Pre. And Post-Impoundment Fish Populations: in The Stilling Basin Below Wister Dam

GORDON E. HALI. Ntate Gime and Fish Department, Mediester and Wilhila C. LATTA, Inliersity of Ohbhoman Norman

Among the farorite fishing sites at Oklahoma reservoirs are the waters below the dams. Eischmeyer and Miller (3) have emphasized the importance of tillwaters below TVA impoundments as productive fishing areas. As a menture in reducing erosion, the water flowing from some oklahoma impoundmenty it lowed down in concrete stilling basing. Due to the dangers involred. fishing Is prohibited in the stilling basin below Wisti r Dam. Howerer, any collection of the fish population in the basin would contaln timea which have moved upstream during high water from ti.e hevily tiahed downatream area, as well as fishes which have come down throust the outlet tuncela from the imponndment above. Pre- and port-

[^0]impoundment fish collections were made in the stilling basin because of the accessibility to a large population of fish.

On August 12-13, 1943, as part of a pre-impoundment fishery survey of Wister Reservoir. most of the water was pumped from the stilling basin, and fishes were collected with small seines. The analysis of that population was reported by Hall (4). On September 7. 1951, at the conclusion of a post-impoundment survey', the fish population was sampled in a similar fashion. It is the purpose of this paper to report on those fishes taken in 1951 and to compare these data with those of the 1949 collection.

Pumping the water out of the basin and over a cofferdam of sandbags into the river below commenced at 11:00 A.M., and by 7:00 P.M. the water level was down to two feet, a depth shallow enough to permit the use of small seines. With the ald of floodlights, two crews seined the basin continuously for three and one-half hours, during which period the least depth of water was approximately eight inches. Seining was continued until the returns were negligible. Operations were lialted when repeated seine hauls produced only a few small channel catfish, white crapple, and gizzard shad, fishes which had already been taken in large numbers. The authors are reasonably sure that the bulk of the population had been removed, to the cxtent that the remaining fishes would little affect the species compositic, n. cither by number or by welght.

A total of 1857 fishes were taken from the basin. Of these. 1843 had a combined weight of 595.6 pounds. One hightin sucker, which is rarely taken in Oklahoma waters, 11 adult chestnut lampreys, and two young American eels were preserved for museum specimens and were not welghed. White crappie, gizzard shad, largemouth black bass, channel catfish, and blueglll in that order were the five most numerous fishes in the collection, and together they constftuted over 70 per cent of the total catch. Although black buffalo and carp were the seventh and eighth most numerous species. their combined weight made up 43.5 per cent of the total weight of all fish taken. because of the comparatively large average size of individuals. Tables I and II show comparisons between the 1949 and 1951 populations. as to numbers of fish and weights of fish respectively.

When the pre and post-impoundment populations are compared, certaln differences are evident. The total number of fish taken was decidedly preater in 1951 than in 1949, even though it is probable that a smaller proportion of the existent population was taken in 1951 than in 1949 . In conirast to the increased numbers of fish in 1951. the total weight of the catch was 400 pounds less than in 1949. This is accounted for in part by the much smaller average size of coarse species (carp and buffalo) and by the appearance of large numbers of small game and pan fishes in the 1951 sample. Largemouth bass, white and black crappie, and black bullhead were absent in the 1949 collection, whereas in the post-Impoundment sampling these species were numerous. Similar changes were noted by liucske (5) in the pre and post-impoundment sampling of Allatoona Reservoir. Georgia. The planting of large numbers of largemouth black lass in Wister Reservoir in 1950 would account for their presence in the basin. Periodic sampling of the reservoir during the first two years of im poundment produced evidence of very successful reproduction of the crappies and black bullhead during that time.

[^1]TABLE I

Prezentage

By Weight
19

Srricitis
Carp
Channel catfish
Black buffalo
Largemouth black bass
Black bullhead
Bluegill
River carpsucker
White crappie
Bigmouth buffalo
Gizzard shad
Black crappie
Spotted black bass
Longear sunfish
Golden shiner
Green sunfish
Freshwater drum
Spotted sucker
mored from the stilling 13 a
$!\}!9$ and Neptember $7.1!氵 1$
in Belo

The compoultion of the population has changed in other ways since 1049. Abeent from the 1951 collection which were present in 1949 were smallmouth buffaln, flathead catfish, warmouth, and longnose gar. These epecies have always been present in the reservoir or the Poteau River, and apparently undetermined factors account for their presence or absence in the banin at any particular time. Furthermore, only three freshwater dram wert collected in 1951, although in 1949 it was the fourth most numerous apecies. During periods of drawdown of the reservoir, the drum fa common in the basin and in the river below where fishermen using crayfith for ball catch large numbers. This species preferably feeds on craytiah, sualla, and freshwater mussels (2), and the smooth cement walls and floor of the stilling basin provide little habitat for these molluscan forme. Presumably, after the water is cut off, drum move downstream to find a habltat with more suitable teeding conditions.

Some similarities in pre- and postimpoundment populations are noted also. Aa in 1949, black buffalo. channel catfish, and carp contributed most of the total wright of the 1951 collection. However, carp replaced the black buffalo an the heaviest component. These three species constituted 77.3 per cent of the total weight in 1949 and 63.5 per cent in 1951. Bluegill ranked as the fifth mont numerous fish in both collections, with the more numerous black buffalo, river carpsucker, and freshwater drum in 1949 beling ruplaced by whlte crapple, gizzard shad, and largemouth black bass in 1951. Channei ratfish, the most abundant fish in 1949, still ranked hish numerically in the 1951 sample as the fourth most numerous species. The prosence of the nootted black bass in the basin in both years is of conalderable interent. Inasmuch as this speries is a native of local stream populations. Althoukli commonly found in the streams entering the reservolr. It has not been collected or observed in the lake proper since the firat your of impoundment. It can be accounted for in the basin only becaume of lia preforence for the river type of habitat.

Whith rapert to each other, the anme-pan fish and coarse fish populatlona have undergone certain changes during the first two years of impoundment. Coarse finhes dominated the populations by weight in both collectlonn, but, whereas in 1949 they constituted 81.4 per cent of the total welaht, In 1951 this majority had decreased to 54.5 per cent. During the ame perlox the numerical dominance of game and pan fishes increased from 54.2 per cent in the pre-impoundment collection to $i 3.5$ per cent in the poat-Impoundment sample. The appearance of large numbers of white crapple and laracmouth black bass in the 1951 collection seems to have made the areateat contribution toward the growth of the game and pan fish population. The fact that there was a considerable decrease in the numbera of black buffalo, river carpsucker, and freshwater drum present In the busin in 1951 was apparently the main reason for the decline in the coarse fish population. However, not enough data are avallable from these collectiona to augreat that a corresponding increase or decrease in the abundance of the above named fishes occurred during the same period over the entire impoundment. Furthermore. it is doubtful whether the sample of the population of fishes collected below the dam in 1951 reflects accuratoly the proportion of game and pan fishes to coarse fishes in the recervoir. Spotled suckers and bowfin have been two of the more commna coarse tiahe in the lake since impoundment. but only a single specimen of the former and none of the latter was taken in the post-impoundment sample below the dam. Nevertheless. it is encouraging to note that of thie five moot numerous fiahes collected from the atilling basin in 1951. foir (white crapple, largemouth bass, channel catfish, and bluegill) are the mont dealrable from the point of view of angling. Since the greatest fiahing premare will probably be exerted against these species while coar* fishes will probably remain largely unharreated, the latter may be expectid to increace in abundance in the later years of impoundment. This situa tion was produced in eeveral TVA reservoirs (6).

Construction of the dam was still in progress at the tinie of the rre-impoundment investigation. Consequently, no definite conclusions could be drawn concerning the permanency of the stilling basin population. Now. after a two-year period of impoundment, the fact of a permanent fish population can probably be accepted-permanent meaning that there are fish in the stilling basin throughout the year. The population undoubtedly fluctuates upward with the spring spawning migration, and other changes are probably brought about by the opening of the outlet gates during periods of drawdown. The fish population of the basin would have to be sampled perindically thrcughout the year to determine exactly how it varies.

Although briet in extent, and lacking sufficient evidence for the formation of management recommendations, the post-impoundment colleclion of fish from the stilling basin below Wister Dam has confirmed some of the suppositions considered after the pre-impoundment collection (f). Also, the post-impoundment study has contributed to the scanty knowledge of early fish population trends in Oklahoma reservoirs. In 1949. It was presumed that the game and pan fishes would increase sulstantially soon after impoundment. This apparently is true. Furthermore. !: seemed likely that the stilling basin population was a dynamic: fish population and that the composition would be different, if sampled at any other time. The second collection does not present the desired evidence of periodic variation, but it does support the belief that variation In aize, number, and species does occur. Most specifically, the comparable data obtained from the post-impoundment collection points out the fish population of these waters is progressing from that native to the river to one inore commonly associated with Oklahoma impoundments.

ACKNOWLEDGMENTS

We are indebted to the Oklahoma Game and Fish Councll for use of these data; to Mr. Robert Rell, Resident Engineer, and all other U. S. Finkineer personnel who made this study possible: to Mr. Lynn Hutchens, Fishery Management Biologist, U. S. Fish and Wildife Service, for his assistance in the entire project; and to Dr. Howard Clemens. Dr. Edgar lathard, and Mr. Carl Riggs for their critical review of the manuscript.

LITERATURE CITED

1. Ampricas finhrifes Socibit. 1948. A list of common and sefentific names of the better known fishes of the United Slates and Canada. Special Publ. No. 1.
2. Devir. Jack S. 1946. Food of several species of fish. Norris Reservoir, Tennessee. Rept. Reelfoot Lake Biol. Stat. 10: 105-127.
3. Eminumiz. R. W. and L. F. Milize. 1948. Extent of fishing in tailwaters below TVA mainstream dams. J. Tenn. Acad. Sci. 2.3 (3): 187-190.
4. Hals Gomumy E. 1951. Fish population of the stiliting basin below Wister Dam. Proc. Oklahome Acad. Sci. 30: 69-62.
5. Hitakk, Elowako E. 1950. Fish reproduction, growth, and tishing success during the first season in Allatoona Reservoir. Mimeo. paper presented at the fishery sessions of the 4 th Ann. Conf. of Southeastern Fiahery and Wildlife Workers, Richmond, Va., Oct. 15-18.
6. Tanzwin.. C. M. 1945. The possibilities of a commercial fishery in the TVA impoundments and its value in solving the sport and rough fish problems. Trans. Am. Fisheries Soc., 73: 137-167.

[^0]:
 다앙․
 EAphotimal Elurvey and Department of Eoology. Calretity of Oliaboma.

[^1]: ${ }^{2}$ Both the pre- and poat-impoundment surveys were sponsored by the Othathoma bame 40d Theh Coumeli. Copperat'ng membera Included the Tulas Distriet. U. S. Corpa of mapi-
 the Tinitersity of Ollabona.

