Planetary Alignment Periodicities in Sunspots and Solar Radiation ${ }^{1}$

CLYDE J. BOLLINGER, University of Oklahoma, Norman, Oklahoma

If the existence of sun-tides is postulated consistent relations between planetary alignment, 1 and sun-spot activity, ${ }^{2}$ the "solar constant" of radiation, ${ }^{3}$ and terrestrial weather may, by application of the Kepler's third law of planetary motion and Newton's Universal law of gravitation, be demonstrated. Attention is here restricted to sunspots and radiation.

Sunspot numbers form a long reliable series of indices and have been calculated back to A. D. 1749.3 Harmonic analysis of the records of the past two centuries, has revealed more than a dozen constituent rythms with periods ranging from 57.6 to 178.8 months. ${ }^{2}$ Solar constant values, considered less reliable, are available for a relatively short period, but also have been found by C. G. Abbot and others to contain rythms, with periods ranging up to 23.0 years. ${ }^{2}$

When two planets are in alignment with the sun, i. e. in conjunction or opposition their tidal forces ($\mathrm{m} / \mathrm{r} 3$) are added; when in quadrature, or 90° heliocentric degrees apart, the resultant of their tide raising forces is equal to the difference between their respective ($\mathrm{m} / \mathrm{r} 3$) values. The siderial periods of the planets are astronomic constants. 4 If, for simplification of calculations, the eccentricities of the planetary orbits are neglected, synodic periods of pairs of planets would be constants. The mean synodic periods are astronomical constants. Hence, neglecting eccentricity, any pair of planets will be in alignment and produce relatively high suntides periodically, at intervals equal to one-half their mean synodic periods.

The major sun-spot rythm periods, according to A. Schuster, K. Stumff, H. H. Clagton, A. E. Douglas and D. Alter, are given in Table I, and those found in Solar radiation, by C. G. Abbot and C. L. Sterne in Table II, along with the mean synodic periods of planets to which they most nearly correspond. A close agreement will be noted. Table I and II.

References

1. Abbot, C. G.
2. Dewey, Edward R., A list of Rythms Determined and/or Alleged. Compiled by Edward R. Dewey, Director, Foundation for the Study of Cycles. Riverside, Connecticut 1949.
3. Shove, D. Justin: The Sunspot Cycle A. D. 301-1950. Journal of Cycle Research Vol. 2, No. 4 Fall 1953.
4. The American Ephemeris and Nautical Almanac. U. S. Naval Observatory, Washington D. C., Annual. Vol. 1954
[^0]Table I
Relation of Sunspot Rythms to Planetary Alignment

Sunspot Authority	Period Months	Suntide Months	Period Synods	Planets			Difference Months		Ratio

* (a) D. Alter
(b) H. H. Clayton
(c) A. E. Douglas
(d) A. Schuster
(e) K. Stumff

Table II
Relation of Solar Radiation Rythms to Planetary Alignment

$\begin{aligned} & \text { Radiation } \\ & \text { Authority } \end{aligned}$	Period Months	Suntide Period Months Synods		Planets Dís	$\begin{aligned} & \text { rence } \\ & \text { Months } \end{aligned}$	Ratio
C. L. Sterne	6.26	6.211096	1/2	Earth-Saturn	$.048904$	$.00787365$
C. G. Abbot	8.125	8.050632	2.5	Mars-Saturn	. 074368	
C. L. Sterne	8.38			Mercury	. 087693	. 00916672
C. L. Sterne	9.68	9.59230	1/2		. 087	
C. G. Abbot	9.79		3.5	Mars-Saturn	. 090911	. 0089136392
C. L. Sterne	10.29	10.19	3.5	Mars-Satura		
C. L. Sterne	11.15		1.5	Venus-Saturn	. 019983	. 0017688461
C. G. Abbot	11.29 13.13	11.309983 13.105317	1.5	Earth-Jupiter	. 024683	. 0018883434
C. L. Sterne	13.13	15.079978	2	Venus-Saturn	. 120022	${ }^{.00795903}$
C. L. Sterne	17.45	17.484152	${ }^{6}$	Mars-Saturn	. 001822	. 0000893217
C. L. Sterne	20.4	20.398178	7 a	Mars-Sat		
C. G. Abbot	21.0	24.844385	2	Earth-Saturn	. 044385	. 00178652
C. L. Sterne	$\begin{aligned} & 24.8 \\ & 25.333 \end{aligned}$	24.84438				
C. G. Abbot	${ }_{39.5}^{25.333}$		3.0		. 1840478	$\begin{aligned} & .004681229 \\ & .006862061 \end{aligned}$
C. G. Abbot	39.5 40.8	39.315963 40.54936	14.0	Mercury-Neptune	. 278064	.006862081 .0002225246
C. G. Abbot	45.25	45.239933	${ }_{14}^{6}$	Venus--3atura		
C. L. Sterne	67.6	66.495136	14.5	Mercury-Neptune	. 018964	. 0002788045
C. G. Abbot	${ }_{91.0}^{68.0}$	$\begin{aligned} & 68.018964 \\ & 91.174356 \end{aligned}$	31.5	Mercury-Neptune		
C. G. Abbot	${ }^{91.0}$	91.1479848	59	Venus-Mars	. 52015	00188

[^0]: ${ }^{2}$ Receired for publication December 17. 1954.

