Dividing a Line Externally and Hyperbola Construction

MAYO G. SHULTS, Northern Oklahoma Junior College, Tonkawa
To divide a line externally into a given ratio:
For example, if the segment from $(2,3)$ to $(5,7)$ is to be extended to four times its original length, what is the terminal point?

In the formula for internal division,

$$
x=\frac{r_{1} x_{1}+r_{1} x_{2}}{r_{1}+r_{2}} \quad y=\frac{r_{2} y_{1}+r_{1} y_{2}}{r_{1}+r_{2}}
$$

let $\left(x_{3}, y_{2}\right)$ be the unknown, let $(2,3)$ be $\left(x_{1}, y_{1}\right)$ and let $(5,7)$ be (x, y), so that:

$$
\begin{array}{rlrl}
5 & =\frac{3(2)+1 x_{2}}{1+3} & 7 & =\frac{3(3)+1 y_{2}}{1+3} \\
20 & =6+x_{2} & 28 & =9+y_{2} \\
14 & =x_{2} & 19 & =y_{2}
\end{array}
$$

Construction by ruler and compass:

Given: hyperbola and transverse axis, find focl and directrices:
The general equation of hyperbola is $x^{2} / a^{2}-y^{3} / b^{2}=1$. By inspection, a point ($5 / 4 \mathrm{a}, 3 / 4 \mathrm{~b}$) will lie on the curve. With the curve and transverse axis given, the vertices and distance a are readily available.

By a double bisection $1 / 4 a$ can be obtained, and a vertical line $x=5 / 4$ a can be constructed. The point where this line crosses the curve will then be $3 / 4 b$ above the axis.

After trisecting the distance $3 / 4 b$, the minor axis can be determined; then the location of foci and directrices are easily determined.

