19
Total	12.8	38,729	19.4		21,727	10.86

Many problems have yet to be met and solved before this method can be adopted as a standard. Using present gear, the effort required is tremendous and the many sources of error which affect an estimate under thewe conditions have not been clearly defined.

Moving traps dally to randomly selected stations is a satisfactory method for removing homing effect when working in ponds and small lakes but this procedure is virtually impossible for reservoir work. The dise of the resorvoir, amount and kind of gear used, weather conditions and water depth are all controlling factors that make this approach imprectical in attempta to entimate reservoir populations. Since random mampling was not powsible permanent trapping stations were used. By incorporating a tagging program, a basis was provided on which to correct the entimate for bias due to homing.

For large populations a considerable effort is required before sufficient data can bo obtained for an estimate within the time limitations imponed by mortality and recruitment. Every advantage should be taken of previous lnowledge regarding time of year when the rate of catch is highent. Compensation for variable catchability such as that seen in adult tim during the apawning season can be made through the size-class population extimates.

Litimature Citso

Ancmymova 1946. Manter plan for recreation and land use, Fort Gibson Dam and Remervoir, Grand River Oklahoma U. S. Army Corps of Dingineerm, District Office, Tulsa, Oblaboma.
Cocper, Garald P. 196s. Frimation of firh populations in Michigan lakes. trang Amer. Finh Soc, 81 (1961): 4-16.

Crowe, Walter R. 1950. Construction and use of small trap nets. Prog. Fish-Cult., 12 (4): 185-192.

DeLury, D. B. 1958. The estimation of population size by a marking and recapture procedure. Jour. Fish. Res. Bd. Canada, 15(1): 19-25.
Gerking, Shelby D. 1853. Evidence for the concepts of home range and territory in stream fishes. Ecology, 34(2): 347-365.
Houser, Alfred. 1956. Fisheries investigations on Tenkiller and Fort Gibson Reservoirs. Project F-4-R-2. D-J mimeo. 100 pp .
1957. Fisheries investigations on Tenkiller and Fort Gibson Reservoirs. Project F-4-R-3. D-J mimeo. 68 pp.
1959. Fish population etimates in Crystal Lake, Cleveland County, Oklahoma. Proc. Okla. Acad. Sci., 39 : 191-195.
1958. Rough fish removal evaluation - Fort Gibson Reservoir: Population Sampling. Project F-6-R-1. D-J mimeo. 10 pp .
Jenkins, Robert M. 1956. An estimate of the fish population in a fortyfive year old Oklahoma pond. Proc. Okla. Acad. Sci., $35(1954)$: 69-76.
1955. A summary of fish population studies conducted during 1954 at Ardmore City Lake, Stringtown Sub-prison Lake, Fairfax City Lake and Pawhuska City Lake. Okla. Fish. Res. Lab. Rep., 48: 1-31, (multilith).
1958. The standing crop of fish in Oklahoma ponds. Proc. Okla. Acad. Sci., 38: 157-172.
Latta, William C. 1959. Significance of trap net selectivity in estimating fish population statistics. Pap. Mich. Acad. Sci., Arts, and Letters, 44(1959): 123-138.
Miller, Richard B. 1954. Movements of cut throat trout after different periods of retention upstream and downstream from their homes. Jour. Fish. Res. Bd. Canada., 11 (5) : 550-558.

Schnabel, Zoe Emily. 1938. Estimation of total fish population of a lake. Am. Math. Monthly, 45 (6): 348-52.
Schumacher, F. X. and R. W. Eschmeyer. 1943. The estimate of fish population in lakes and ponds. Jour. Tenn. Acad. Scl., 18 (3): 228249.

Wilson, Clay, Jr. and H. A. McCoy. 1953. Lake Lawtonka fisheries management report, 1953. Okla. Game and Fish Dept. Special Rep., 1-23 (mimeo).
Summers, Phillip B. 1959. Rough fish removal evalution - Fort Gibson Reservoir: Population Sampling. Project F-6-R-2. D-J mimeo. 10 pp .

[^0]: ${ }^{1}$ Contribution No. 78 of the Oklahoma Fishery Research Laboratory, cooperative 'ait of the Okhhom Wildife Conservation Department and the University of Oklahoma Biological survey.

