A FISH POPULATION STUDY OF CLAREMORE CITY LAKE

ROBERT M. JENKINS, Fisheries Experiment Station*, Norman
Introduction.' This study of the fish population of Claremore City Lake by six fishery blologists of the Oklahoma Game and Fish Department was made in an attempt to determine the ratio of species present and the rates of growth as shown by fish scales with a view towards improved fishing. Fish populations are necessarily studied by the use of representative samples, as entire populations cannot be seen without destroying them. Spot polsoning with rotenone affords a representative sample and is the cheapest, most expedient and accurate means now available.

Claremore City Lake is located three miles northwest of Claremore, Oklahoma (Sec. 1, Twp. 21 N, 16 E, Rogers County), and serves as the municipal water supply. The lake was impounded in 1922 and has an area of 470 surface acres and a capacity of 3,070 acre-feet. The surrounding terrain is hilly and forested with blackjack and post oak. The drainage area is extensive and consists primarily of cultivated and pasture lands. Moderately heavy shoreline vegetation includes water wlllow (Dianthera americana) and smartweed (Polygonum sp.). The water is turbid throughout most of the year, clearing somewhat during August and September.
Mitrions. On August 22, 1949, an application of powdered derris root (contalning 5 -per cent cube powder rotenone) in a concentration of 1 p.p.m. was made to two small coves on the west shore of the lake. The poison was mixed with lake water and applied with a stjrrup pump which emitted a stream capable of covering shoal areas adequately from a boat. In applying the poison, a heavy concentration was sprayed along a line at the open end of the inlet initially, and followed by an even dosage over the entire area with proper allotment for variations in water depth. Means of determining the extent of ingress and egress of fishes in relation to the treated area were not available as a complete blocking-off of the cove was impractical, and water turbidity prohibited any observations of movement.
Alter poisoning, all of the fish which rose to the surface, and could be reached by hand or with a long-handled dip net were recovered for a population study. A large percentage of the total number of fishes were recovered on the second day, having risen from the bottom during the night and drifted into shore. Dead fishes floating on the surface were carried out of the area by the action of wind and waves on the second day. All dead and dying fishes recovered outside of the polsoned area were included in the total count, as there was little evidence of the diffusion of the poison into adjacent areas. Considerable difficulty was experienced in recovering fishes, copecially smaller ones, from the dense vegetation along the shore. Others were covered with mud in the process of recovery, as wading was a necessary oxpedient and stirred the bottom considerably. Total recovery was estimated as 80\% of the actual kill.

The first inlet poisoned (Station 1) is located on the west ahore approxd-
-Okianoma Game and Mish Dopartment, and Univernity of Oklahoma.
mately one-half mile north of the boathouse. The area treated was 2.5 surface acres in extent, and averaged 2 feet in depth, with a maximum depth of 5 feet. Extensive shallow areas exist at the head of the cove, and extend up the creek which empties into it. Bxposed stumps and submerged brush plles are present, and the entire shoreline is weedy. The bottom is sill lomm from 6 to 18 inches thick.

Rotenone was applied to a second cove (Station 2) near the boathouse at 3:00 p.m., 22 August. Approximately one surface acre at the head of the cove, with an average depth of eight feet, was treated. The banks are steep and rocky, with moderate shoreline vegetation and the bottom clean, with a two to six inch layer of silt over sandstone.
Materials. Population density computations are based on 9,052 individuals, recovered after application of the poison (including both coves) on August 22-23, 1949. Age and growth studies are based on 229 scale samples and 895 length-weight measurements of fourteen species of fish. Fishes not actually aged were arbitrarily assigned to age-groups representative of their alke.

TABLE I
Number and Weight of Fishes Recovered After Potsoning, 22-23 August 1949, Lake Claremore.

Spectes
Short-nose gar

Lepisosteus platostomus	1	-	-	-
Gizzard shad				
Dorosoma cepediainum	3952	383.8	413	49.6
Big-mouth bufialo				
Megastomatobus cyprinella	-	-	1	18.5
Carp				
Cyprinus carpio	12	18.8	6	23.3
Red shiner				
Notropis lutrensis	5	0.1	-	
Bluntnose minnow				
Hybornynchus notatus	3			
Channel catfish				
Ictalurus lacustris punctatus	299	43.0	178	25.1
Black bullhead				
Ameiurus melas catulus	1	0.1	1	-
Yellow bullhead				
Ameiurus natalis	2	0.5	1	0.2
Flathead catfish				
Pilodictis olivaris	17	12.0	2	1.4
Blackstripe topminnow				
Fundulus notatus	7	-	-	
Logperch				
Percina caprodes carbonaria	10	02	-	
Largemouth bass				
Micropterus salmoides	80	28.7	21	4.2
Sunfishes*	1728	50.7	1277	24.6
White crapple				
Pomoxts annularis	68	5.3	238	15.5
Brook silversides				
Labidesthes 8. sicculus	16	-	-	
Drum				
Aplodinotus grunntens	581	103.8	131	21.8
Totar	6782	645.1	2270	1822

Grand Total..............--9,052 individuals
827.3 pound

[^0]TABIT II
Comparison of Total Pounds and Pounds of Game Pishes, of Forage Fishes', and of Coarse Fishes', Per Acre in Troo Cooes of Lake Claremore.

	total pounds of Fism/Acre	Pounds of Game Fish/AcRe
Station 1	258.0	50.3
Station 2	182.2	69.4
Antracz	236.4	55.7
	Pounde of forage Fish/Acus	Pounds or Conrse Fish/Acre
Station 1	153.7	54.1
Station 2	49.6	63.2
Average	124.0	56.7

Considering the recovered amount as 80% of the actual population, there were approximately 300 pounds of fish per starface acre sampled. Of the total, 24 per cent were game lish, 52 per cent were forage fishes, and 24 per cent

TABLE III
Calculated Average Total Lengths of 73 Lake Claremore
Large-mouth Bass.

I GROUP	$\begin{gathered} \text { I } \\ \text { or Fo. } \end{gathered}$	Averace Total Lewath (INCHES)	Averages Weight (OUNCES) -	$\begin{aligned} & \text { Length } \\ & \text { Range } \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \text { Range } \\ & \text { (OUNCES) } \end{aligned}$
0	38	3.7	0.4	3.1-4.3	0.2- 0.7
I	24	7.8	3.7	5.4-9.2	1.4-5.8
II	3	10.4	8.8	9.7-10.9	7.4-10.1
III	4	13.2	19.1	11.6-14.7	12.0-24.0
IV	1	14.8	25.0		
V	2	18.6	58.0	17.7-19.6	56.0-60.0
VI	1	20.7	74.0		

Average Calculated Total Inengths
In Inceis At grid or Year
1
2
3
45
6
7
O
II
III
VI
VII
3.5*
$5.27 .7^{\circ}$

$6.2 \quad 9.3 \quad 10.7^{\circ}$
$\begin{array}{lllll}V & 6.5 & 10.8 & 12.9 & 13.3\end{array}$
$\begin{array}{ll}\text { VI } & 7.3 \\ & 7.8\end{array}$
$7.8-107 \quad 13.7$
18.6
15.7 16.8 17. * *
$18.0 \quad 18.6 \quad 19.3$
19.9*

Average Total Length
4.58
12.7
14.9
17.4
18.4
19.8

Average
Crowth per Year
4.0

42
2.2
2.6
1.0
1.5

[^1]

FIGURE 1.

Were edible, coarse, or commercial lishes. The total number of individuais, 9,062 , averaged 0.00 lb. (1.5 ounces) in wetght. Eieven largemouth bass, 46 channel catfish, and 44 white crappie of legal length comprised the total of fishes from 35 acres with which the fisherman is immediately concerned. The giward shad, \& valuable food fish for game fish during the first year of

Ite life, accounted for about one-hall of the total, both in numbers and weight. Bunfishes represented 33% of the numerical total and 9% of the weight. A big-mouth buffalo welghing 16.5 pounds was the largest fish taken. (Station 2).

AGE AND GROWTH RATES

Lanomanti Bass. Age and growth rate data for the largemouth bass are based on 73 of a total of 101 recovered. On the basis of total weight, this species was the second most important game iish in the lake. A total of 30.9 pounds comprised 3.7 per cent of the total weight of all fishes recovered.

From an examination of the calculated growth rates for years past, it appears that the growth of bass is becoming progressively slower. The average growth per year indicates an increase in length of about four inches for each of the ilrst three years of life. Thereafter, this length increase drops sharply to two, and then to one inch growth per year. The early years of growth are of great importance in determining the ultimate size of comparatively short-lived largemouth bass in southern waters. Natural mortality is no doubt rapid from age four on, and depletes the population much faster than do fishermen's catches. If growth rates are accelerated during the critical first and second years of 11 fe, and bass reach legal length in their second summer, many more bass would appear in the angler's creel. Table III indicates that bass reached legal length late in their second summer of life in the years 1945-47, but not in 1948, and (in all probability), 1949. This de-acceleration of growth rate creates a condition unfavorable to the production of ten-inch bass and lowors the chance of lishermen seeking this most highly-prized Oklahoma game fish.

TABLE IV
Comparison of Growth of Largemouth Bass in Lake Claremore and in Other Waters (1).

Body or Water	average Calculated Total Lengths in Inches at Ehs of Year of Life							
	1	2	3	4	5	6	7	8
Lake Claremore, Oklahoma*	4.5	8.5	12.7	14.9	17.4	18.4	19.9	
Great Salt Plains Reservoir, Okla.**	9.5	12.1	14.1	15.3				-
Norris Reservoir, Tennessee	6.9	12.2	14.7	16.1	17.5	19.3	20.8	-
Loutsiana Lakes***	7.6	11.3	14.5	18.8			-	-
Shawnee Lake, Otlahoma**	5.0	8.0	11.1	12.4	14.0	15.0	16.3	16.7

Blower growth is exhibited by Lake Claremore bass than in the other lakes cited, with the exception of Lake Shawnee. Largemouth bass reach legal length in their third summer of life in Lake Claremore.

White Cuappis. Studies of age and growth rates of the white crapple are based on 281 of the 308 individuals recovered.

[^2]TABLE V
Calculated Average Total Lengths of Lake Claremore White Crappie.

$\begin{aligned} & \text { AGE } \\ & \text { GROUP } \end{aligned}$	No. or Fish	Actual Average Total LENGTH INCHES	Actual. Average Wheret IN OUNCES	Total Lengti Range inches	Wegert Ranger OUNCIS
0	25	3.2	0.2	2.5-3.6	0.1-0.3
I	194	5.3	1.0	4.2-6.3	0.6-1.6
III	30	6.4	1.7	5.9-6.9	1.4-2.6
III	2	7.9	3.9	7.8-8.0	3.8-4.0

The calculated growth of crapple in the last four years indicates a steady decline in the annual growth rate. Individuals hatched in 1946 grew approximately one inch longer during the first year of life than those that hatched this spring (1949).

TABLE VI
Comparison of Growth of White Crappie in Lake Claremore and in Other Waters. Total Length in Inches.

Body or Watar	Year or Lift				
	1	2	3	4	6
Lake Claremore, 8-22-49	3.2	5.3	6.4	7.8	-
Splro City Lake, 9-15-49		5.8	7.2		
Henryetta Country Club Lake, 9-13-49	4.7	6.9	7.6	8.3	0.2
Duncan City Lake, 1947-48	-	4.6	5.5	8.9	-
Foot's Pond, Indiana, 1942 (C)	2.8	5.8	8.6	-	-

(C) Average calculated total lengths.

The growth rate of Lake Claremore crappie compares favorably with the other lakes cited (Table VI), but is not as rapid as is considered deairable to afford satisfactory fishing. Crapple grow at twice this rate during early years in new impoundments under reduced population pressure, and with ideal available food. Although doubling the growth rate of crapple in a reservoir as old as Lake Claremore is hardly possible, it should be increased by a decrease in the existing crapple population. Lake Claremore crapple reach legal length in their third summer of life.

Channil Catpish. Age determinations of channel catfish are based on 348 of the 478 individuals recovered. This species represented 53 per cent of the numerical total and 82 per cent of the total weight of recovered fiches.

[^3]

TABLE VII
Average Total Length and Weight of Age Groups of Channel Catfish from Lake Claremore, August 22, 1949

$\begin{gathered} \text { AROE } \\ \text { GROUP } \end{gathered}$	$\stackrel{\text { No. }}{\text { or Fisi }}$	Total Lengeth ny Incmies	Werger in Ounces	Total Length Range in Inctes
0	67	2.7	0.1	1.5-3.7
1	124	6.4	1.1	4.3-7.5
III	88	8.4	2.6	7.4-9.6
III	39	9.6	4.1	8.9-10.5
IV	16	11.2	5.7	10.4-11.8
V	14	12.3	8.8	11.8-13.0
VI	1	14.1	14.3	
VIII	1	21.4	52.0	
TOTAL	348			

TABLE VIII
Comparison of Growth of Channel Catfish in Lake Claremore and in Other Oklahoma Waters．Average Total Length in Inches．

$\underset{\text { Grour }}{\text { Ags }}$	$\begin{aligned} & \text { Clare- } \\ & \text { MORE } \\ & \text { LAKEI } \end{aligned}$	Paw－ HUSRA LAKE	$\begin{gathered} \text { SHAW- } \\ \text { NEE } \\ \text { LAKKE } \end{gathered}$	Laks Over－ molser	$\begin{aligned} & \text { Griat } \\ & \text { Salt } \\ & \text { PLans } \\ & \text { Reske } \\ & \text { Votr } \end{aligned}$	$\begin{aligned} & \text { Fank- } \\ & \text { fax } \\ & \text { Lakt } \end{aligned}$	Com ANCRE Laxt
0	2.7	－	－	－	－	－	－
1	6.4	11.6	3.6	－	6.1	11.0	9.3
II	8.4	17.2	5.5	13.5	8.7	19.3	18.3
III	9.6	－	7.6	14.0	12.0	24.3	20.0
IV	11.2	23.9	9.0	15.4	16.4	－	24.4
V	12.3	29.7	11.1	19.9	19.1	－	－
VI	14.1	31.9	13.5	21.1	21.3	－	－
VII	－	－	18.0	29.8	23.0	－	－
VIII	21.4	二	－1	－	二	二	－

Legal length（ten inches）is attained in the fifth summer of growth．In comparison，Shawnee Lake catfish reach ten inches in their sixth summer， and the Great Salt Plains Reservoir channel cats in their fourth summer．

Growth is much more rapid in some lakes of Oklahoma（Table VIII）． Channel catfish attained legal length during their first summer of growth in Lake Fairfax in 1948.

Sunfishes．Bluegill，warmouth，green，long－ear，orange－spot，and red－ear sunfishes．Thirty－one scale samples were taken from a total of 3,005 sunfishes recovered．The following table summarizes ages and growth rates of the var－ ious species．

TABLE IX

Age	Average Total Lengths and Weights of Age－groups of Fivo Spectes of Sunfishes in Lake Claremore，August 22， 1949.									
	Bluegill		GrimenSunfish		RED－EAR SUNFISH		Long－ear SUwTish		Warmouth	
Group	T2＊	WT＊	Tl．	Wr．	Tx．	Wr．	Tx．	Wr．	Tz．	Wr．
1	3.7	0.4	4.3	0.8	3.8	0.7	3.8	0.6	－	－
Ir	5.1	1.4	－	－	5.7	1.9	－	－	5.5	1.9
III	6.0	2.8	－	－	7.1	3.5	－	－	－	－
IV	－	－	－	－	－	－	－	－	7.4	4.8

The most rapid growth is evidenced in the red－ear sunfish，with green sunfish，warmouth，long－ear，and bluegill following in order．The growth rates exhibited are not extremely poor，but are below the regional average．

TABLE X

Comparison of the Growth of Bluegtll in Lake Claremore and in Other Waters．

Body or watre ．

Lake Claremore，8－22－49

Spiro City Lake， $9-15-49$
Henryetta Country Club Lake， 9－13－49
White＇s Pond，Muskogee，9－16－49
Foot＇s Pond，Indians＊
Michigan Lakes（Lagler，1949）
actual Aveager total Lengta m Incires Yenr or Life

1	2	3	4
4.2	3.7	5.1	6.0
-	4.0	-	-
1.6	4.2	6.1	6.7
1.7	3.1	5.9	6.3
	3.1	4.3	5.4

[^4]

Dnum. Age determinations of drum are based on 84 of 721 individuals recovered.

TABLR XI
Average Total Length and Weight of Age-groups of Drum, Lake Claremore, August 22, 1949.

Agers	No. or FTSH	$\begin{aligned} & \text { Toral } \\ & \text { Lmarrins } \\ & \text { Incer } \end{aligned}$	Werart nemerss	Total Lemath Ramar If Incries	$\begin{aligned} & \text { Werast } \\ & \text { Ranar } \\ & \text { in Ouvcess } \end{aligned}$
0	5	3.6	03	3.4-3.7	0.2-0.4
1	38	7.2	22	5.8-8.0	1.6-2.9
II	38	9.1	4.4	8.1-9.7	3.2-5.5
III	3	112	7.9	10.2-11.5	5.7-7.5

stmillar surveys conducted at Grand Lake and in other reservoirs have revealed great numbers of drum in comparable sise groups. A proportion of 71:4,N\%, or about one drum to six shad was found at Iake Claremore.

TABLF XII
Comparson of wrowth of Drum in Lake Claremore and in Other Waters. Total Length in Inches, Weight in Ounces

${ }_{\text {Age }}^{\text {Age }}$	Laki Claremore		Reminoot Lake, Tens.		Laxts	
	Av.	Av.	Av.	Av.	Av.	Av.
	Lengit	Weight	Lenoth	Weiget	Levatr	Weigert
	Inchis	Ounces	Inches	Ounces	Inches	Ounces
0						
1	7.2	2.2	10.4	8.0	8.6	3.7
II	9.1	4.4	13.4	18.4	10.4	7.0
III	11.2	7.9	15.1	28.0	11.8	10.6

Table XII indicates that the growth rate and condition of Claremore drum is far below that of the other lakes cited. In both Lake Erie and Reelfoot Lake, drum are taken by commerclal fishermen in significant numbers. The fact that this fish is not harvested in Lake Claremore, and does exist in great abundance, undoubtedly accounts in part for its poor growth rate.

Gizzard Shad. Age determinations of gizzard shad are based on 163 of 4,365 individuals recovered.

TABLE XIII
Average Total Length and Weight of Age-groups of Gizzard Shad, Lake Claremore, August 22, 1948

Age	No. or	Av. Total LINGTH	LENGTH Ranor	Av.	Werart	Werart Rasces
Group	Fist	In Inches	In Inches	IN	Ouxcms	in Ouxcme
0	10	3.7	2.8-4.5		0.4	0.2-0.6
I	111	6.7	5.3-8.3		1.7	0.9-2.9
II	43	9.1	8.2-9.9	-	4.0	3.3-6.1

Comparison shows the growth rate to be near the average for lakes of about the same size and age in this area. The shad is by far the most abundant species in the lake, as is typical of all larger Oklahoma lakes, and assures an ample game fish food supply throughout the summer months.

LITERATURE CITED

1. Lagler, Karl F., 1949, Studies in Freshwater Fishery Biology. Third Revised Edition: 213-214.
2. Schorfman, R. J., 1941, Age and Growth of the Drum in Reelfoot Lake. Journ. Tenn. Acad. Bcl., 16: 100-110.

[^0]: ${ }^{-I n c l u d e s}$ Bluegili, Lepomis mecrochirus; grean sunfleh, Lepomis cyanellus; longear sunfish, Lepomis megalotis; redenr'munrith, Lepomis microlophus.

[^1]: - Growth completed by Aurust 22, 180.

 Apefroup 0 includen all fith hatched in the spring of ioce, age-group I includes all inh hatched in the apains of 104, etc.

 carase fishos-drard ghad minnows and boupureh.

[^2]: - Ban taken an 29. Aurunt 1949.
 - Open tiken in June inc.

[^3]: -Growth completed by August 22, 194.

[^4]: －TI－Total length in inches．
 Wt．－Weight in ounces．
 ＊Celculated growth．

