Effects of Environment on Selected Morphological Characters in the Dichanthium Annulatum Complex

E. L. MIERRA, R. P. CELARIER and J. R. HARLAN
Oldahoma 8tate University, Stillwater

In order to compare the genotypic variation of a given taxon an experimental taxonomint will normally grow numerous collections of the taxon in the relatively uniform environment of an experimental garden. From this garden he frequently conducts detailed morphological studies. In much atudies important material of a few collections are often received after a detalled atudy has already been completed for the bulk of the material. In such cases one is faced with the question of whether or not he should grow the entire collection again. Also living materials of certain morphological types and from certain areas are frequently inaccessible and in such cases one must depend entirely on information obtained from herbarlum apecimen.

Most workers appear to believe that all of this information may be pooled without serious difficulties. However, there are still a few who beHeve that plants grown in an experimental garden cannot be properly compared to field collections. Also some workers who study only, or predominantly, living cultured materials are doubtful of the reliability of tudies made from herbarium specimens.

There is ample evidence (Clausen, Keck, and Hiesey, 1939, 1940, 1945, 1948; Turrill, 1986; Turesson, 1922, 1925 and others) to show that some apecies are less influenced by the environment than others, but most frequently it is individual characters that vary from species to species in their reaction to the environment. The same is generally true in regard to herbarium specimens and living material.

The present study deals with a comparison of the morphological variation recorded for seven accessions of the Dichanthium annulatum complex during three successive years, and also of measurements recorded from living material and from herbarium specimens in 1958 (Table 1). 8ix morphological characters were measured. From the previous study of thia complex (Celarier and Harlan 1956; Mehra and Celarier, 1958) theme characters were obeorved to be fairly reliable in distinguishing certain Histinct morphological types. Of these characters only two were measured in an aboolute scale while the rest were recorded in three classes.

Colarier ot al., (1958) from a detailed cytogeographical study of this complex found diplolds, tetraploids and hexaploids. The diploids were all of the morphological type designated tropical, the hexaploids all of the south Arrican type, but the tetraploids were of two morphological types, tropical and mediterrancan.

Materials and Methods

Soven accemsions of the Dichantidium anmulatum complex were grown (Colaritar and Harlan, 1956) and studied separately in 1956, 1957 and 1068. The herbarium specimens prepared in 1958 were also studied. These meven accestons consinted of one diploid tropical type, one tetrapioid tropical type, two tetraplolde of the mediterrancan type, and three hexaplolde of the South African type. Morphological data were recorded from Inve plante of each acceselon. Fiach plant was represented by an infloremeence which was selected with the intention of obtaining a good repre-

[^0]sentation of the range of variation in the accossion. The samples were, therefore, quite small and subjectively obtained. The average valuen for the morphological characters were compared for each accemsion between years and between living and herbarium specimens.

Experimental Results

(a) Length of the primary axis

This character was observed to be only slightly variable in all accessions between different years in the field and between field and herbarium specimens (Table 1). The average length of the primary axim in all accensions except A 4083 was observed to be higher for the living material grown in 1957 in comparison to the material grown in 1956 and 1958. The herbarium specimens in 1958 were slightly smaller than the field materials. This may not be due so much to an actual shrinkage of spectmens, as to a tendency to select smaller specimens for pressing.
(b) Length of the longest raceme

The length of the longest raceme was observed to be only slightly variable between the different years in the field as well as between the field and the herbarium specimens (Table 1). Again, the pressed spectmens were somewhat smaller than the field materials.
(c) Width of the racemes

This character was scored in three grades i.e. wide (+), medium $(++)$ and thin $(+++)$. This character was observed to be stable in different years in the field and in the herbarium apecimens in all accessions.
(d) Number of racemes

This, character was scored in three grades i.e. few (less than 7 racemes), medium (7 or 8 racemes) and many (more than 8 racemes) racemes. Although there was a slight difference in the total number of racemes per inflorescence, both in different years and in comparing field to herbarium material, nevertheless the grades remained the same (Table 1).
(e) Pubescence on the glume

The pubescence on the upper part of the glume was atudied and acored In three grades i.e. scantly, medium and highly pubescent. This character remained stable in all accessions between different years (Table 1). In the herbarium specimens the hair seemed to have fallen off from many glumes in most accessions. However, the type of pubescence could be correctly determined in all cases after atudying ten apikelets from different locations on the racemes.

(f) Pubescence on the nodes

Pubescence on the nodes of the otem was scored in three grades t.e. slight, medium and highly pubescent. This character was obeorved to be stable in the field between different years as well as between the living materials and the herbarium specimens.

Discusaion and Concluatons

The purpose of this inventigation was to find out if elected morphologicai characters remain atable in different years in the field and alwo if the data taken from herbarium apecimens are aimilar to thowe from field material. The comparative morphological study revealed that four
Tabre 1

Accomion number Locenfon	Yoar	loegth of cads (minn.) Rance		longth of the roceme (mm .) Range	longent mean	widh of the roceme	Number of rocemes	Pubesance on slume	Prbesence at nodes
DIPLOIDS									
A-8242 India	1858 (F) ${ }^{3}$	9.0-11.0	10.2	35.0-41.0	38.2		$+$	$t+t$	$t++$
	1857 (E)	9.0-14.0	11.4	38.0-42.0	39.6	$+$	+	$t+t$	$t++$
	1958 (${ }^{\text {P }}$)	9.0-12.0	10.2	35.0-40.0	36.8	$+$	$+$	$t++$	$t++$
	1958 (H)	9.0-12.0	10.0	34.0-39.0	35.5	$+$	+	$t++$	$t+t$
TMPRAPLOIDS									
(8) Meciterranean type									
A-8182 Inreal	1958 (F)	18.0-20.0	20.8	55.0-63.0	58.0	$++$	$++$	$+$	$t++$
	1957 (F)	20.0-28.0	21.4	62.0-70.0	65.6	$+++$	+ +	$+$	+ + +
	1958 (F)	16.0-23.0	20.8	50.0-60.0	56.0	$+++$	$++$	$+$	$+++$
	1958 (H)	16.0-23.0	20.1	50.0-60.0	55.2	$t++$	+ +	+	+ + +
A-3789	1956 (F)	14.0-22.0	17.6	54.0-68.0	61.0	$t++$	+ +	+	$t++$
	1857 (F)	18.0-25.0	20.4	55.0-66.0	60.2	$t++$	$++$	+	$+++$
	1958 (F)	17.0-19.0	18.0	56.0-68.0	62.8	$++$	$++$	$+$	$+++$
	1958 (H)	14.0-20.0	16.0	55.0-68.0	62.6	$+++$	$t+$	+	+ + +
(b) Tropical type 1958 (F) $120-180$ (18) 18.0									
A-8718 India		12.0-18.0	15.6	47.0-59.0	52.4	$+$	$t+t$		$t++$
	1957 (F)	14.0-18.0	16.0	43.0-60.0	51.0	$+$	$+++$	$t++$	+ + +
	1958 (F)	18.0-18.0	15.6	52.0-56.0	54.4	$+$	$+++$	$+++$	$+++$
	1958 (H)	12.0-18.0	15.0	52.0-58.0	54.0	$+$	+ + +	$t++$	$t++$
HEXXAPLOIDS									
A-8716 8. Africa	1856 (F)	19.0-30.0	25.2	73.0-85.0	79.4	$+$	$+++$	+ + +	$t++$
	1857 (F)	20.0-28.0	26.6 .	69.0-86.0	79.2	+	$+++$	$+++$	$+++$
	1958 (F)	23.0-30.0	28.2	75.0-80.0	76.0	$+$	$+++$	$+++$	$+++$
	1958 (H)	23.0-28.0	25.0	74.0-80.0	75.4	$+$	$+++$	$+++$	$t++$

Pubes-
ence af
nodes
+++
+++
+++
+++
+++
+++
+++
+++

 length of the primary

Year
1956 (F)
1957 (F)
1958 (F)
1958 (H)
1956 (F)
1957 (F)
1958 (F)
1858 (H)

5	¢
8	
8	4
91	¢

Acessalon
Aumber
A-4080
A-4088

out of the $\begin{aligned} & \text { dx morphological characters studied, showed consistent grades }\end{aligned}$ (name ciacs interval) while the values for the remaining two characters were alightiy variable in the field between different years as well as between the living material and herbarium specimens. The two characters showing differencea were measured quantitatively. If they had been moored in three classes like the other four characters, they would have been junt as stable.

The pressed apecimens were somewhat amaller than the field material. How much of this was actually due to shrinkage and how much due to the selection of smaller inflorescences for pressing was not determined. The pressed material was taken later in the season when inflorescences tend to be smaller.

The data indicate that if one scored these six morphological charactern in three class intervals. the data from different years and from herbarium specimens could be combined together with considerable confidence.

Also it is seen in Table 1 that those characters that have been used to separate ploidy levels (i.e. - lengths of primary axis and longest raceme) were conalatently rellable during the three years and in both nursery and specimen measurements. The same is true for those characters (width of raceme, pubescence of first glume, and length of raceme) that are used to separate tropical from the Mediterranean type in the tetraploids.

Refibrences

Celarier, R. P. and J. R. Harlan. 1955. Studies on Old World bluestems. Okla. Agric. Exp. Sta. Tech. Bull., T-48: 1-31.
1956. An Andropogoneae garden in Oklahoma. Taxon., b: 183-186.

Mehra, K. L. and M. L. Wolf. 1958. Cytogeography of the Dlohanthium annulatum complex. Brittonia, 10: 59-72.

Claueen, J., Keck, D. D., and W. M. Hiesey. 1938. The concept of species based on experiment. Am. J. Bot., 26: 103-106.
1940. Experimental study on the nature of species I. Carn. Inst. Wash. Publ., 520. 452 pp.
1945. Experimental study on the nature of species II. Carn. Inst. Wash. Publ., 564. 174 pp.
1948. Experimental study on the nature of species III. Carn. Inst. Wash. Publ. $581 ., 129$ pp.
Mehra, K. L. and R. P. Celarier. 1958. Cytotaxonomic notes on the Dichanthium annulatum complex. Proc. Okla. Acad. Sci., 38: 22-25.

Tureason, G. 1822. The genotyplc response of the plant apecies to the habitat. Hereditas, 3: 211-350.
1925. The plant apecies in relation to habitat and climate. Hereditas, 6: 147-2s6.

Turrill, W. B. 1988. Contact between plant classification and experimental botany. Nature, 157: 563-666.

[^0]: - Peethemotes, set In Mamorian.

