Framing Sensible Questions of Nature ${ }^{1}$

haURENCE H. SNYDER, Dean of the Graduate College, Universlty of Oklahema, Norian

I am, as you know, a geneticist. I have been expoeed to considerable general training in biology, and to much specialised training in genetics. Yot I learned what I consider to be my most valuable scientific leason from the casual reading of a popular book in an entirely different field. The book was "The New Background of Sclence", a popular volume on astronomy and physics, by Sir James Jeans. In this book Jeans makes a statement to the effect that it is frequently easier to get some sort of an answer from nature to a nonsensical question than it is to ask a sensible question to begin with.

As a researcher, this statement set me to thinking, and I have come to the conciusion that it is one of the moat significant points that can be brought to the attention of the scientist and educator. It is my hope conight to illustrate Sir James' point of view with examples from several fields of science, and to outline as best I may the criteria for a sensible question.

Let nie choose first an example from my own field of genetics. Some years ago a popular question in biology was "which is more important, heredity or environment?" As long as the question was asked in this way the answers obtained from nature were inconsistent and ambiguous. It took us a long time to realize that the question, asked in this way, was a nonsensical question.

When, however, we reframed the question and asked "How much of the varlation in this specific trait (e.g. dementia praecox) is due to differences in the genetic make up of the individuals concerned, and how much is due to differences in the environments to which they have been exposed ${ }^{\prime \prime \prime}$, we began to get sensible, understandable answers. Ordinarily it turns out that part of the variation is attributable to genetic differences and part to environmental differences. We are coming to realize that every trait Is the cooperative result of hereditary and environmental influences. it in the tank of the geneticist to evaluate these for spectic traits in specific populations under specific environments.

For example, all rabbits have a layer of fat under the skin. In some rabbits this fat is white, in others it is yellow (a serious carcans defect). If we crosa a rabbit with white fat with one with yellow fat, the offepring all have white fat. Crossing these together reaults in a second generation having three rabbits with white fat to every one having yellow lat. Obvonsiy fat color is dependent upon a single pair of alleles, the factor for white fat being dominant. We can breed rabbits to be of elther fat color as we may wish.

Moreover, we know how the factors act. The dominant allele results in an ensyme which breaks down the yellow canthophyll which is ingested with green food, and stores it in the liver. The recessive allele falls to reselt in this enzyme, the xanthophyil is not stored in the liver, but in carried by the circulation to the peripheral layers of fat and stored there.

However, all this happens only if we provide our rabbits with green food. If, instead of feeding them mash and cabbage, for example, wo teed them magh and potatoes, there is no xanthyphyll ingested and of course, no yellow hat.

[^0]arners moon
white
yellow
SON-QREAN TOOD
white
white

Thus the difference between white and yellow fat may be a senetic ditiorence if the enviroument is held constant (green food), or an onvicommental difforence if the genotype is held constant ($\mathbf{w} \mathbf{w}$). Note that we are not distinguishing between a case where the laws of heredity coperate and one where they do not. but merely between a case of constant amironment and variable heredity, and one of variable environment and conetant heredity.

Lot ys turp to a cace in geography. In 1569 Gerhard Kramer, a Flemish map maker, publiahed a map of the earth on a projection which has been thow is the Mercator Profection. Mercator is the Latin name which Eramer adopted for himself.

This mad has certain virtues and many defects. It primary quality is th the fact that paraliels and meridians cross each other at right angles they do on the alobe and, accordingly, a straight line anywhere on the map at any angle prements true directions. Accordingly, this map greatly secilitatem the determination of salling routes. In fact, it is the best map for that purpose. Its major defect is a lack of uniform scale and hence diftortion of areas. Georraphers have been interested in having a map of the enrth upon which the diatribution of physical, economic, demographic and other types of data might be plotted so as to make comparison simple and accurate; in other words an equal area map.
several zood projections had been developed but each had serious faults. Uatll reeently the problem has been approached from the purely mathematical point of view involving the representation of a spherical surface upon plane, whout engaging in distortions, but the answers were not denifitant from the geographer's standpoint.

Gome yeart ago. Dr. J. Paul Goode of the Department of Ceography. Univerelty of Chicaso, reframed the question, asking, what is our obfective in trying to plot a map of the earth upon a plane? The answer was cicar and direct. It is to show land areas or water areas in a manner which would make areal comparisons possible. Thus the objective was shifted from the rewlm of mathematica per se, to a definition of the specific use for which the map was intended. The next sensible question was, how can we beat obtain this objective? Again the answer was clear. It can be doas by interrupting the projection either for "continent unities" or "ocean unilies". In 1923 Dr. Goode publiahed his Homolosine Projection. Since thile publication, other geographers and cartographers have taken the cue trom his invention and worked out various modifications along similar lines. Thua, after meveral centuries of effort to produce an equal area map of the earth. the objective has been altained by rephrasing the approach to the problem.

Now let us ank the engineer whether he has encountered any problems which wore solved only after the original question had proved nonsensical and had to be reframed. I find no trouble obtaining engineering examples.

It we take a bar of material one fach square and apply a pull to it magthwise, Eradually increasing the pull untll the bar breake, we can define the maximum pull exerted during the test as the tensile strength of the material. If now we cut a sharp notch around a nimilar bar and repeat the experiment to see whether the streagth of the bar is reduced in proportion to the amouns of area cut away, we get some contradictory reaults. If the material under test it ductile. such as soft steel or copper, the reluetion in streagth in very litue. If it happens to be a brittle matorial the poroelain or very hand steel, the reduction is very great-quite out
of proportion to the area cut away. If we try again with a warion of experimenta to determine the largest force which can be applied and romoved an indefinite number of times, we get a result showing that the bar has boen weakened by the notch more than we can account for on the basis of the area cut away, but still do not get any very consistent resulti. The question was simply ambiguous.

If, however, we ask "What is the maximum value of dP/dA as compared with the average value P / A in the cases of the two bars, we obtain a senaible and practical answer, although the answer must be sought by means of the polariscope, and not by direct experiment.

Retarning now to blology, carly in the history of the natural sclencem there was set up a differentiation between "plants" and "animals". As long as we are dealing with cows and corn, elephants and eggplants, zebras and zinnias. We encounter no trouble in classifying living things as one or the other. With the invention of the microscope, however, caine the discovery of numerous small simple organisms which were not so readily classified. Thereupon arose a heated discussion. "Is this a plant or is it an animal " This question is meaningless and leads nowhere. Progress was made only when the question was reframed to read "What are the characteristics of this organism? How does it behave under this environment-that situation?" The very same point applies to the meaningless questions right now being asked about viruses and phages: "Are they living or non-living?" Good research workers do not waste time seeking answers to such meaningless questions.

Let us search the field of education for an example or two. The question has been taised "Are objective examinations better than exsay examinations?" As it stards. It is a nonsensical question. Only ambiguous and inconsistent answers follow. Finally the question was reframed. "What is it that we are trying to appraise? How can we best appraise these things as objectively as possible?" If our objective is to appraise the student's ability to write, obvlously we must have a sample of his writing. If it is to test his ablifty to apply principles, or to draw inferences, an objective examination may appraise this far less subjectively than an essay examination. Or a combinction of types may be desirable.

Again the question has frequently been raised as to the best class size. The question has meaning only if framed to read "What are the objectivea of the course? What changes are we trying to bring about in the students? Is it memory of facts? Laboratory skills? Application of principles? Setting up of test situations? How do students respond in these changes to large sections; to small sections?"

Sometimes we are not really asking the question we think we are, but a subsidiary question. Are we justifled in teaching geometry, let us may, because of the transfer of the discipline to every day situations? The answer as the question was interpreted was no, because no transfer occurred. However, the question asked really was "geometry as it is now taught.". When we realize that the question is actually more incluaive, and thes include in it "Can geometry be taught in such a way as to result In a transfer of training?". the answer is "yes". The answer to the original question is then "yes, if it is taught in such a way as to provide for a transfer of training."

Let us take an example from medicine. In the disease known as pernicious anemia, there is a lack of mature red cells in the blood. How. ever. It is found that there are more immature cells than usual in the bone marrow, where new red cells are formed. These do not mature. The situation is similar to that found in carcinoma, a kind of tumor. The question was framed by physicians "How can we control tumors: specifically this tumor?:" Pernicious anemia was 100% fatal up to 1925 , usually with

- three yoar course. No logical answer was forthcoming to the question, foe the dimple reason that pernicious anemia is not a tumor at all. The trwo answor came quite unexpectediy from an entirely different source.

Dr. Whipple of the University of Rochester was making a study of bile pigmeats and the formation of hemoglobin, especially as influenced by diet. Frita vegetables and meat were variously used in experimental diett. By chance liver was tried. It proved to stimulate red cells to development and therofore incream hemoglobin.

Minot and Murphy Immediately saw the application to pernicious anemia. belfeving at first that the stimulating hormone was produced in the liver. Lator if was discovered that the hormone is only stored in the liver. It 4 produced by the pyloric glands of the stomach. Achlorhydria, a lack of bydrochloric acid due to the deatruction of the glands of the main portion of the domach may be followed by destruction of the ryloric gland, hence by a lack of the hormone, reaulting in pernicious anemia. The achlorhydria to the reault of a senetic factor. However the same result may be obtained from an abonce of ment, milk and eggs in the diet. since proteins stimulate the gisads of the stomach to activity. This is a good example of the interaction of hereditary and environmental influences.

The main point in thla discusation of perntcious anemia is that here an sceidental reframing of the question, almost at right angles to the original queation, led to the answer. The good research worker will make use of thie principle when the answers he is getting are ambiguous or inconsistent.

May I chonee now an example from astronomy? Untll the middle ages there was. an you know, a geocentric notion of the motion of heavenly bodies. How can one explain the motion of these bodies around the earth? (The quetion an originally ralsed was of course based on the premise that the plapete and sun revolved around the earth). Thus the question was meaningleas and had no answer because it was ralsed on the basis of a palse promice. When the point of view was radically shifted from a geocentric to a hellocentris concept, the queation suddenly assumed meaning and ulgnificance, and an anawer was forthcoming.

Phyalre providen number of interesting examples of my point. The electron has been the hasls for the raising of many questions. To cite a very fow of thece will indicate another principle involved in the asking of ecientulie quentiona: the principle thri a qu"stion which is nonsensical at one atage of development of a science may become sensible under other statee of knowledge, and vice versa. In J. J. Thomson's time it was possible to ask "What is the mass of the electron?" What is its charge? Its volume?" To ask "What is its ware length?" would have been a nonsensical question. However, by the time of \mathbf{G}. P. Thompson that question was perfectly sensible. and had on unambiguous anawer. The question "What is the magnetic momont of the electron?' would have been nonsensical at that time. however. since the concept of apla had not yet been found to be necessary in the clarification of electronic phenomena. At present it is not at all a sonmencleal quealion. Rixht now it would be a very nonsensical question to ask "How bla are the ears of an electron?" My physicist friends assure mo. however. that if in the future the concept of the electron's ears would melp to clarify the obeerved phenomena. the electron will have ears, or whaty or conacloutness, or anything eise needed.

Acain the quection "How can we bring about the transmutation of elements?" has pased throush stages where it was a sensible question for the alcheminte, noncenalcal to the orthodox chemists, and is now again meomiag a reaconable queetion in the light of modern physical chemistry.

[^1]must be yes or no; or that one or the other of two alternative answers in poasible, but not both, or a third answer.

In attempting to determine the boundary between the Cretaceous of the Mesozoic and the Eocene of the Coenozolc in western North America, the question asked about any given geological formation was "Is it Cretaceous or Eocene?" Actually certain formations are neither, but are transitional. Yet the question was repeatedly asked on the assumption that there must be a sharp break; that formations in disputed regions must be one or the other. Over every proposed line of break much profitless dis. cussion arose, and much wasted argument ensued, since none of the proposed breaks is real.

As long as geologists labored under the concept that geologic eras are separated by world-wide punctuating disturbances, no sensible question was asked leading to the solution of the Laramie problem, since in the area of greatest dispute there is no break, and in those districts where the break is prominent. it does not come at a reasonable juncture between Cretaceous and Eocene.

Let me then attempt to set up the criteria for the asking of a sensible question of nature.

First, it should be stated in the terms in which the answer is desired. If a biological answer is wanted, the question must be asked in terms of blological abstractions: if a physical answer is desired, the question must be asked in terms of physical abstractions. You will recall the story of the little girl who was asked by her teacher "What is it that an elephant has that no other animal has?" Much to the teacher's surprise the chlld answered "Little elephants". That teacher had not framed the question In the terms in which she wanted the answer. This point so often becomes rapecially important when a scientist steps outside his own field.

Second. the question should be open-minded: not designed to "prove" anything. We can never ask of nature "Is this hypothesis true?", but only "Is this hypothesis tenable?" or "Is this hypothesis consistent with observable phenomena?" It has rightly been said that one phenomenon may be sufficient to disprove a hypothesis: a million million do not suffice to prove it.

Third, the question must be based on all available knowledge, and so designed as to clarify the existing phenomena. It is necessary to put firat things first. If, for example, you wished to discover how far away the ralnbow is, you might use surveying methods. Using precision instruments you would get a clear unequivocal answer: minus $93,000,000$ miles. But this answer is obviousiy absurd, for how can a distance be negative; moreover $93,000.004$ miles is certainly absurd, since you can see that rainbow is between you and that mountain over there. But if you reframe your question to read "How lar away is the source of light which forms the rainbow !". the answer becomes suddenly significant. The minus value tells yon that the source of light is not in front of you at all, but behind you, and the $93,000,000$ miles immediately identifies it with the sun.

Fourth. the earlier questions in any investigation must be inclusive, taking account of various known or suspected possibilities. Early questions about the cause of malaria centered around the mystertous "miasma", the bad night air arising from swamps. And did not early experlence seem to prove the causal nature of miasma, for excluding it tended to prevent malaria? Not until the posible causes were widened to include night. fling insects, however, was progress made in the permanent control of malaria.

Pifth, the later questions in any inveatigation must be more and more prociody stated: more erucial. Eapecially in dealing with living things the

Cupriment maxt be gwarded by edequate controls. It is important, however, ω fuily mederatand the limitt of controls. The story is told of a famora Erectologht whe had four children. He baptized two, and kept two for comerole.

Bixth, care must be taken to ascure yourself that you are actually mates the qeestion you think you are, and not some subsidiary quention Emplice bul permape not recognized. In the early study of the linkage of treditary factors in haman beinge, investigators thought they were ajoing the quation "Are thene factors inked?", whereas they were really asking "Are thene tralt masoclated in the general population?", an assoctation which may be the result of a number of phenomena, no one of which is in fect liakage.

The moral of this story is straightforward and clear. It behooves the remarch worker to acan the above criteria and any others which may occur to him. and make an honest effort to frame his question of nature properly: charly, concisely. Then. if a clear understandable answer is not forthcoming bo should ank the question again in another and better form. A question incorrectly framed in the first place will give some kind of an answer, but the anawer may be inconcelvably difficult to interpret sensibly.

If is not a crime against sclence to ask a nonsensical question. The vory fact of our lack of knowledge and our human lack of perception make it inevitable that we should frequently ask nonsensical questions. The orime agalast science is committed when, having failed to get consistent or unamblenous anmwers from nature, we fall to alter our question, or even redically to reframe It. If we do not take this step, we fall in one of the most important atepm of the scientific method.

B1BLIOGRAPHY

Jramn. Sik Jampa. 193s. The New Background of Sclence. New York, the Mammillan Co., vili+301 pp.

[^0]:

[^1]: Let me turn to geology for my final example. Here the so-called Laramie proken ofform an illuatration of the fallacy that the answer to a question

