Expansion of the Crappie Population in Ardmore City Lake Following a Drastic Reduction in Numbers ${ }^{1}$

ROBERT M. JENKINS, Oklahomi Flsheries Researck Laboratory, Norman

One of the fishery management tools currently employed in Oklahoma involves the elimination of 50 to 95 percent of the fish in a lake where the populations of desirable species are determined to be slow-growing and overcrowded. The desired result is the creation of conditions conducive to greatly accelerated growth, a phenomenon which is associated with excellent fishing success.

An attempt to drastically reduce the numbers of stunted fishes in Ardmore City Lake, particularly white crappie (Pomoxis annularis) and black crapple (P. nigromuculatus), was made in September, 1953. The application of 2050 pounds of powdered rotenone to about 80 percent of the lake surface killed large numbers of gizzard shad, crappies, and carp. Largemouth bass, channel catfish, yellow perch, and various sunfishes were killed in lesser numbers. In order to evaluate the effects of the reduction in population on reproduction and growth, sampling with Wire traps was carrled on at intervals during the following two years (5).

The production of large numbers of crapple by a very limited number of adults was one of the more striking results of the investigation.

DESCRIPTION

Ardmore City Lake is located in Carter County, Oklahoma, 2 miles north and 1 mile west of Ardmore. Impounded in 1902 as a municipal water supply reservoir, the lake has a surface area of 184 acres, a maximum depth of 32 feet, and un average depth of about 18 feet. The drainage area comprises 1600 acres of native tall grass prairic, and the shoreline vegetation is composed of moderately heavy stands of Polygonum lapathifolium and P. americanus. Lush growths of Chara spp. occur in water from 3 to 14 feet deep.

The lake level is falrly stable due to water receired through a gravityflow condult from Mountain Lake, a 145 -ncre impoundment located 12 mlies northwest in the Arbuckle Mountains. The water is alkaline (pH 7.8-8.2) and hard (methyl orange alkalinity $100-155 \mathrm{ppm}$.), and the lake is typically thermally stratifled during the summer months.

SAMPLING METHODS

Cylindrical traps, 6 feet long and 3 feet in diameter, with funnel throats at each end, were nsed to capture fish. The frumework was made of $3 / 8$-inch reinforced rod, and corered with 1 -inch mesh chicken wire.

Trapping was carried on during four separate periods from June, 1054, to June, 1955 (Table 1). Fifteen to 25 traps were fishetd. during each period, and were normally lifted every day. Trapped fish were placed In a canpas holding "tub," measured individually, marked by clipping the left or right pectoral fin, and released. During the 1954 trapping periods fish were released at a central point of the lake, but in subsequent operathons they were liberated at random (within $50-300$ yards of the site of capture) to avold disrupting the normal behavior pattern of individuals (4). The traps were moved about in the lake, and were placed to afford a high crapple catch. During the winter months, most of the catches were made in

[^0]the northern half of the lake near the dam, and traps were concentrated there. In the sommer months they were distributed throughout the lake, and were set within 100 feet of shore in 4 to 15 feet of water.

POPULATION ESTIMATE

The population estimates were calculated by the Schnabel formula (7) and also by the Chapman formula (3). The conditions which must be satisfied if these formulae are to produce valid results (6) were considered to be fulfilled. All fish which were injured in the traps were not released as marked fish. Some regeneration of clipped fins was noted in June, 1055, but could easily be detected by asymmetry and shortness of the fin . Random mixing of marked and unmarked fish was accomplished by constantly shifting the location of the traps and by releasing fish at random. No crappie were removed by fishermen during the period of investigation, so recognition and recording of marked specimens was made entirely by trained personnel. Examination of the length-frequency distribution of the two species (Tables II and III) Indicated that some growth did occur in the spring of 1955 , but that there was no recruitment.

In 110 trapping days, including 1614 trap-lifts, only θ adult black crappie and 14 adult white crappie were captured. Two of the black crapple and 7 of the white crappie were recaptured during this period. The egtimate of the population existing following rotenone treatment in 1953 is 27 black crappie (95 percent limits, 18-47), 18 of which were over 8 inches in length the following spring, and 23 white crapple (95 percent limits, 18-32), 10 of which exceeded 8 inches. None of the fish exceeded 11 inches, and all were 4 to 6 years of age. Carlander (1) cites various authors who report that female black crappie produce from 11,000 to 188,000 eggs, with an average of about 19,000 eggs in 6-8 inch fish, 30,000 In $8-10$ inch fish, and 45,000 in larger females. On this basis, and provided that the number of each sex in the lake was equal, the 13 pairs of black crappie had a maximum potential production of approximately 350,000 fertilized eggs in 1054. Based on a slightly lower fecundity rate (1), the 11 pairs of white crappie could have produced about 240,000 eggs.

The catch in 1,213 trap-lifts between December 8, 1954 and June 20, 1955 numbered 13,047 black crapple and 5,150 white crappie of the 1954 year-class (Table 1). At the end of the operation (June 20), 11,088 marked black crappie and 4,565 marked white crapple were theoretically at large in the lake. Recaptures included 677 black and 191 white crapple. Injuries and deaths occuring in the traps accounted for 402 black crapple (0.35 percent of the estimated population and 394 white crapple (0.65 percent of the estimated population).

The final estimate on June 20 resulted in 116,200 yearling black crappie by the Schnabel formula, and 136,500 by the Chapman formula (Table IV). (Confidence limits for the Schnabel computation were based on the assumption of Poisson distribution, wherein the variance is equal to the summation of recaptures.) Estimates were much higher during the earlier trapping periods which might be attributable to high natural mortality. However, it is believed that a realistic estimated was not reached until about 7 percent of the population had been marked. The decrease from March 31 to June 20 of $\mathbf{6 , 1 0 0}$ fish (Table IV, Chapman formula) amounted to 4.3 percent of the total population, and may indicate actual mortality during the spring months. Estimates derived by the Chapman formula did not fluctuate as widely as did those obtained by the Schnabel formula, ánd are used in further computations.

The final yearling white crappie population estimate was 60,800 using the Schnabel formula, and 64,000 using the Chapman formula. The increase in estimate from March 31 to June 20 (Table IV) might be attributable to higher mortality of maried fish, but is belleved to have been due
to more adequate mampling in June of the shallower upper reaches of the hike. This if a habitat which seemed to be preferred by the species; but which had not been productive of catchee during the winter months.

There were an estimated 27 black crappie weighing a total of 10.2 pounds, and 23 white crappie weighing 5.4 pounds remaining in 184-acre Ardmore Clity Lake following rotenone treatment in September, 1063. Their approximate potential combined production in 1954 was 590,000 offspring. Based on lenght-frequenty distributions (Tables II and III) and calculated weights, 1 the yearling black crappie averaged 5.42 inches in total length and 0.087 pounds in welght in June, 1955. Yearling white crappie averaged 0.79 inches and 0.089 pounds. Therefore, there were about 138,500 black crapple (742 per acre) weighing 9,120 pounds (49.6 pounds per acre), and 64,000 white crapple (848 per acre) weighing 4,420 pounds (24.0 pounds per acre), in the lake after one complete year of growth.

First-year growth had increased 2 inches over pre-rotenone rates for both specles. However, growth during 1955 to June 20 was below that anticipated, and may have been due to competition from the large yearling carp population present (5). Recovery following rotenone application in 1868 indicated that white crappie outnumbered black crapple approximately 5 to 1 but the survival and reproduction of larger individuals of the latter species had reversed the ratio to 2 to 1 in favor of black crappie in 1855.

Carlander (2) cites average standing crops, in pounds per acre, of white and black crappie in some midwest reservoirs as follows:

White crappie 35.3 pounds / acre
Black crapple 92.1 pounds / acre
Whlte crappie with black crappie present 26.9 pounds / acre
Black crappie with white crappie present 17.1 pounds / acre
Black crapple production in Ardmore City Lake (49.6 pounds per acre) exceeded the average stated in combination with white crappie and was 54 percent of the black crappie alone mean after one year's growth. The standing crop (24.0 pounds per acre) of white crappie after one year's growth was nearly equal to the average stated when black crapple were present and represented 68 percent of the weight of Carlander's average standing crop of white crappie alone.

CONCLUSION

An estimation of the crappie population in Ardmore City Lake revealed that a population of 50 adults with a reproduction potential of about 590,000 produced a population which at one year old numbered 200,500 fish. The atudy demonstrates the fecundity of these two species, and emphatically underinee the insilty of stocking crappie in lakes where they are already prement.

LITGRATURE CITED

1. Carlander, Kenneth D. 1850. Handbook of freshwater Ishery biology. Wm. C. Brown Co., Dabuque, Iowa: 281 pp.
2 Carlander, Kenneth D. 1805. The standing crop of fish in lakes. Jour. Fish. Res. Bd. Canada 12(4): E18-70.
2. Chapman, Douglas G. 1951. Some propertien of the hypergeometric distribution with application to soological censuses. Univ. Calif. Publ. in statistices, 1(7): 181-00.
3. Cooper, Gerald P., and William C. Latta. 1954. Further studies on the fish population and exploitation by angling in Sugarloaf Lake, Washtenaw County, Michigan. Pap. Mich. Acad. Scl., Arts, and letters, 39 (1954) : 209-23.
4. Jenkins, Robert M. 1055. A summary of fish population studies conducted during 1054 at Ardmore City Lake, Stringtown Sub-Prison Lake, Fairfax City Lake, and Pawhuska City Lake. Okla. Fish. Res. Lab. Rep. No. 48, March, 1955 : 31 pp.
5. Ricker, William E. 1948. Methods of estimating vital statistics of fish populations. Ind. Univ. Publ., Science Series, 15: 101 pp.
6. Schnabel, Zoe Emily. 1938. Estimation of total fish population of a lake. Am. Math. Monthly, $55(6)$: 348-82.

TABLE 1.
Number of black and white crappie captured in wire traps in Ardmore City Lake during periods indicated, and number of fish caught per trap-lift in 1954-55.

Trapping period	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { trap } \\ \text { lifts } \end{gathered}$	1954 Year-Class		Older Pish		Number of fish per trap-lift	
		Black crappie	White crappie	Black crappie	White crapple	Black crapple	White crappie
9-\%5 June, 1954	401	1	7
8 8-29 Dec., 1954	285	3180	1528	6	3	11.2	5.4
$\begin{gathered} 8 \text { Feb.- } 31 \text { Mar., } \\ 1955 \end{gathered}$	645	8420	2579	2	9	13.1	4.0
2-20 June, 1955	283	1447	1043	2	2	5.1	3.7
Totals	1614	13047	5150	11	21	10.8	4.3

TABLE II.
Length-frequency distribution of yearling black crappie captured In Ardmore City Lake during various trapping periods.

Total length	Trapping Periods (1954-55)					
	$8-20$ Dec.	$\begin{aligned} & 8-26 \\ & \text { Feb. } \end{aligned}$	27 Feb.10 Mar.	$\begin{aligned} & \text { 11-21 } \\ & \text { Mar. } \end{aligned}$	$\begin{aligned} & 22-31 \\ & \text { Mar. } \end{aligned}$	$\begin{aligned} & \text { 2-20 } \\ & \text { June } \end{aligned}$
4.0		1				
4.1	2					
4.2	2	4	1			
4.8	12	5				
4.4	23	6	2			
4.5	41	19	10	2	1	
4.6	71	29	11	2		
4.7	108	27	20	3	1	
4.8	150	89	49	29	8	3
4.8	198	145	71	37	28	11
5.0	254	238	137	123	63	37
5.1	370	312	263	336	152	75
5.2	378	328	483	096	308	92
6.3	368	314	530	817	401	190
5.4	224	182	400	614	289	231
5.5	85	97	190	280	85	273
5.6	36	20	40	43	20	174
5.7	9	8	θ	15	7	90
5.8		1			1	21
5.9		1	1			6
6.0						1
6.1						
6.2						
6.3						1
6.4						
6.5						
6.6						
Total no. of fish	2327	1824	2217	2997	1364	1205
Average length	5.10	5.14	5.24	8.28	5.27	5.42

TABLE III.
Length-frequency of yearling white crappie captured in Ardmore Vity Lake during various trapping periods.

	Trapping periods (1954-55)					
Total length	8-29 Dec.	$\begin{aligned} & 8-26 \\ & \text { Feb. } \end{aligned}$	27 Feb.- 10 Mar.	$\begin{aligned} & 11-20 \\ & \text { Mar. } \end{aligned}$	$\begin{aligned} & 22.31 \\ & \text { Mar. } \end{aligned}$	$\begin{aligned} & 2-20 \\ & \text { June } \end{aligned}$
4.0						
4.1						
4.2						
4.3						
4.4	1					
4.5						
4.6	1	1			.	
4.7	3	1	1			
4.8	9	8	1	1		
4.9	18	14	2	1	1	
5.0	45	27	3	4	1	
5.1	68	48	25	9	3	2
5.2	81	105	61	16	9	6
5.3	107	141	79	36	42	27
5.4 5.5	144	169	139	${ }_{88}^{68}$	125	46
5.5	191	174	179	88	155	87
5.7	168	141 75	110 54	75 44	108	111
5.8	61	28	14	12	37	138
5.9	12	14	7	4	5	$1+8$
6.0	2	3	1		1	130
6.1	1	4			1	${ }_{63}$
6.2 6.3						32
6.4						13
6.5						1
6.6						1 8
Total no. of fish	1070					
	1070	953	676	358	569	945
Average length	5.45	5.42	5.45	5.49	5.53	5.78

TABLE IV.
Detimate of the total population of black and white crappie in Ardmore City Lake at various dates throughout the trapping period calculated by the formulae of schnabel (7) and Chaparan (3), with 95 percent confidence limits denuted in minumum and maximum columns B/P indicate the percent of marked fish present in the population on dates stated. All eatimates

$\begin{aligned} & \text { Date } \\ & 1054-55 \end{aligned}$	$\begin{aligned} & \text { Method } \\ & \text { of } \\ & \text { estimate } \\ & \hline \end{aligned}$	Black crappie					White crapple		
		$\begin{aligned} & \mathbf{B / P} \\ & (\%) \end{aligned}$	Minimum	Estimate	Maximum	$\begin{aligned} & \mathbf{B} / \mathbf{P} \\ & (\%) \end{aligned}$	Minimum	Estimate	Maximum
29 Dec.	Schnabel Chapman	$\begin{aligned} & 2.5 \\ & 2.1 \end{aligned}$	167,200	$\begin{aligned} & 242.500 \\ & 238,500 \end{aligned}$	440.900	$\begin{aligned} & 9.0 \\ & 1.9 \end{aligned}$	45,000	$\begin{aligned} & 87,700 \\ & 43,400 \end{aligned}$	187,100
15 Mar.	Schnabel Chapman	$\begin{gathered} 6.7 \\ 5.7 \end{gathered}$	177,800	$\begin{aligned} & 205,400 \\ & 206,600 \end{aligned}$	243,200	$\begin{aligned} & 5.0 \\ & 4.7 \end{aligned}$	\$4,400	$\begin{aligned} & 66,800 \\ & 65,300 \end{aligned}$	88,300
81 Mar.	Schnabel Chapman	$\begin{aligned} & 9.3 \\ & 7.9 \end{aligned}$	113,600	$\begin{aligned} & 123,600 \\ & 142,600 \end{aligned}$	135,400	$\begin{gathered} 6.1 \\ 0.7 \end{gathered}$	44,300	$\begin{aligned} & 51,500 \\ & \$ 3,500 \end{aligned}$	61,500
20 Jnne	Schnabel Chapman	$\begin{array}{r} 10.3 \\ \times .8 \\ \hline \end{array}$	$\begin{aligned} & 108,000 \\ & 125,200 \\ & \hline \end{aligned}$	$\begin{aligned} & 116,200 \\ & 136,500 \\ & \hline \end{aligned}$	$\begin{array}{r} 125,600 \\ 147,800 \\ \hline \end{array}$	$\begin{aligned} & 7.6 \\ & 7.1 \end{aligned}$	$\begin{aligned} & \$ 2,800 \\ & 54,000 \\ & \hline \end{aligned}$	$\begin{array}{r} 60,300 \\ \beta+4,000 \\ \hline \end{array}$	$\begin{array}{r} 70,200 \\ 74,000 \\ \hline \end{array}$

[^0]: 1 Contribution No. 51 of the Okiahoma Fishertes Research Laboratory. a cooperative unit of the Otiahoma Game and Fith Department and the Univeralty of Okiahoma Blologleal gurvey.
 December 8. 1955.

